
7 Shocks

Reading: Ryden chs. 3 & 4, Shu chs. 15 & 16. For the enthusiasts, Shu chs. 13 & 14.

A good article for further reading: Shull & Draine, The physics of interstellar shock waves, in
Interstellar processes; Proceedings of the Symposium, Grand Teton National Park, WY, July 1-7,
1986 (A88-14501 03-90). Dordrecht, D. Reidel Publishing Co., 1987, p. 283-319.

Consider the propagation of a finite amplitude sound wave.
The speed of propagation is higher at higher temperature, so the crest of the wave gradually
overtakes the trough (T ∝ ργ−1).
When faster moving gas overtakes slower moving gas, we get a discontinuous change of density and
velocity, a shock.
(NB: In fact, this steepening happens even for γ = 1 because of non-linearity of the equations.)

Shocks can also be produced by any supersonic compressive disturbance. This is the more common
source of shocks in astrophysical situations.
What are places where astrophysical shocks occur?
Cloud-cloud collisions
HII regions expanding into neutral medium
Stellar wind encountering medium
Supernova or GRB blast wave (internal and external shocks)
Accretion onto compact objects: spherical or disk
Accretion onto hydrostatic intracluster medium

In general a shock wave is
• a pressure driven compressive disturbance
• propagating faster than the “signal speed” for compressive waves
• producing irreversible change in fluid state (increase of entropy)

In most cases a shock involves a “discontinuous” change of fluid properties over a scale ∼ λ.

7.1 Shock jump conditions

Consider a propagating shock wave in the rest frame of the shock.
Unshocked gas approaches from the +x direction moving faster than its sound speed and passes
through the shock.
Pre-shock conditions: ρ1, u1, T1.
Post-shock conditions: ρ2 > ρ1, u2 < u1, T2 > T1.

We would like to derive the relations (a.k.a. “jump conditions”) between ρ1, u1, T1 (or, equivalently,
P1) and ρ2, u2, T2 (or P2), for a steady-state, plane-parallel shock (~u perpendicular to shock front
and fluid properties depend only on distance to front).
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Within the shock front (a.k.a. “transition layer”), viscous effects are important – they cause the
shock in the first place. However, outside this layer, viscous effects are small on scales larger than
the mean free path. We will derive conservation equations of the form

d

dx
Q(ρ, u, P ) = 0 =⇒ Q(ρ, u, P ) = constant,

and although the quantities Q involve viscous terms, we can ignore these outside the shock zone
and can therefore derive the jump conditions from equations that don’t involve viscosity terms.

We start from the continuity equation and the momentum equation

∂ρ

∂t
+ ~∇ · (ρ~u) = 0,

∂~u

∂t
+
(

~u · ~∇
)

~u = ~g −
1

ρ
~∇P +

1

ρ
~∇·

↔
π,

and from the thermal energy equation, which it is helpful to write in the form (Ryden 1-43)

∂

∂t
(ρε) + ~∇ · (ρε~u) = −P ~∇ · ~u − ~∇ · ~F + Ψ,

analogous to the continuity equation, and to supplement with a separate equation (Ryden 1-44)
for conservation of kinetic energy

∂

∂t
(1

2
ρu2) + ~∇ · (1

2
ρu2~u) = ρ~u · ~g − ~u · ~∇P + ~u · (~∇·

↔
π ).

We now assume steady-state, ∂
∂t = 0, plane-parallel, ∂

∂y = 0, ∂
∂z = 0, ∂

∂x = d

dx , and ignore gravity
and viscosity. These equations then become

d

dx
(ρu) = 0 (41)

u
du

dx
= −

1

ρ

dP

dx
(42)

d

dx
(ρεu) = −P

du

dx
(43)

d

dx
(1

2
ρu2u) = −u

dP

dx
. (44)

(45)

Equation (41) immediately gives

ρu = constant =⇒ ρ1u1 = ρ2u2.

Using

d

dx
(ρu2) = 2ρu

du

dx
+ u2

dρ

dx
= ρu

du

dx
+ u

(

ρ
du

dx
+ u

dρ

dx

)

= ρu
du

dx
+ u

d

dx
(ρu) = ρu

du

dx
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allows the equation (42) to be written

ρu
du

dx
+

dP

dx
=

d

dx

(

ρu2 + P
)

= 0 (46)

so
ρu2 + P = constant =⇒ ρ1u

2

1 + P1 = ρ2u
2

2 + P2. (47)

If we had kept the viscosity terms in the derivation, equation (46) would instead have been

d

dx

(

ρu2 + P −
4

3
µ

du

dx

)

= 0. (48)

Within the transition zone, where µ and du
dx are non-zero, ρu2 + P is not constant.

However, in the pre-shock and post-shock zones, µ and du
dx are negligible, so equation (47) holds.

We could use equation (48) (together with our other equations and the constitutive relation for
viscosity) to follow what happens within the transition zone. However, the fluid approximation
itself breaks down within this region.

Adding together equations (43) and (44) gives
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)
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.

Since d

dx(ρu) = 0 and ρu 6= 0, this equation implies that

d

dx

(

1
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P

ρ

)

= 0 =⇒ 1

2
u2 + ε +

P

ρ
= constant,

so
1

2
u2

1 + ε1 +
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ρ1

= 1

2
u2

2 + ε2 +
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ρ2

.

If we had been more complete, the conserved quantity would also include viscosity and heat con-
duction terms, but once again, these are unimportant outside of the transition zone.

In summary, we have the Rankine-Hugoniot jump conditions for a plane-parallel shock:

ρ1u1 = ρ2u2 (49)

ρ1u
2

1 + P1 = ρ2u
2

2 + P2 (50)

1

2
u2

1 + ε1 +
P1

ρ1

= 1

2
u2

2 + ε2 +
P2

ρ2

. (51)

Even though the physics of the shock region may be complicated and varied, these conditions
follow from conservation of mass, momentum, and energy alone. More precisely, the first follows
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from mass conservation, the second from mass and momentum conservation, and the third from
mass and energy conservation. If ρ1, u1, and P1 are known, we have three equations for the three
unknowns ρ2, u2, and P2.
Using εi = 1

γi−1

Pi

ρi

, the last of the jump conditions can be written

1

2
u2

1 +
γ1

γ1 − 1

P1

ρ1

= 1

2
u2

2 +
γ2

γ2 − 1

P2

ρ2

,

for a gas that has a polytropic equation of state.
Note that γ2 may be different from γ1 if, for example, the shock dissociates molecules, or raises the
temperature so that previously inaccessible degrees of freedom become accessible.

7.2 The Mach Number

The dimensionless number that characterizes the strength of a shock is the Mach number, the ratio
of the shock speed to the upstream sound speed:

M1 ≡
u1

a1

=

(

ρ1u
2
1

γP1

)1/2

. (52)

The factor in () can be viewed as a ratio of “ram pressure” to thermal pressure in the pre-shock
gas, or as a ratio of kinetic energy density to thermal energy density.

In terms of the Mach number, the shock jump conditions are (Ryden eqs. 3-51)

ρ2

ρ1

=
u1

u2

=
(γ + 1)M 2

1

(γ − 1)M 2
1

+ 2

P2

P1

=
ρ2kT2/m

ρ1kT1/m
=

2γM2
1 − (γ − 1)

γ + 1
.

Together these conditions imply

T2
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=
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1 + 2][2γM 2
1 − (γ − 1)]

(γ + 1)2M2
1

.

A strong shock is one with M1 � 1, yielding

ρ2

ρ1

=
u1

u2

≈
γ + 1

γ − 1
= 4 (53)

P2 ≈
2γ

γ + 1
M2
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2
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ρ1u

2

1 =
3

4
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2

1 (54)

T2 ≈
2γ(γ − 1)

(γ + 1)2
T1M

2

1 =
2(γ − 1)
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m

k
u2

1 =
3

16

m

k
u2

1, (55)

where the last equalities are for γ = 5/3.

In the rest frame of a strong shock, with γ = 5/3, the post-shock kinetic energy is

1

2
u2

2 ≈
1

32
u2

1,
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and the post-shock thermal energy is
3

2

kT2

m
≈

9

32
u2

1.

So roughly half of the pre-shock kinetic energy is converted to thermal energy. The total energy
of the post-shock gas is lower (in the shock rest frame) because of the work done on the gas by
viscosity and pressure in the shock.

A weak shock has M1 − 1 = ε � 1. In this limit

ρ2

ρ1

≈ 1 +
4

γ + 1
ε = 1 +

3

2
ε (56)

P2

P1

≈ 1 +
4γ

γ + 1
ε = 1 +

5

2
ε (57)

T2

T1

≈ 1 +
4(γ − 1)

γ + 1
ε = 1 + ε, (58)

where the last equalities are again for γ = 5/3.

The post-shock Mach number is

M2 ≡
u2

a2

=
u1

a1

u2

u1

a1

a2

= M1

u2

u1

(

T1

T2

)1/2

.

In the weak shock limit, M2 ≈ 1 − ε.
In the strong shock limit

M2 ≈ M1

(γ − 1)

(γ + 1)

[

(γ + 1)2

2γ(γ − 1)M 2
1

]1/2

=

(

γ − 1

2γ

)1/2

≈ 0.45.

A shock converts supersonic gas into denser, slower moving, higher pressure, subsonic gas. It
increases the specific entropy of the gas by an amount

s2 − s1 = cV ln

(

P2

ργ
2

)

− cV ln

(

P1

ργ
1

)

= cV ln

(

P2

P1

)

− cV γ ln

(

ρ2

ρ1

)

.

One can also write this in the form

s2 − s1 = cP ln

(

T2

T1

)

−
k

m
ln

(

P2

P1

)

,

which is Ryden’s eq. (3-55), using cP = cV + k
m = γcV .

In another terminology, a shock shifts gas to a higher adiabat.
An adiabat is a locus of constant entropy (T ∝ ργ−1) in the density-temperature plane. Gas can
move adiabatically along an adiabat, while changes in entropy move it from one adiabat to another.

41



7.3 Numerical hydrodynamics and artificial viscosity

The physical scale of a shock transition layer is ∼ λ.
In most systems of astrophysical interest, the scale of the system is L � λ.
In numerical hydrodynamics, it is usually impractical to make an individual grid cell comparable
to or smaller than λ (especially in more than one dimension), so the physical scale of a shock is
generally much smaller than one grid cell.
Fortunately, we usually don’t care about the region right around the shock, just about the influence
of the shock on the physical state of the gas.
The relation between the physical properties of the upstream and downstream gas are determined
by the shock jump conditions, and they follow from conservation laws, independent of the details
of the shock.

“Shock capturing codes” work by searching for places where shocks are “likely” to occur (e.g.,
where the velocity field is developing a discontinuity) and imposing shock jump conditions over the
scale of one or two grid cells.

An alternative method, introduced by von Neumann and Richtmeyer in the 1950s, is to use an
“artificial viscosity” that is much larger than the true viscosity one would calculate based on the
microscopic properties of the gas.
High viscosity makes shocks broader, so that they can be resolved over several grid cells.
Since the jump conditions follow from conservation laws, the pre- and post-shock gas should still
have the correct relations even if the viscosity is not the true viscosity.
There is a fair amount of experimentation and black magic in artificial viscosity — tuning things
to get the desired physical behavior in as many situations as possible.

7.4 Radiative shocks

Now suppose that the gas is able to radiate energy in a “radiative relaxation layer” (rrl) after the
shock.
Immediately after the shock front the fluid properties are still denoted ρ2, u2, P2, T2, but they
change in the radiative relaxation layer, settling to new values ρ3, u3, P3, T3 further downstream.
The rrl is always large compared to the shock front itself because many collisions are required to
cool the gas (so that the size of the rrl is � λ).

Within the rrl, the temperature drops, and the gas is squeezed to higher density. Since ρu =
constant, the velocity drops.
We can demonstrate this by returning to the steady-state equations (41)-(43) but including the
cooling term

L(ρ, T ) ≡ −
(Γ − Λ)

ρ
> 0, [L] = erg g−1 s−1.

The equations are

d

dx
(ρu) = 0
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u
du

dx
= −

1

ρ

dP

dx

d

dx
(ρεu) = ρu

dε

dx
= −P

du

dx
− ρL.

Combining the last equation with

ε =
1

γ − 1

P

ρ
=⇒

dε

dx
=

1

γ − 1

[

1

ρ

dP

dx
−

P

ρ2

dρ

dx

]

and
1

ρ

dρ

dx
= −

1

u

du

dx

(since ρ ∝ u−1) implies
u

γ − 1

[

dP

dx
+

P

u

du

dx

]

+ P
du

dx
= −ρL,

and substituting dP
dx = −ρudu

dx implies

−
ρu2

γ − 1

du

dx
+

γ

γ − 1
P

du

dx
= −ρL

and thus
a2 − u2

γ − 1

du

dx
= −L

with a2 = γP/ρ. Since the post-shock flow is sub-sonic (u < a) and L > 0, we conclude that
du
dx < 0, and mass conservation therefore implies that dρ

dx > 0.

The mass conservation and momentum conservation jump conditions apply as before, since their
derivation did not involve ε (which is the quantity affected by radiative cooling). Therefore

ρ3u3 = ρ2u2 = ρ1u1

ρ3u
2

3 + P3 = ρ2u
2

2 + P2 = ρ1u
2

1 + P1.

As u drops in the rrl, ρu2 = (ρu)u drops and the pressure must rise.
For a strong shock with γ = 5/3,

M2 = u2

(

5

3

P2

ρ2

)−1/2

≈ 0.45,

so P2 ≈ 3ρ2u
2
2 and only a small rise in pressure is required to satisfy the second jump condition

even if u3 drops to zero.
The important point is that the pressure does not go down, and therefore a drop in temperature
must be accompanied by a proportional rise in density to maintain the pressure.
If there is a lot of post-shock cooling, then the density ratio ρ3/ρ1 can be very high.
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This is probably the most important difference between a non-radiative shock and a radiative shock:
a non-radiative shock can only increase the density by a factor of ∼ 4, but a radiative shock can
increase the density by a very large factor.

A specific interesting case is that of an “isothermal shock,” where T3 = T1. (This becomes the
third jump condition.)
This can arise if, for instance, T1 = T3 is a temperature where the cooling time becomes very long,
or a temperature where heating and cooling processes balance.
Combined with the equation of state P = ρ

mkT = ρa2
T , where aT = (kT/m)1/2 is the “isothermal

sound speed,” the solution to the shock jump conditions is,

ρ3

ρ1

=
u1

u3

=

(

u1

aT

)2

≡ M2

T

T3 = T1.

Since

ρ3u
2

3 + P3 = ρ1u
2

1

(

u1

aT

)2 (aT

u1

)4

+ ρ1a
2

T

(

u1

aT

)2

= ρ1a
2

T + ρ1u
2

1 = P1 + ρ1u
2

1,

this solution satisfies the momentum jump condition.

The fact that ρ3/ρ1 = M2
T means that the compression factor in an isothermal shock can be

arbitrarily high.

7.5 Oblique shocks

If the fluid enters the shock at an angle other than 90◦, the shock jump conditions apply only to
the perpendicular component u⊥ of u1.
The parallel component of u1 is unchanged, so the fluid is “refracted” by the shock, changing its
direction so that it is closer to parallel to the front.

7.6 Shocks with magnetic fields: a few comments

Hydromagnetic shocks are often important in the ISM.
For a shock with B parallel to the shock front:

B1u1 = B2u2,

i.e., the magnetic field lines are compressed by the same factor as the density.

The momentum jump condition becomes

ρ1u
2

1 + P1 +
B2

1

8π
= ρ2u

2

2 + P2 +
B2

2

8π
,

i.e., there is an additional “magnetic pressure” term B2/8π.
(The units of B2 are erg cm−3 = dyne cm−2.)

44



The energy jump condition becomes

1

2
u2

1 +
γ

γ − 1

P1

ρ1

+
B2

1

4πρ1

= 1

2
u2

2 +
γ

γ − 1

P2

ρ2

+
B2

2

4πρ2

.

Coupling of ions to magnetic fields can allow a shock front to be much narrower than the mean
free path λ for particle-particle interactions.

The situation is more complicated when B is not parallel to the shock front, and it can be much
more complicated in multi-fluid shocks when electrons, ions, and neutrals are coupled but not
perfectly coupled.
One important effect is that magnetosonic waves (a.k.a. Alfven waves) can “warn” upstream ions
and electrons about an approaching density discontinuity.
There are many additional classes of solutions, some of them discussed in the Shull & Draine article.
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