
Radiative Gas Dynamics

Problem Set 2: Isothermal Spheres

Part I, due Thursday, Jan. 25; Part II, due Tuesday, Jan. 30

Part I: Singular Isothermal Spheres and the Virial Theorem

(a) Show that a spherical, self-gravitating object in hydrostatic equilibrium satisfies the 2nd-order

differential equation
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(b) Show that for a gas of constant temperature T and particle mass m, equation (1) can be written
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Show that the density profile
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is a solution to this equation. Equation (3) is the density profile of a singular isothermal sphere.

(c) Consider a singular isothermal sphere of temperature T and particle mass m (i.e., m = mp for

hydrogen). Assume that the sphere has a finite total mass M because it is truncated at radius R

by being confined in a surrounding external medium of pressure Pext.

What is R in terms of M , m, and T ?

What is Pext in terms of T , m, and R?

(d) Use the hydrostatic equilibrium equation to show that any hydrostatic spherical system of

radius R in an external medium of pressure Pext satisfies

2Ukin + W + Sp = 0, (4)
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is the kinetic energy of thermal motion,

W = −
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is the gravitational potential energy, and

Sp = −4πR3Pext.
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Note that equation (4) becomes the more familiar and memorable form of the virial theorem,

2U + W = 0, if and only if the gas is monatomic (so that Ukin = U is the total thermal energy)

and the external pressure is zero (as it would be for a star).

(e) Evaluate W , Ukin, and Sp for the truncated singular isothermal sphere of part (a) and verify

explicitly that it satisfies the virial theorem (4).

Part II: Structure of Non-Singular Isothermal Spheres

As discussed in class, the differential equation that describes a non-singular isothermal sphere is
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is the rms 1-d particle velocity. The central boundary conditions are

ρ̃(0) = 1,
dρ̃

dr̃
= 0.

Write a program that computes the density profile ρ̃(r̃) of an isothermal sphere out to some spec-

ified truncation radius r̃t = rt/r0, where it is assumed to be confined by an external pressure

Pext = P (rt). Note that you can break the second-order differential equation (1) into two first-

order differential equations that you integrate simultaneously. Use the midpoint method to obtain

second-order accuracy in your integration. In addition to the density itself, have your program com-

pute the scaled mass M/(r3
0ρ0) and the scaled values of the potential energy and kinetic thermal

energy W/(GM 2/rt) and Ukin/(GM2/rt), where
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Take enough steps to ensure that each of these quantities converges to a fractional accuracy of

10−4.

(a) Plot the density profile ρ̃(r̃) out to r̃ = 30. Compare your numerical result to the approximate

formula ρ̃(r̃) ≈ (1 + r̃2)−3/2. Over what range is this formula useful?

(b) Give the scaled values of M , W , and Ukin for truncated isothermal spheres with rt/r0 = 5 and

rt/r0 = 30.

(c) For rt/r0 = 5 and rt/r0 = 30, compute the value of Pext (choose an appropriate physical

scaling). Verify that your numerical solutions satisfy the virial theorem, as you did for the singular

isothermal sphere in Part I.


