Radiative Gas Dynamics

Problem Set 2: Isothermal Spheres

Part I, due Thursday, Jan. 25; Part II, due Tuesday, Jan. 30

Part I: Singular Isothermal Spheres and the Virial Theorem

(a) Show that a spherical, self-gravitating object in hydrostatic equilibrium satisfies the 2nd-order differential equation

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{r^{2}}{\rho} \frac{\mathrm{~d} P}{\mathrm{~d} r}\right)=-4 \pi G \rho \tag{1}
\end{equation*}
$$

(b) Show that for a gas of constant temperature T and particle mass m, equation (1) can be written

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \ln \rho}{\mathrm{~d} r}\right)=-4 \pi \frac{G m}{k T} r^{2} \rho . \tag{2}
\end{equation*}
$$

Show that the density profile

$$
\begin{equation*}
\rho(r)=\frac{k T}{2 \pi G m} r^{-2} \tag{3}
\end{equation*}
$$

is a solution to this equation. Equation (3) is the density profile of a singular isothermal sphere.
(c) Consider a singular isothermal sphere of temperature T and particle mass m (i.e., $m=m_{p}$ for hydrogen). Assume that the sphere has a finite total mass M because it is truncated at radius R by being confined in a surrounding external medium of pressure $P_{\text {ext }}$.

What is R in terms of M, m, and T ?
What is $P_{\text {ext }}$ in terms of T, m, and R ?
(d) Use the hydrostatic equilibrium equation to show that any hydrostatic spherical system of radius R in an external medium of pressure $P_{\text {ext }}$ satisfies

$$
\begin{equation*}
2 U_{\text {kin }}+W+S_{p}=0, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{\mathrm{kin}}=\int_{0}^{M} \frac{3}{2} \frac{k T}{m} d M=\int_{0}^{M} \frac{3}{2} \frac{P}{\rho} d M \tag{5}
\end{equation*}
$$

is the kinetic energy of thermal motion,

$$
\begin{equation*}
W=-\int_{0}^{M} \frac{G M(r) d M}{r} \tag{6}
\end{equation*}
$$

is the gravitational potential energy, and

$$
S_{p}=-4 \pi R^{3} P_{\mathrm{ext}} .
$$

Note that equation (4) becomes the more familiar and memorable form of the virial theorem, $2 U+W=0$, if and only if the gas is monatomic (so that $U_{\text {kin }}=U$ is the total thermal energy) and the external pressure is zero (as it would be for a star).
(e) Evaluate $W, U_{\text {kin }}$, and S_{p} for the truncated singular isothermal sphere of part (a) and verify explicitly that it satisfies the virial theorem (4).

Part II: Structure of Non-Singular Isothermal Spheres

As discussed in class, the differential equation that describes a non-singular isothermal sphere is

$$
\frac{\mathrm{d}}{\mathrm{~d} \tilde{r}}\left(\frac{\tilde{r}^{2}}{\tilde{\rho}} \frac{\mathrm{~d} \tilde{\rho}}{\mathrm{~d} \tilde{r}}\right)=-9 \tilde{r}^{2} \tilde{\rho},
$$

where

$$
\begin{equation*}
\tilde{\rho}=\frac{\rho}{\rho_{0}}, \quad \tilde{r}=\frac{r}{r_{0}}, \quad r_{0}=\left(\frac{9 \sigma^{2}}{4 \pi G \rho_{0}}\right)^{1 / 2}, \tag{1}
\end{equation*}
$$

and $\sigma=\left(\frac{k T}{m}\right)^{1 / 2}$ is the rms 1-d particle velocity. The central boundary conditions are

$$
\tilde{\rho}(0)=1, \quad \frac{\mathrm{~d} \tilde{\rho}}{\mathrm{~d} \tilde{r}}=0
$$

Write a program that computes the density profile $\tilde{\rho}(\tilde{r})$ of an isothermal sphere out to some specified truncation radius $\tilde{r}_{t}=r_{t} / r_{0}$, where it is assumed to be confined by an external pressure $P_{\text {ext }}=P\left(r_{t}\right)$. Note that you can break the second-order differential equation (1) into two firstorder differential equations that you integrate simultaneously. Use the midpoint method to obtain second-order accuracy in your integration. In addition to the density itself, have your program compute the scaled mass $M /\left(r_{0}^{3} \rho_{0}\right)$ and the scaled values of the potential energy and kinetic thermal energy $W /\left(G M^{2} / r_{t}\right)$ and $U_{\text {kin }} /\left(G M^{2} / r_{t}\right)$, where

$$
W=\int_{0}^{r_{t}} \frac{-G M(r) d M}{r}, \quad U_{\text {kin }}=\int_{0}^{r_{t}} \frac{3}{2} \frac{P}{\rho} d M
$$

Take enough steps to ensure that each of these quantities converges to a fractional accuracy of 10^{-4}.
(a) Plot the density profile $\tilde{\rho}(\tilde{r})$ out to $\tilde{r}=30$. Compare your numerical result to the approximate formula $\tilde{\rho}(\tilde{r}) \approx\left(1+\tilde{r}^{2}\right)^{-3 / 2}$. Over what range is this formula useful?
(b) Give the scaled values of M, W, and $U_{\text {kin }}$ for truncated isothermal spheres with $r_{t} / r_{0}=5$ and $r_{t} / r_{0}=30$.
(c) For $r_{t} / r_{0}=5$ and $r_{t} / r_{0}=30$, compute the value of $P_{\text {ext }}$ (choose an appropriate physical scaling). Verify that your numerical solutions satisfy the virial theorem, as you did for the singular isothermal sphere in Part I.

