
A8824: Statistics Notes David Weinberg, 2017

Astronomy 8824: Statistics Notes 4

Fisher Matrix Forecasts and Linear Models

The most relevant section of Ivezic is §4.2.

For the case of uncorrelated errors, many of the points in this section are described well
and practically in the “Modeling of Data” chapter of Numerical Recipes (ch. 15 in the 3rd
edition).

However, NR doesn’t really deal with correlated errors at all. Most of the key results
(including some I won’t get to) are summarized and derived in Gould (2003, arXiv:astro-
ph/0310577). This paper is dense, but although it covers “standard” results, they are
results that are hard to find in one place anywhere else.

I will present many results in the context of forecasting – predicting the precision of
parameter determination from a future experiment.

Gould (2003) comes primarily from the point of view of analyzing data-in-hand, but with
some comments about forecasting.

I phrase the discussion below in terms of likelihood, which is most common in the literature,
but for a more properly Bayesian formulation one could substitute posterior probability
for likelihood throughout.

Single-Parameter Warmup

Suppose we have an observable y1 that we can predict given some model parameter θ1,
and that we measure y1 with some observational error σ(y1).

Our best estimate of θ1 is the value that gives the observed value of y1.

In the neighborhood of this best fit value θ̂1, a linear Taylor expansion implies

y1(θ1) = y1(θ̂1) +

(

d y1
dθ1

)

(θ1 − θ̂1).

Simple “chain rule” error propagation then tells us that the error on θ1 is

σ(θ1) =

(

d y1
dθ1

)

−1

σ(y1).

Often we are interested in the fractional error

σ(θ1)

θ1
= σ(ln θ1) =

(

d ln y1
d ln θ1

)

−1

σ(ln y1).

For example, if y1 ∝ θ31, then the fractional error on θ1 is only 1/3 the fractional error on
y1.

These results break down if the linear Taylor expansion becomes inaccurate over the ob-
servationally allowed range of y1.
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In general, the error on a parameter depends on the error on the observable and on the
sensitivity of that observable to that parameter. A more sensitive observable gives greater
leverage on the parameter.

Fisher Matrix Error Forecasting

Suppose we are considering some future experiment rather than data we have in hand. If
we can predict what the measurement errors on the data will be, and we know how the
data depend on model parameters, then we can forecast how accurately we will be able to
constrain parameters.

If we have a parameter vector ~θ, the Fisher information matrix is defined by

Fij = −

〈

∂2 lnL

∂θi∂θj

〉

.

The Fisher matrix is thus the expected value of the curvature/Hessian matrix.

To the extent that the likelihood is well described by a quadratic Taylor expansion, the
expected error on parameter θi is

σi ≡ σ(θi) = (F−1

ii )1/2

if all of the parameters are being estimated from the data set and

σi ≡ σ(θi) = (Fii)
−1/2

if all parameters other than θi are known.

Under more general conditions, the error of any unbiased estimator must be greater than
or equal to these values, a result known as the Cramér-Rao Bound.

In Fisher matrix forecasting, we assume a fiducial model and properties of a data set to
predict the Fisher matrix and thereby forecast the errors that will be obtained on model
parameters.

There is a pretty good high-level discussion of this in section 2 of Tegmark, Taylor, &
Heavens (1997, ApJ, 480, 22) and a valuable but dense presentation in Gould (2003).

Note that a Fisher matrix forecast only gives you accurate error forecasts if the 2nd-order
expansion of the likelihood is accurate.

If you’re worried this might not be true, then you can use MCMC instead, with your
anticipated measurement errors and setting the data equal to the values expected for your
fiducial model.

Parameter sensitivity and observational errors

We can decompose a Fisher matrix into a matrix product:

Fij = −

〈

∂2 lnL

∂θi∂θj

〉

= −

〈

∂∆yk
∂θi

·
∂2 lnL

∂∆yk∂∆yl
·
∂∆yl
∂θj

〉

,

2



A8824: Statistics Notes David Weinberg, 2017

where ∆yk = ymod(xk) − yk is the difference between the model prediction for data point
k and the observed value, and we are using the Einstein summation convention.

Because the data values do not depend on the model parameters (they are just observed),

∂∆yk
∂θi

=
∂ymod(xk)

∂θi
.

As we will show below, if the errors on the observables are Gaussian and independent of
the model parameters, then

−
∂2 lnL

∂∆yk∂∆yl
= C−1

kl ,

the inverse covariance matrix.

Thus, the Fisher matrix has an “outer” piece ∂~ymod/∂~θ that represents the sensitivity of
the observables to the parameters and an “inner” piece that represents the errors on the
observables themselves.

If we consider the 1-parameter, 1-observable case, we get

F11 =
dymod

dθ
·
1

σ2
y

·
dymod

dθ
,

implying

σ2(θ) = 1/F11 = σ2

y ·

(

dymod

dθ

)

−2

,

in agreement with our earlier chain rule result.

For a Fisher matrix forecast of parameter errors, we compute the parameter sensitivity
from our model, and we take the expected values of the observable errors (and their
covariances).

As far as I know, ∂~ymod/∂~θ doesn’t have a special name, but we can think of it as an
“influence matrix” or “sensitivity matrix.”

While computing the Fisher matrix requires assumptions about the data set, the sensitivity
matrix requires only knowledge of the model, and it can be an interesting quantity to
compute even if one doesn’t have a specific data set in mind.
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Fisher matrix for Gaussian Likelihoods

Suppose we have a Gaussian likelihood function for N data points

− lnL =
N

2
ln(2π) +

1

2
ln[det(C)] +

1

2
∆ymC−1

mn∆yn.

(My reason for changing kl indices to mn indices will become evident shortly.)

For the case of a diagonal covariance matrix, Cmn = σ2
mδmn, this expression becomes

− lnL =
N

2
ln(2π) +

1

2

∑

lnσ2

m +
1

2

∑ ∆y2m
σ2
m

,

but we will consider the full covariant case.

Assume that we can ignore any dependence of the covariance matrix on the model param-
eters. This is a non-trivial assumption that will not always hold.

For example, in cosmological applications we sometimes have “cosmic variance” errors that
depend on the amplitude of matter or galaxy clustering, and the expected size of these
errors depends on the cosmological parameters.

However, if we have a data set that provides tight constraints on parameters, then the
allowed model dependence of the covariance matrix usually cannot be large.

If we do make this assumption, then the derivative of detC with respect to parameters
vanishes, and C−1

mn is independent of ∆yk and ∆yl, allowing us to rearrange the “inner”
piece of the Fisher matrix:

1

2

∂2(∆ymC−1
mn∆yn)

∂∆yk∂∆yl
=

1

2

∑

mn

C−1

mn

∂2(∆ym∆yn)

∂∆yk∂∆yl

=
1

2

∑

mn

C−1

mn

∂

∂∆yk

(

∂(∆ym∆yn)

∆yl

)

=
1

2

∑

mn

C−1

mn

∂

∂∆yk

(

∆ym
∂∆yn
∂∆yl

+∆yn
∂∆ym
∂∆yl

)

=
1

2

∑

mn

C−1

mn

∂

∂∆yk
(∆ymδnl +∆ynδml)

=
1

2

∑

mn

C−1

mn(δkmδnl + δknδml)

= C−1

kl .

On the right-hand sides I have written out sums explicitly for clarity and interchanged
sums and derivatives.

This derivation is a bit mathematically loose, but I think it is correct.

Including the “outer” piece, the Fisher matrix is

Fij =
∂∆yk
∂θi

C−1

kl

∂∆yl
∂θj

=
∂ymod(xk)

∂θi
C−1

kl

∂ymod(xl)

∂θj
.
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Though notationally different, I think this is equivalent to equation (15) of Tegmark et al.
(1997), except that the term AiAj in that equation has vanished because we have assumed
that the dependence of Cij on the parameters can be neglected.

Straight Line Model

Now consider a model ymod(x) = θ1 + θ2x.

The derivatives are
∂∆yk
∂θ1

= 1,
∂∆yk
∂θ2

= xk,

making the 2× 2 Fisher matrix

Fij =

(
∑

C−1

kl

∑

C−1

kl xk
∑

C−1

kl xk

∑

C−1

kl xkxl

)

.

This matrix can be inverted recalling that for

A =

(

a b
c d

)

, A−1 =
1

ad− bc

(

d −b
−c a

)

.

The errors on the intercept and slope are, respectively, (F−1

11
)1/2 and (F−1

22
)1/2.

For a diagonal covariance matrix Ckl = δklσ
2

k,

Fij =

(
∑

σ−2

k

∑

xkσ
−2

k
∑

xkσ
−2

k

∑

x2

kσ
−2

k

)

=
N

σ2

(

1 〈x〉
〈x〉 〈x2〉

)

,

where the second equality is for homoscedastic errors σk = σ.

Inverting the last case yields

F−1

ij =
σ2

N
(〈x2〉 − 〈x〉2)−1

(

〈x2〉 −〈x〉
−〈x〉 1

)

.

This is the same as the top equation on p. 5 of Gould (2003). Here F−1

ij refers to the

forecast covariance matrix of the parameter errors, and 〈x〉 and 〈x2〉 refer to expected
properties of the data set. In Gould (2003), the 〈...〉 averages are over the actual data
points obtained, and the result is the actual covariance matrix of the parameter errors.
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χ2-minimization for a general linear model

My discussion here follows that of Gould (2003) but with different notation.

Our analysis of the straight-line model can be generalized to the fit of a model that is
linear in the parameters θi,

ymod(x) ≡

n
∑

i=1

θifi(x),

where the fi(x) are specified functions.

Note that the fi(x) do not need to be linear, e.g., we could have

ymod(x) = θ1 + θ2x+ θ3x
2 + θ4sin(2πx).

Again defining ∆yk ≡ yk − ymod(xk), we now have

∂∆yk
∂θi

= fi(xk).

Therefore, for a Gaussian likelihood function,

Fij = fi(xk)C
−1

kl fj(xl).

As before,
σij = F−1

ij

is the expected covariance matrix of the parameter errors, with (F−1

ii )1/2 the expected
error on parameter θi if all parameters must be estimated from the data.

This is equivalent to the result on pp. 3 and 4 of Gould (2003), with the notational
translations

Bkl = C−1

kl bij = Fij cij = F−1

ij .

Importantly, Gould also derives the solution for the minimum χ2 (maximum likelihood)
values of the parameters by requiring ∂χ2/∂θi = 0.

The result is

θ̂i = F−1

ij

[

ykC
−1

kl fj(xl)
]

(= cijdj in Gould’s notation),

where there is an implicit sum over k, l inside the [..], and a sum over j.

This is a general result for χ2 fitting of a model that is linear in the parameters θi, with
Fij defined as fi(xk)C

−1

kl fj(xl).

For a diagonal covariance matrix C−1

kl = σ−2

k δkl,

Fij =
n
∑

k=1

fi(xk)fj(xk)

σ2

k
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and

ykC
−1

kl fj(xl) =
n
∑

k=1

ykfj(xk)

σ2

k

.

As previously emphasized, a diagonal covariance matrix does not imply a diagonal Fisher
matrix. One can have independent data points but still have correlated parameter errors,
and vice versa.

For χ2-minimization of a general linear model, one can find best-fit parameter values and
the covariance matrix of parameter errors “analytically” (numerical matrix inversions may
be required).

Gould (2003) also gives solutions for cases where one imposes constraints on the parameters
(e.g., θ1 + 2θ2 = 0).

Illustration for a straight line

If we adopt a diagonal covariance matrix and further specify a straight-line model, f1(x) =
1, f2(x) = x, we obtain our earlier result for the Fisher matrix, but I will now adopt
notation from Numerical Recipes section 15.2:

Fij =

(

S Sx

Sx Sxx

)

,

with the inverse-variance weighted sums

S ≡
∑

σ−2

k , Sx ≡
∑

xkσ
−2

k , Sxx =
∑

x2

kσ
−2

k .

The inverse Fisher matrix is

F−1

ij =
1

S Sxx − S2
x

(

Sxx −Sx

−Sx S

)

.

The vector dj ≡ ykC
−1

kl fj(xl) is (d1, d2) with

d1 =
∑

ykσ
−2

k ≡ Sy, d2 =
∑

xkykσ
−2

k ≡ Sxy.

The minimum-χ2 solution is then

θ1 = F−1

11
d1 + F−1

12
d2 =

SxxSy − SxSxy

SSxx − S2
x

θ2 = F−1

21
d1 + F−1

22
d2 =

SSxy − SxSy

SSxx − S2
x

,

in agreement with equation 15.2.6 of NR.
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Expanding a non-linear model

Suppose that our model is a non-linear function of our parameters, but we know that the
correct parameters are small perturbations about a fiducial model with parameters θi,fid.

In this case, we can make a Taylor expansion

ymod(xk) = ymod,fid(xk) + ∆θi
∂ymod(xk)

∂θi
,

where ∆θi = θi − θi,fid and the derivative is evaluated for the fiducial values of all param-
eters.

This is now a linear model with parameters ∆θi instead of θi and

fi(xk) =
∂ymod(xk)

∂θi
.

We can use this expansion to fit parameter values or compute parameter errors or forecast
errors provided that the errors are small enough that the linear Taylor expansion remains
accurate.

By definition, this expansion holds exactly for a true linear model.

Most Fisher matrix forecasts implicitly assume this kind of linear expansion around a
fiducial model, so they will give accurate forecasts of parameter errors only to the extent
that the linear expansion is accurate over the range of parameters allowed by the data.

An MCMC forecast does not rely on this linear approximation.

Adding Fisher matrices

Suppose we have two data sets that are statistically independent.

In this case, the joint likelihood (or posterior probability) is just the product of the in-
dividual likelihoods (or posterior probabilities), since p(x, y) = p(x)p(y) for independent
variables.

Therefore, one obtains 〈lnL〉 for the two data sets by adding the two individual values of
〈lnL〉, and the Fisher matrix for the two data sets is just the sum of the Fisher matrices
for the individual data sets.

This still holds even if the data sets are quite different in character provided they constrain
the same underlying parameters.

For example, one can forecast cosmological parameter errors that will be obtained by joint
fits to CMB data, supernova data, and a direct measurement of H0 by adding the Fisher
matrices for the three data sets.

This is a powerful technique.

Note that Fisher information scales like an inverse variance, F ∝ σ−2, and information
from independent data sets adds linearly.
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