Lecture 21: General Relativity

Readings: Section 24-2

Key Ideas:

Postulates:
Gravitational mass=inertial mass (aka Galileo was right)
Laws of physics are the same for all observers
Consequences:
Matter tells spacetime how to curve.
Curved spacetime tells matter how to move.
Clocks run more slowly in strong gravitational fields
Tests of General Relativity
Perihelion Precession of Mercury
Bending of light near the Sun/Galaxy Clusters
Gravitational Redshift
Gravity Waves

Relevance

General Relativity must be used for strong gravitational fields or for large accelerations
General Relativity is not a quantum theory and does not work on the smallest scales.

Newtonian Gravity

Matter tells gravitation how to exert a Force.
Forces tell matter how to accelerate.
A mass m is accelerated by the gravity of another mass M :
Force $=\frac{G M m}{R^{2}}$

$$
\begin{aligned}
\text { Acceleration }=\frac{\text { Force }}{m} & =\frac{G M m / R^{2}}{m} \\
& =\frac{G M}{R^{2}}
\end{aligned}
$$

The acceleration due to gravity does not depend on the mass of the object being accelerated.

See nssdc.gsfc.nasa.gov/planetary/luna/Apollo_15_feather_drop.html for the video of an astronaut illustrating this point by dropping a feather and a hammer on the moon.

"I frame no hypothesis"

Newton could not explain what gravity was.
He asserted that Gravity was an "action at a distance" He had no hypothesis for what "agent" communicates the gravitational force across empty space.

People assumed gravity worked as described, but didn't worry about why....

General Relativity

New way of looking at gravity. Maybe the motions of masses under gravity didn't have anything to do with the objects themselves.

Instead: Curved spacetime tells matter how to move.
Consequences:
Photons affected by curved spacetime.
Disagreement with the inverse square law (Newton's Law of Gravity)
Matter tells spacetime how to curve.

How do objects move in curved spacetime?

In flat space, they move in straight lines
Straight line=shortest distance between two points

The Shortest Path...

On a flat surface:
The shortest path between two points is a straight line.
Parallel lines stay parallel forever
On a curved surface:
The shortest path is a curved line
Lines that start parallel can converge or diverge at some distance away.

A New Theory of Gravity

General Relativity may be summarized as:
Matter tells spacetime how to curve.

Curved spacetime tells matter how to move.
Replaces the Newtonian idea of a "force" with the curvature of spacetime as the agent of Gravity.

GR has withstood all experimental tests.

The Laws of Physics are the same for all observers

Newton's First Law:
Objects in motion will remain in motion in a straight line unless acted upon by an outside force.
General Relativity
Objects follow the shortest path in spacetime.
Final note: gravity same idea as acceleration (think roller coaster)

Tests of General Relativity

The Precessing Orbit of Mercury:
The major axis of Mercury's orbit precesses slowly by 574 arcseconds/century.

Einstein 1, Newton 0

Newtonian Gravity:

Predicts precession of $531 \mathrm{arcsec} /$ century
~ 43 arcsec/century smaller than observed
General Relativity
Spacetime curvature changes as Mercury gets closer to the sun on its orbit
Gives the orbit a little twist
This adds an extra 43 arcsec/century!!

Bending of Starlight

Light travels on the shortest path through spacetime.
Predication
Gravity bends light passing a massive object
Confirmed:
1919 Solar Eclipse

Einstein 2, Newton 0

Newtonian Gravity:
Photons are massless and should not be bent by gravity.
General Relativity:
Photons must also follow the shortest path in spacetime.

Gravitational Lens

Large clusters of galaxies have enough mass to "lens" the light of galaxies that lie behind them.

Example of Gravitational Lens

Gravitational Redshift

Gravitational field affects time.
Clocks in stronger gravitational fields run slow.
If true, predicts a gravitational redshift
Wavelength of light seen from strong gravitational fields is redshifted.
(Note: different from Doppler shift)
Gravitational Redshift Observed
Pound \& Rebka (1960) -- Harvard Tower

Hafele \& Keating (1971) - jetlagged clocks
Scout D rocket (1976) - clocks on rockets

Gravitational Waves

Newton thought the force of gravity was instantaneously transported through space.
But, remember, in special relativity, information travels at the speed of light.

Changes in gravity are transmitted at the speed of light.

Gravity waves
Travel at the speed of light
Carry energy away

Binary Pulsar

2 pulsars=rapidly rotating neutron stars sending out radio jets
Accurate timing
Strong gravitational field
Test of theory
See system losing energy
Pulsars are getting closer together
75 millionths of a second/year different in period of pulses
Nobel Prize of Hulse \& Taylor

Practical Relativity

Global Positioning System (GPS)
24 satellites in high Earth orbit
$20,000 \mathrm{~km}$ altitude, 12^{h} period ($14,000 \mathrm{~km} / \mathrm{h}$)
Carry on-board atomic clocks
Relativistic effects on these clocks
Special Relativity 7 microseconds/day slower
General Relativity 45 microseconds/day faster
Combined correction 45-7=38 microseconds/day
Whither Newton?
Newton's laws are approximations of GR.
Conditions:
Weak gravitational fields
Speeds much slower than the speed of light
Newton's Laws:

Work accurately in the "everyday" world.
Are mathematically much simpler.

Status of General Relativity

It has passed every test we've thrown at it.
We will continue to test it, particularly in the strongest gravitational fields we can find.
Its effects must be included in binary pulsar calculations, collapses of stars to black holes, and in cosmology, among other applications.
Probably not the last word in gravity. We need a theory of quantum gravity.

