Lecture 39: The Fate of the Universe

Key Ideas

Matter-dominated Universe: High-Ω: expansion stops & collapses (Big Crunch) Low-Ω or Flat: expands forever (Big Chill)
Cosmological Constant Evidence from Supernova distances Flat, accelerating, Infinite Universe
Fate of an Accelerating Universe: Expands forever at an ever-increasing rate Ends in a cold, dark, disordered state

Matter-Dominated Universes

Future depends on the *density of matter* <u>High Density</u> ($\Omega_0 > 1$): Enough matter to slow and stop expansion Universe collapses in a "Big Crunch" <u>Low Density or Flat</u> ($\Omega_0 < \text{or} = 1$): Keeps expanding forever Cools off, ending in a "Big Chill"

DENSITY IS DESTINY!

What is the matter density Ω_m ? <u>Baryonic Matter</u> (stars & gas) Best estimate $\Omega_b \sim 0.04 + /-0.01$ Contribution from stars $\Omega_* \sim 0.004$ <u>Radiation</u> (photons): Cosmic Background $\Omega_{rad} \sim 0.00005$ <u>Dark Matter:</u> Galaxy Cluster dynamics gives $\Omega_{dm} \sim 0.26$ TOTAL: $\Omega_m = 0.2-0.4$

Expansion Forever?

If the Universe is matter dominated,

Total Density: $\Omega_0 = \Omega_m = 0.2-0.4$

This means $\Omega_0 < 1$

Too little matter to stop the expansion The universe has a hyperbolic geometry

Future:

Universe will expand forever at a steadily decreasing rate

What About Λ ?

If there is a Cosmological Constant (Λ), the Density Parameter becomes

$\Omega_0 = \Omega_m + \Omega_\Lambda$

 $\Omega_{\rm m}$ =Density of Matter and Energy (photons) Ω_{Λ} = Density of the Vacuum Energy

DENSITY IS NO LONGER DESTINY!

What does Ω_{Λ} do?

If $\Omega_{\Lambda}=0$, matter *slows* the expansion: Expansion rate is *faster* in the past Distant galaxies (distant past) will have *larger* recession velocities than "steady" expansion

If Ω_{Λ} is large, the expansion *accelerates* Expansion rate is slower in the past Distant galaxies have *smaller* recession speeds

Test:

Make a Hubble diagram for deep space

See Figure 28-17b

Distant Type Ia Supernova

Type Ia SNe are excellent standard candles Exploding white dwarfs in binary stars Very Luminous (can see them very far away) Have a characteristic spectrum

Distant Supernovae show that the Universe is accelerating See Figure 28-18

The Accelerating Universe

The SNIa results combined with constraints from the cosmic background radiation and galaxy clusters give:

 $\Omega_m \approx 0.3 \pm 0.1$ $\Omega_{\Lambda} \approx 0.7 \pm 0.1$

Taken together: $\Omega_0 \sim 1$

We live in a spatially flat, accelerating, infinite Universe

The Once & Future Universe

As the Universe expands:

Expansion continues forever at a faster rate Space between galaxy clusters widens Universe cools down at a faster rate Details of the future Universe depend upon: Stellar Evolution Gravity Quantum Mechanics

Epoch of Star Formation

The Present Day (t=14 Gyr):

Most stars are metal-rich, and make more metals ejected in supernova explosions.

Next generation starts with a little less H and a few more metals.

Some fraction of the star's matter gets locked away in stellar remnants: White dwarfs, neutron stars & black holes

End of Star Formation

After t~ 10^{12} years

Successively more matter is locked up in stellar remnants, depleting the free gas reserves

Cycle of star birth and death is broken:

Nuclear fuel is exhausted, not enough gas to make more stars Red dwarfs burn out as low-mass white dwarfs Remaining matter is locked up in black dwarfs, cold neutron stars, and black holes

The last stars fade into a long night....

Solar System "Evaporation"

After $t=10^{17}$ years:

Gravitational encounters between stars are rare, but disrupt orbiting systems: Planetary systems get disrupted by stellar encounters and their planets

scattered

Wide binary systems are broken apart

Close binary stars coalesce into single remnants

Dissolution of Galaxies

After t=10²⁷ years

Stellar remnants within galaxies interact over many, many orbits Some stars gain energy from the interaction and ~90% get ejected from the galaxy.

Others lose energy and sink towards the center

The last 10% coalesce into Supermassive Black Holes

Dissolution of Matter?

After 10³² years: Some particle models predict that protons are unstable Protons decay into electrons, positrons and neutrinos All matter not in Black Holes comes apart

Current experimental limits suggest that the proton decay time may $> 10^{32}$ *years*

Evaporation of Black Holes After t=10⁶⁷ years:

Remaining stellar-mass black holes evaporate by emitting particles and photons via Hawking radiation

After $t=10^{100}$ years

Supermassive Black Holes evaporate one-by-one in a last final weak flash of gamma rays

End of the epoch of organized matter

The Big Chill

After black holes have all evaporated

Universe continues to cool off towards a Radiation Temperature of absolute zero Only matter is a thin, formless gas of electrons, positrons and neutrinos

Only radiation is a few increasingly redshifted photons

The end is cold, dark, and disordered...