
Astronomy 8824: Problem Set 1

Due Tuesday, September 12

The goal of this problem set is to write a program to do numerical integrals of user specified
functions, and to compare the performance of some simple algorithms for doing so. You should
read sections 4.0-4.4 of Numerical Recipes as background. However, while their description of
algorithms and their properties is good, you should write your own code rather than borrow the
NR subroutines.

Specifically, you will write a Python program that computes

I =

∫ b

a

f(x)dx,

where a and b are finite limits of integration and we will use various choices for f(x) below. Start
with the code available on the course web page, which implements the “Euler method”:

I =
N

∑

i=1

f(xi)hN ,

where N is the number of (equal-sized) integration steps and

hN =
b − a

N
, xi = a + (i − 1)hN .

1. Look through the code so that you understand its structure. Note in particular that it automat-
ically doubles the number of steps (starting at N = 4) until it converges to a specified fractional
tolerance. The program calculates the integral with N = 4, then doubles the number of steps
and compares the answers. If the fractional difference is larger than the tolerance, it doubles the
number of steps again, continuing until the fractional difference between two successive evaluations
is less than the tolerance. It also has a safeguard with a maximum number of steps, to prevent the
program from running forever if it doesn’t converge.

Using this code, compute the integral
∫ 5

1

1

x3/2
dx .

How many steps (approximately) are required to get an answer with a fractional error |(I −
Iexact)/Iexact| < 10−6?

[Three ways to run the program: (1) Make it executable, then integrate.py 1 5. (2) python

integrate.py 1 5. (3) Start iPython in the directory where you have the program. From the
iPython prompt, %run integrate.py 1 5. In all cases the integration limits 1,5 are read from the
command line.]

For a specified number of steps, the integral is evaluated using either the function euler loop

or euler. The former uses a loop structure typical of fortran or C, while the latter uses array
operations available in NumPy.

Compare the speed of these two implementations using the %timeit function of iPython. Start up
iPython (by typing ipython at the command line). Then

2

%timeit -n 4 %run integrate.py 1 5

will run the code twelve times (3 loops, n = 4 times in each loop) and report the average execution
time in the best of the 3 loops.

Do this once using the loop implementation of the integral and once using the array implementation.
Which is faster and by how much?

2. Modify the code so that it implements the “Trapezoidal Rule”:

I =
N

∑

i=1

[

1

2
f(xi) +

1

2
f(xi+1)

]

hN .

(This seems at first sight to require twice as many function evaluations as the Euler method, but
there is an obvious way to avoid this, which you should implement in your program.)

You can modify either the euler or euler loop function to accomplish this, or you can start your
own code from scratch if you don’t like mine. If you write your own code, you should maintain the
automatic step-doubling to convergence feature.

Numerically compute the integral from Part 1 with both methods. How many steps (approximately)
are required to get an answer with a fractional error |(I−Iexact)/Iexact| < 10−4 for the Euler method
and for the Trapezoidal Rule? What about 10−6?

3. With step doubling, you can implement a neat trick, described in Numerical Recipes. Given
estimates ITN and ITN/2 from the Trapezoidal Rule using N and N/2 steps, make the new estimate
IS = (4 × ITN − ITN/2)/3. This approximation, Simpson’s rule, should converge faster than the
Trapezoidal Rule.

Write a routine to compute an integral via Simpson’s rule using this trick. This involves changing
the integration driver routine; for any given N you are still using the Trapezoidal Rule.

Make a plot of the error |I − Iexact|/Iexact vs. the step size h for the Euler, Trapezoidal, and Simp-
son’s rule evaluations of the above numerical integral. Include this plot (log-log is recommended)
as part of your solution set. You can use the script sm.converge from the web page to do this in
sm. Is the behavior what you expect?

Note: If Simpson’s rule doesn’t converge noticeably faster than the Trapezoidal Rule, there is a
bug in your program.

4. For each of the following, give the value of the integral I and the number of steps needed to get
convergence to a fractional tolerance of 10−6, for each of the three numerical integration methods.

∫ 2

1

1

x3/2(1 + x3/2)
dx.

∫ 100

1

sin x

x
dx.

∫ 1000

1

sin2 x

x2
dx.

∫ 1000

1

(

x +
1

x

)

−1

dx.

∫ ln1000

0

(

1 + e−2x
)−1

dx.

3

Comment on the comparison of the last two integrals and the number of steps required to compute
them.

Note: If you are using an array-based implementation, you will need to use np.sin in your integrand,
e.g., return (np.sin(x)/x). If you are using a loop-based implementation, you can use either
np.sin or math.sin. Do you know why?

5. Write a routine that implements the Midpoint Rule:

I =

N
∑

i=1

f(xi+1/2)hN ,

where xi+1/2 = xi + hN/2.

For the test integral of Part 1, compare the convergence of the Midpoint Method to that of the
Euler, Trapezoid, and Simpson’s rule methods. Add the Midpoint results to your convergence plot.

Use your routine to compute the integrals

∫ 4

0

x−1/2dx

∫ π

0

sinx

x
dx.

Why is the Midpoint Rule useful even though it is less accurate than Simpson’s rule for the same
number of steps?

Why does the second integral converge much faster than the first integral?

6. Numerically compute the integrals

∫

∞

1

dx

x2 + x3

∫

∞

1

sin2 x

x2
dx.

Explain how you did it. (Hint: See NR §4.4, or the lecture notes. You do not need to approximate
∞ by a large finite number.)

Getting an accurate result for the second integral is much harder than for the first integral. Why?

7. Optional: There are numerical integration routines available in scipy.integrate. You can
see what they are in iPython by import scipy.integrate as si, si? and get more information
about individual routines via, e.g., si.quad?.

For the 3rd and 4th integrals from Part 4 (the ones with ulim=1000), use the scipy routines si.quad
and si.romberg to evaluate the integrals. Do you get the same answers that you got from Simpson’s
rule? Use %timeit in iPython to compare their speed to that of your Simpson’s Rule program for
these two integrals. What do you find?

You can use the program si.py provided on the web page for this experiment if you wish.

4

8. So that you end this exercise with something of practical use (and we’ll use it later in the
semester), adapt your Simpson’s Rule integrator to a program that specifically computes the co-
moving distance to an object at redshift z in a flat universe with a cosmological constant. The
formula for the comoving distance is

DC(z) =
c

H0

∫ z

0

H0

H(z′)
dz′

with
H(z)/H0 =

[

Ωm(1 + z)3 + ΩΛ

]1/2
.

Your program should take as arguments Ωm, H0 (in km/s/Mpc), and z. Because we are assuming
a flat universe, ΩΛ = 1 − Ωm.

For Ωm = 0.3 and H0 = 67kms−1 Mpc−1, what is the comoving distance to redshifts 0.5 and 2, in
Mpc?

For more on cosmological distances see
Hogg 1999, arXiv:astro-ph/9905116
Weinberg et al. 2013, Phys Rep 530, 87, §2
Aubourg et al. 2015, Phys Rev D, 92, 123516 (arXiv:1411.1074)

