Astronomy 1142: Assignment 1

This assignment is due at the beginning of class on Friday, 9/17. It should be turned in on paper, and you should staple or paper clip all sheets together. It's your responsibility to write clearly enough that we can grade your answers.

If you are unable to attend class on $9 / 17$, please turn in your assignment to my mailbox in 4055 McPherson before class. Late assignments will be marked down 15 points, and no assignments will be accepted past 4 pm on $9 / 21$.

You may consult with others in the class when you are working on the homework, but you should make a first attempt at everything on your own before talking to others, and you must write up your eventual answers independently.

You are welcome to come to my office hours or TA John Bredall's office hours for advice. This will almost certainly be helpful if you are finding the assignment difficult.

In-person office hours, 4030 McPherson Laboratory (4th floor, SW corner)
Thursday 9/16, 11:30am-12:45pm, with David Weinberg
Friday, 9/17, 11:30am-12:45pm, with John Bredall
Virtual office hours, Zoom 827776 2849, Passcode 1420
Thursday $9 / 16,4: 15 \mathrm{pm}-5: 30 \mathrm{pm}$, with John Bredall
Friday 9/17, 9:15am-10:30am, with David Weinberg

Part I: Short Questions

Answer each question in one or two sentences. Each question is worth 5 points, except \#5 which is worth 10 points.

1. In Thorne's prologue, the protagonist (you) wishes to fly in a rocket close to the event horizon of a black hole. You find that you cannot do this for the stellar mass black hole "Hades," but you eventually fly close to the event horizon of the supermassive black hole "Gargantua." Why can't you fly close to the event horizon of Hades?
2. Why is the black disk of Gargantua's event horizon surrounded by a bright ring?
3. Why are X-ray telescopes good for finding black holes?
4. How do we know that the Milky Way galaxy has a 4 million solar mass black hole at its center?
5. You roll two billiard balls towards each other at a speed of $2 \mathrm{~m} / \mathrm{sec}$. One of them is a normal billiard ball with a mass of 0.17 kg , but the other is a super-heavy billiard ball (made of lead alloy) with a mass of 3 kg . After they collide, the normal billiard ball bounces backward, reversing its direction. The super-heavy billiard ball continues moving forward, but at a speed slower than 2 $\mathrm{m} / \mathrm{sec}$.

Explain this behavior with reference to Newton's 2nd and 3rd laws.

Part II: Acceleration of the moon

Each part of the question is worth 5 points. If your answer is based on an equation, list the equation as well as the numerical result. For parts (c) and (d), consult the diagram below.

The distance from the earth to the moon is $384,000 \mathrm{~km}$, or 3.84×10^{8} meters.
(a) What is the circumference of the moon's orbit?
(b) In 100 seconds, how far does the moon travel in its orbit? (Hint: there are 2.36×10^{6} seconds in a month.)
(c) If there were no gravity, then during these 100 seconds the moon would go along the straight-line path $\mathbf{A B}$ in the diagram (which is not drawn to scale). Instead it follows the curved path AC. What is the distance from \mathbf{O} (the center of the earth) to \mathbf{B} ? Give your answer in meters.
(Hint: Use the Pythagorean theorem, which says that the sides of a right triangle are related by $a^{2}=b^{2}+c^{2}$ where a is the longest side.)
(d) How far did the moon "fall" towards the earth by following the curved path AC instead of the straight path AB? Give your answer in meters.
(Note: If you get zero, it means that you didn't keep enough significant figures when you answered c. It can be difficult to get a calculator to keep the required number of digits, so I will give you a hint $-\sqrt{\left(3.84 \times 10^{8}\right)^{2}+\left(1.02 \times 10^{5}\right)^{2}}=384,000,013.5$.)
(e) How far would an object dropped from an airplane (flying on earth) fall in 100 seconds, assuming no air resistance?
(f) If all went well, then your answer for (e) is about 3600 times larger than your answer for (d). Why does this factor of 3600 support Isaac Newton's inverse-square law of gravity?

Part III: Understanding and using Kepler's 3rd law

Each part of the question is worth 10 points.
For this problem, you will need to use the equations

$$
\begin{equation*}
a=\frac{v^{2}}{r} \tag{1}
\end{equation*}
$$

for the acceleration of an object moving in a circular path of radius r and

$$
\begin{equation*}
a=\frac{G M}{r^{2}} \tag{2}
\end{equation*}
$$

for the gravitational acceleration produced by a central object of mass M at a distance r. You should also remember that the speed of an object in a circular orbit of radius r and period P is

$$
\begin{equation*}
v=\frac{2 \pi r}{P} \tag{3}
\end{equation*}
$$

(a) Combine these equations to show that

$$
\begin{equation*}
\frac{G M}{4 \pi^{2}}=\frac{r^{3}}{P^{2}} . \tag{4}
\end{equation*}
$$

What is the relation between this equation and Kepler's 3rd law?
("Combine these equations" means write out the algebra steps that take you from equations 1-3 to equation 4 . Write words to explain what you are doing if needed.)
(b) The distance from the earth to the sun is called the Astronomical Unit (AU) - i.e., the radius of the earth's orbit is 1 AU . (We won't worry about the slight ellipticity of this orbit.) The radius of Jupiter's orbit is 5.2 AU. How many years does it take Jupiter to go around the sun?
(c) Jupiter's largest moon, Ganymede, orbits Jupiter once every 7.2 days. The distance from Ganymede to Jupiter is $7.15 \times 10^{-3} \mathrm{AU}$ (just over 1 million km). Use this fact, and your knowledge that the earth orbits the sun in 365 days, to show that the sun is about 1000 times more massive than Jupiter. (Your answer should come out between 1000 and 1100.) [Hint: Start by writing equation (4) twice, once with $r_{\text {Earth }}$ and $P_{\text {Earth }}$ and once with $r_{\text {Gany }}$ and $P_{\text {Gany }}$. Think carefully about what goes on the left side of the equation in each case.]
(d) You observe an X-ray binary, in which a normal, visible star orbits an optically invisible (but X-ray bright) compact object. You measure the period and radius of the normal star's orbit. How could you use this information to determine the mass of the compact object?

