

This lecture explores the chemical revolution that revealed the nature of matter.

Trace the history of our recognition of the true nature of the chemical elements.

Advances made possible by new experimental techniques.

Periodic Table was an important organizing principle that gave further important insights.

Spectroscopy reveals the internal structure of atoms, and gives us a powerful tool for measuring the universe.

The elements that make up the Earth and life are common throughout the Universe.

The ancient Greeks conceived of matter as composed of 4 elements: Earth, Air, Fire and Water

Two main schools of thought:

Atomists (Leucippus & Democritus) Elements made of indivisible tiny "atoms"

Aristotelians

4 Elements only found on the Earth Heavens were composed of Aether ("fifth essense")

In the Middle Ages, alchemists added new elements to the 5 classical elements.

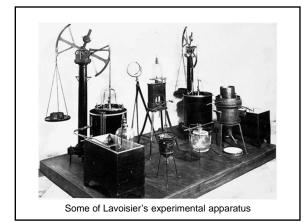
Paracelsus (15th century): Sulfur, Mercury, and Salt.

Later additions of specific metals, like Gold, Silver, and Lead.

Sought to transform one element into another (transmutation)

Antoine Lavoisier (1743-1794) was the first quantitative chemist.

Described 33 distinct chemical elements, including Hydrogen and Oxygen.


These elements were immutable.

Compounds were combinations of these elements.

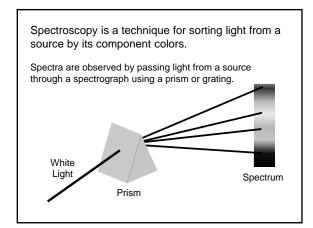
Performed detailed, quantitative experiments that mark the birth of modern Chemistry.

David - Lavoisier and his wife (1788)

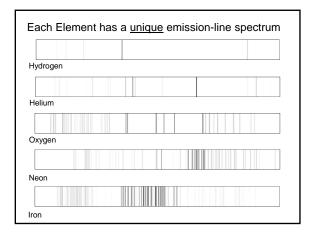
John Dalton (1766 introduced a new explain the eleme	atomic theory to
Each chemical element is composed of atoms of a single, unique type.	මේ මේ ටම්ට ටම්ට ටම්ට මේට ටම්ට ටම්ට ටම්ට
They cannot be changed or destroyed by chemical means.	And
They can combine to form compounds from simple to complex.	фро 888 <i>Аринист</i> 888 8

Dmitri Mendeleev (1834 – 1907) found patterns in the properties of elements.

In 1869, he arranged 67 known elements by weight and bonding type, noting repeating patterns.

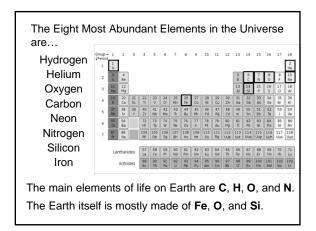


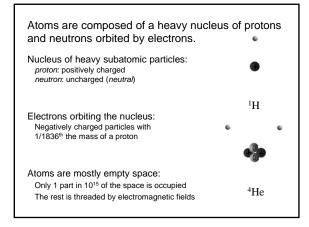
The result was the first periodic table.

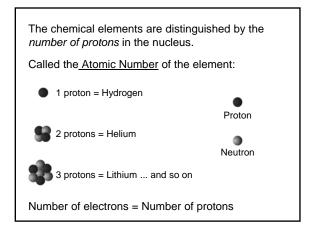

Relben	Gruppo L R*0	Gruppo 1L. RO	Gruppo III. R*0*	Gruppe IV. RH ⁴ RO ⁴	Gropps V. RH ^a R*0 ^a	Grappe VI. Riff ^a R0 ^a	Grupps VII. RH R*0'	Groppo VIII. R04
1	II=1					1		
2	Lim7	Bo= 9,4	B==11	C== 12	N=14	0-16	F==19	
8	Nam23	Mg==24	Al= 27,5	8l==28	P=31	8=32	Cl=35,5	
4	K=39	Ca=40		Ti= 48	Var-51	Cr=52	Ma=55	Fe=56, Co=50, Ni=50, Cu=63.
5	(Ca=63)	Zn=65	-==68	-== 72	As= 75	Sem 78	Bem 80	
6	Rb == 85	Sr=87	7Yt=88	Zr== 90	Nb==94	Mo=96	-m=100	Ru=104, Rh=104, Pd=105, Ag=105
7	(Ag=108)	C2=112	In as 113	Sam 118	Sb==122	Te==125	J=127	
8	Ca= 133	Ba == 137	2Di-128	PCe-140	-	-	-	
9	(-)	-	-	-	-	-	-	
10		-	7Ee= 178	7La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=193
11	(Au=199)	fig=100	71=104	Pb== 207	Bi-205		-	
12	-	-	-	Th==231	-	Um 240	-	

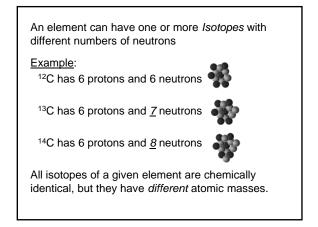
Group → I Period		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 U	4 Be											5 8	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 AJ	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 0s	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
Lanthanides				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Actinidas				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Spectroscopy was a powerful tool that revealed new elements




Kirchhoff & Bunsen discovered the elements cesium & rubidium using spectroscopy.


Helium was discovered in the spectrum of the Sun before it was identified on Earth (1895)!



If a nucleus has too many or too few neutrons, it is unstable to *radioactive decay*

Examples:

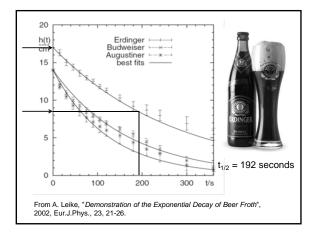
 3 H (1p+2n) \rightarrow 3 He (2p+1n) + e⁻ + v_e

 $\label{eq:constraint} \begin{array}{l} {}^{14}\text{C} \mbox{ (6p+8n)} \rightarrow {}^{14}\text{N} \mbox{ (7p+7n)} + e^- + \nu_e \\ \mbox{ (basis of radioactive carbon dating)} \end{array}$

Free neutrons are also *unstable*:

 $n \rightarrow p + e^{_-} + \nu_e$

Radioactivity is characterized by the *Half-Life*: the time for half the atoms in a sample to decay.


The *more* radioactive an element, the *shorter* the half-life.

Examples:

 $^{3}\text{H} \rightarrow ^{3}\text{He}$ + e^- + ν_{e} : half-life = 12.26 years

 $^{14}\text{C} \rightarrow ^{14}\text{N}$ + e^- + ν_e : half-life = 5730 years

 $n \rightarrow p$ + $e^{_-}$ + v_e : half-life = 12 minutes

Spectroscopy of stars and planets reveals that they are made of the same elements found on Earth.

Not only do the same physical laws apply to other stars and planets...

The stars and planets are made out of the *same elements* as the Earth (though with a wide variation in proportions).

This means that lessons about chemistry on Earth will apply to other worlds.