
4 Pressure and Viscosity

Reading: Ryden, chapter 2; Shu, chapter 4

4.1 Specific heats and the adiabatic index

First law of thermodynamics (energy conservation):

dε = −PdV + dq =⇒ dq = dε + PdV, (28)

V ≡ ρ−1 = specific volume [ cm3 g−1]

dq ≡ Tds = heat change per unit mass [ erg g−1]

s ≡ specific entropy [ erg g−1 K−1].

The specific heat at constant volume,

cV ≡

(

∂q

∂T

)

V
[ erg g−1 K−1] (29)

is the amount of heat that must be added to raise temperature of 1 g of gas by 1K.

At constant volume, dq = dε, and if ε depends only on temperature (not density), ε(V, T ) = ε(T ),
then

cV ≡

(

∂q

∂T

)

V
=

(

∂ε

∂T

)

V
=

dε

dT
.

implying
dq = cV dT + PdV.

If a gas has temperature T , then each degree of freedom that can be excited has energy 1
2kT . (This

is the equipartition theorem of classical statistical mechanics.)
The pressure

P =
1

3
ρ〈|~w|2〉 =

ρ

m
kT

since

〈
1

2
mw2

i 〉 =
1

2
kT =⇒ 〈|~w|2〉 =

3kT

m
.

Therefore

PV =
kT

m
=⇒ PdV =

k

m
dT.

Using dq = cV dT + PdV , the specific heat at constant pressure is

cP ≡

(

∂q

∂T

)

P
= cV + P

dV

dT
= cV +

k

m
.

Changing the temperature at constant pressure requires more heat than at constant volume because
some of the energy goes into PdV work.
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For reasons that will soon become evident, the quantity γ ≡ cP /cV is called the adiabatic index.
A monatomic gas has 3 degrees of freedom (translation), so

ε =
3

2

kT

m
=⇒ cV =

3

2

k

m
=⇒ cP =

5

2

k

m
=⇒ γ =

5

3
.

A diatomic gas has 2 additional degrees of freedom (rotation), so cV = 5k/2m, γ = 7/5.
More generally

ε =
1

γ − 1

kT

m
=

1

γ − 1

P

ρ
.

4.2 Adiabatic evolution

As discussed in §2.7, a perfect gas has a Maxwellian velocity distribution and therefore no viscosity
so it obeys the Euler equations.
In the absence of radiative heating and cooling, one can combine the continuity and energy equa-
tions,

Dρ

Dt
= −ρ~∇ · ~u,

Dε

Dt
= −

P

ρ
~∇ · ~u,

to find
Dε

Dt
=

P

ρ2

Dρ

Dt
= −P

DV

Dt
,

and since dε = −PdV + Tds we conclude that

T
Ds

Dt
= 0.

In the absence of radiative heating and cooling, a perfect gas undergoes only adiabatic (constant
entropy) changes.

From the equation of state

ε =
1

γ − 1

P

ρ

we have

dε =
1

γ − 1

(

dP

ρ
−

P

ρ2
dρ

)

.

For adiabatic (ds = 0) changes, we can combine this with the first law of thermodynamics

dε = −PdV =
P

ρ2
dρ

to find (after multiplying by ρ/P )

1

γ − 1

(

dP

P
−

dρ

ρ

)

=
dρ

ρ

implying
dP

P
= γ

dρ

ρ
=⇒ P = P0(ρ/ρ0)

γ ,

a polytropic equation of state (P ∝ ργ).
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4.3 Summary: single particle species equation of state

The thermal pressure is

P =
1

3
ρ〈|~w|2〉 =

ρ

m
kT = nkT. (30)

The specific internal energy is

ε =
1

γ − 1

kT

m
=

1

γ − 1

P

ρ
, (31)

where γ = cP /cV is the adiabatic index.
A gas undergoing only adiabatic changes has a polytropic equation of state P = P0(ρ/ρ0)

γ .
A change in entropy changes the “adiabat” of the gas, i.e., the relation between P0 and ρ0.

4.4 Gas entropy

Start with
dε = −PdV + Tds

and consider adding or removing heat at constant ρ (dV = 0)

Tds = dε = cV dT

implying

ds = cV
dT

T
=⇒ s = cV lnT + const..

Since P ∝ T at constant ρ, this implies that s = cV lnP + const..

What about changes of density? We know that adiabatic changes keep Pρ−γ constant, so these
must be lines of constant entropy (in the plane of pressure and density).

Therefore, for a single particle species gas,

s = cV ln
(

Pρ−γ)

+ const. (32)

4.5 Cluster scaling relations and the “entropy floor”

Consider a simple model of galaxy clusters in which the density profile of the hot intracluster gas
is ρ(r) = ρV (R/r)2 for r > r0 and ρ(r) = const. for r <= r0. Define the cluster concentration
parameter c = R/r0, implying ρ0 = c2ρV .

For Bremmstrahlung (free-free) emission, the emissivity per unit volume is proportional to ρ2T 1/2.
The cluster’s X-ray luminosity will be dominated by the high density core, and we therefore expect

Lx ∼ ρ2
0T

1/2r3
0 ∼ ρ2

V c4T 1/2c−3R3 ∼ ρ2
V cR3T 1/2.

Now make two fairly general assumptions about the cluster population, that they follow a virial
relation T ∼ GM/R and that they all have roughly the same average density M/R3 ∼ ρV = const.
(indeed, one can define the cluster radius to be the radius where the density falls to ρV .)
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Under these assumptions, we find

R ∼ M1/3 =⇒ T ∼ M2/3 ∼ R2

and
Lx ∼ cR3T 1/2 ∼ cT 2 ∼ cM4/3.

If all clusters have similar profile shapes, so that c is the same for all clusters, we therefore expect
Lx ∝ T 2 ∝ M4/3.

However, observed clusters show an Lx−T relation that is more like Lx ∝ T 3, perhaps even steeper
in the regime of low mass groups. One popular explanation of this discrepancy is that gas was “pre-
heated” by supernova winds or some other feedback mechanism before falling into clusters, giving
it an “entropy floor” — a minimum level smin below which it cannot fall.

The cluster’s central entropy is s0 ∼ Tρ
−2/3
0 ∼ Tc−4/3. If all clusters have s0 = smin = const., then

c ∼ T 3/4s
−3/4
min =⇒ L ∼ T 2.75.

Thus, an entropy floor leads to larger cores (relative to R) in cooler clusters and thus to a steeper
Lx − T relation.

Alternative possibilities are that the gas is heated after falling into the clusters (though then more
energy must be injected to “puff it up” by a significant amount) or that an approximate entropy
“floor” arises because the low entropy gas cools and settles into galaxies, with higher entropy gas
flowing in to replace it.

4.6 Multiple particle species and mean molecular weight

Now suppose that we have particle species j = 1, N , each with mass mj.
Define the mean molecular weight

µ ≡
ρ

nmp
=

∑

njmj

nmp
, (33)

the ratio of the number-weighted mean particle mass to the proton mass, n =
∑

nj.

Since 1
2mj〈|~w|2〉j = 3

2kT , the pressure and specific internal energy of each species is

Pj =
1

3
ρj〈|~w|2〉j =

ρj

mj
kT = njkT,

εj =
1

2
〈|~w|2〉j =

3

2

kT

mj
,

assuming that all species are characterized by the same temperature T .

The total pressure is

P =
∑

j

Pj =
∑

j

njkT = nkT =
ρ

µmp
kT.
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For the specific internal energy, we must weight according to the mass density in each species,

ε =

∑

εjmjnj
∑

mjnj
=

∑ 3
2kTnj

ρ
=

3

2
kT

n

ρ
=

3

2

kT

µmp
=

3

2

P

ρ
.

So the single species formulas apply, with the substitution m −→ µmp.

For primordial composition, helium = 7% by number (23% by mass).

neutral: µ =
0.93mp+4×0.07mp

(0.93+0.07)mp
≈ 1.2

ionized: µ =
0.93mp+4×0.07mp

(0.93+0.93+0.07+2×0.07)mp
≈ 0.6 (me � mp).

4.7 Molecular viscosity

Returning to the Navier-Stokes equation, the momentum conservation equation is

∂~u

∂t
+

(

~u · ~∇
)

~u = ~g −
1

ρ
~∇P +

1

ρ
~∇·

↔

π,

where
~∇·

↔

π=
∑

i

∂

∂xi
πij πij = Pδij − ρ〈wiwj〉.

In a “Newtonian fluid,”
↔

π is linearly proportional to the velocity gradient ∂ui

∂xj
(this was essentially

a guess on the part of Newton and Hooke).
The most general symmetric tensor linear in ∂ui

∂xj
is

πij = µDij + βδij

(

~∇ · ~u
)

, (34)

where the deformation tensor

Dij ≡
∂ui

∂xj
+

∂uj

∂xi
−

2

3
δij

(

~∇ · ~u
)

(35)

vanishes for uniform expansion or contraction, and

µ ≡ coefficient of shear viscosity = [ g cm−1 s−1]

β ≡ coefficient of bulk viscosity = [ g cm−1 s−1].

(Note that this µ has nothing to do with mean molecular weight.)

µDij represents resistance to shearing motion and βδij

(

~∇ · ~u
)

represents resistance to changes in

volume.

The value of µ can be estimated at an order-of-magnitude level as described in Shu (pp. 30-32),
similar to Ryden (pp. 16-17). I have not come across a similar estimate of β.

Consider a plane-parallel flow with shear, uy = uz = 0, ∂ux

∂y 6= 0, and focus on a volume ∆A∆y
bounded by surfaces of area ∆A separated by ∆y.
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If we further assume constant density and pressure and ignore gravitational accelerations, the
momentum equation becomes (since ∂

∂x = ∂
∂z = 0)

∂

∂t
(ρux) =

∂

∂y
πxy =

∂

∂y

(

µ
∂ux

∂y

)

,

so ∂
∂y

(

µ∂ux

∂y

)

is the viscous force per unit volume acting on the fluid element.

The rate at which particles cross the upper surface is

∼
nvT

2
∆A, vT ∼

(

kT

m

)1/2

= thermal velocity.

The particles travel a distance ∼ λ before colliding and exchanging momentum with another par-
ticle, so although equal numbers of particles cross the boundary in the upward and downward
direction, there is a systematic difference in momentum

∆px ∼ 2mλ
∂ux

∂y

per particle.
The rate of change of momentum of the element due to particles crossing its boundaries is therefore

dpx

dt
∼

[

mλ
∂ux

∂y
nvT∆A

]

y+∆y

−

[

mλ
∂ux

∂y
nvT ∆A

]

y

,

since we must subtract the momentum being taken out by particles crossing the bottom surface.
Dividing by the volume ∆A∆y gives the force per unit volume, so

∂

∂y

(

µ
∂ux

∂y

)

∼
∂

∂y

(

nmλvT
∂ux

∂y

)

and using λ = (nσ)−1 implies

µ ∼
mvT

σ
. (36)

The coefficient of shear viscosity is independent of density because if the density increases then the
higher flux of particles across the boundaries is countered by the shorter distance λ each particle
goes, and hence the smaller amount of momentum mλ ∂ux

∂y that it transfers.

Note also that a uniform shear ( ∂ux

∂y =const.) produces no net force because the drag from above
is cancelled by the drag from below.

For neutral atomic hydrogen

µ = 6 × 10−3
(

T

104 K

)1/2

g cm−1 s−1.

Another frequently used quantity is the kinematic viscosity,

ν ≡
µ

ρ
∼ vT λ ∼

(

kT

m

)1/2 1

nσ
[ cm2 s−1]. (37)
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Note from the momentum equation that ∂u
∂t ∼ ν ∂2u

∂x2 .

Hydrodynamics literature is also replete with references to the Reynolds number

Re ≡
ρuL

µ
=

uL

ν
∼

u

vT

L

λ
. (38)

For small Re, viscous forces have an important effect in altering a flow with large velocity gradients,
while for Re� 1 viscous forces can usually be ignored.
A fluid can usually remain turbulent on scales where Re is large, while viscosity damps out turbu-
lence on scales where Re∼< 1.

4.8 Heat conduction

In typical cases, the conduction heat flux ~F is proportional to the temperature gradient

~F = −K ~∇T,

where K is the coefficient of thermal conductivity. This is called Fourier’s law.

For neutral gas, the coefficient is

K =
5

2
cV µ ∼

k

σ

(

kT

m

)1/2

.

In the case of neutral atomic hydrogen

K = 2 × 106
(

T

104 K

)1/2

g cm s−3 K−1.

Note that the change in internal energy is proportional to ~∇ · ~F , so conduction only changes the
internal energy locally when the temperature gradient is not constant.

It is useful to note that the units of K can also be written erg s−1 cm−1 K−1. Multiplying by a
temperature gradient with units K cm−1 and taking a spatial derivative (~∇ · ~F ) therefore yields
something with units erg s−1 cm−3.
Therefore ~∇ · ~F/ρ has units of erg s−1 g−1, the same as Dε

Dt .
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