
Problem Set 4: The First Few Seconds
Due Tuesday, November 13

Introduction

For this problem set, you may find it helpful to refer to Kolb & Turner sections 3.3-3.5
and/or to Peebles pp. 134-139 and 158-165.

For early universe problems, it is often convenient to adopt “high energy physics” units
in which h̄ = c = kB = 1 (kB = Boltzmann’s constant) and the fundamental dimension is
energy (see Appendix A of Kolb & Turner for discussion). A traditional and convenient
unit of energy is 1 GeV = 109 eV, and in the high energy system of units:

1 GeV = 1.16×1013 K = 1.78×10−24 g = (1.97×10−14 cm)−1 = (6.58×10−25 s)−1.
(1)

Newton’s gravitational constant enters into calculations via the Planck mass,

mPl ≡ (h̄c/G)1/2 = G−1/2 = 2.18 × 10−5 g = 1.22 × 1019 GeV. (2)

A species of fully relativistic bosons (such as photons) in thermal equilibrium at tempera-
ture T has energy density
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where g is the number of statistical degrees of freedom (e.g., Peebles eq. 6.14). For
photons, there are two spin states, so g = 2, and the above formula is equivalent to the
usual u = aBT 4. For a fully relativistic fermion species (such as neutrinos or relativistic
electrons), the result is slightly different because of the different particle statistics:
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(Peebles eq. 6.70). The number density of relativistic particles of a given species and spin
state at temperature T is
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for bosons and
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for fermions (see Peebles eqs. 6.48 and 6.71), where ζ(3) ≈ 1.202.

If the energy density of the universe is dominated by relativistic particles and Tγ is the
temperature of the photons, equations (3) and (4) together imply that the energy density
is
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γ , (7)



where
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the sums are over all species of particles relativistic at temperature Ti, and we have allowed
for the possibility that each species i is characterized by a different temperature Ti.

When the universe is sufficiently hot and dense, neutrinos and anti-neutrinos are in thermal
equilibrium with photons and relativistic electrons and anti-electrons. Coupling between
the species ensures that they all have the same temperature Tν = Te = Tγ , so

g∗ = 2 +
7

8
× [2 × 2 + 3 × 2] = 10.75. (9)

The first 2 represents the g = 2 photon spin states, the 2×2 represents the two spin states
each of electrons and anti-electrons, and the 3 × 2 represents the 3 species of neutrinos
(electron, muon, tau) and 3 species of anti-neutrinos. In the standard model of particle
physics, neutrinos are always left-handed, so they have only one spin state.

(1) Using the Friedmann equation for a k = 0, radiation dominated universe, show that the
Hubble parameter H(Tγ) at the time that the temperature of the photons in the universe
is Tγ is
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Then show that the age of the universe at temperature Tγ is
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where 1 MeV = 10−3 GeV. (Note: demonstrate each of the three steps of eq. 11).

(2) Argue that a relativistic particle species will remain thermally coupled to other species
in the expanding universe as long as

nσct � 1, (12)

but will decouple from other species once nσct � 1, where n is the number density of
particles with which the species in question can interact, σ is the typical cross-section for
reactions that exchange energy between the particle species, c is the speed of light, and t
is the age of the universe.

This argument implies that the condition for a relativistic species to decouple from other
species is

nσct = αd, (13)

where αd ≈ 1 is a parameter that we can keep track of to understand the sensitivity of
further results to the approximate nature of this argument.



(3) For the reactions that couple neutrinos to other species in the early universe, predomi-
nantly ν + ν̄ → e− +e+, the typical cross section is σ ≈ G2

F T 2 where GF = (292.8 GeV)−2

is the Fermi coupling constant, which characterizes weak interactions. Using this cross
section, your results from (1) and (2), and the number density of neutrinos from equation
(6), show that neutrinos decouple when the temperature T is a few MeV.

How sensitive is your result to αd? Is the assumption that the relativistic species present
at neutrino decoupling are neutrinos, photons, and electrons/positrons justified? What is
the age of the universe (in seconds) at neutrino decoupling?

(4) What happens to the electrons and positrons when the temperature falls below 0.5
MeV? Using the Thomson cross section for electron-photon interaction, σ = 6.65 ×

10−25 cm2, verify that the electrons and positrons are tightly coupled to the photons
up to this time.

(5) The annihilating electrons and positrons produce photons that thermalize, adding
energy to the photon background. As a result, the temperature of the photons falls slower
than T ∝ 1/a while electron-positron annihilation is taking place. The neutrinos, on the
other hand, are decoupled, so their temperature does fall as T ∝ 1/a. Therefore, the ratio
Tν/Tγ changes from 1.0 at the time that neutrinos decouple to some value less than 1.0 at
times long after electron-positron annihilation.

This eventual ratio Tν/Tγ can be computed by an entropy argument. Consider a volume
V1 at a time t1 after neutrino decoupling but before electron-positron annihilation. The
entropy of photons and electrons/positrons in this volume is

S1 = Sγ,1 + Se,1 = V1 ×
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where aB is the Stefan-Boltzmann radiation constant (see the discussion in Peebles, near
equations 6.51 and 6.74). When electrons and positrons annihilate, their entropy can-
not disappear, so it is instead transferred to the photons. The comoving volume V2 =
V1(a2/a1)

3 that corresponds to V1 at some time long after annihilation when the photon
temperature is Tγ,2 must therefore have entropy S2 = S1, but now it resides entirely in
the photons.

Build on this argument to show that after electron-positron annihilation, the ratio of the
neutrino temperature to the photon temperature is

Tν

Tγ
=

(
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.

What is the value of g∗ (eq. 8) long after electron-positron annihilation?

(6) The temperature of the cosmic microwave background today is 2.73 K. What is the
number density of photons, in cm−3?

Assuming that there are three species of massless neutrinos, what is the number density
of neutrinos in the cosmic neutrino background, in cm−3? What is the number density of
anti-neutrinos?



Suppose that the heaviest neutrino species, presumably the tau neutrino, has a small but
non-zero rest mass of 10 eV, and that the other two species are much lighter. Were the
tau neutrinos relativistic or non-relativistic at the time of neutrino decoupling? Are they
relativistic or non-relativistic today? What would the contribution of tau neutrinos and
anti-neutrinos be to Ω, and should this be considered as a contribution to Ωr or to Ωm?
(Assume H0 = 70 km s−1 Mpc−1.)


