Lecture 22: The Family of the Sun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

This lecture presents an introduction to our Solar \qquad
System.
\qquad
The Sun
Terrestrial Planets
Jovian Planets
Dwarf Planets
Giant Moons
Trans-Neptunian Objects

The planets all lie in nearly the same plane and orbit in the same general direction.

We currently live in the Golden Age of Space Exploration.
The Solar System has been explored with robotic spacecraft \& astronauts:
Landed men on the Moon
Robotic landers on Moon, Venus, Mars, Titan \& an asteroid \qquad Rocks returned from the Moon
Probed Atmospheres of Venus, Mars, Jupiter, \& Titan \qquad
Flown spacecraft by all planets
Extensive exploration of Mars in progress
Mapped Venus \& Titan with radar
Flown by asteroids \& comets
Spacecraft on the way to Pluto and the Kuiper Belt \qquad
\qquad

Lecture 22: The Family of the Sun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Family of the Sun \qquad
The Terrestrial Planets:

The Jovian Planets:
Gas Giants: Jupiter \& Saturn
Ice Giants: Uranus \& Neptune

Dwarf Planets:
Rocky \& Icy Bodies: Pluto, Eris, Ceres, Haumea \& Makemake
Small Solar System Bodies: Icy: Kuiper Belt Objects, \& Comets
Rocky: Asteroids \& Meteoroids

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lecture 22: The Family of the Sun

The Solar System in October 2009

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Eight Planets all orbit counterclockwise in the same sense as the rotation of the Sun. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

All of the Eight Planets orbit nearly in the same \qquad plane.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Lecture 22: The Family of the Sun

The Sun is a middle-aged, average star

Mostly Hydrogen \& Helium
99.8% of the Mass of the Solar System
~ 4.6 Gyr old

The Sun shines because it is hot:
Surface Temp $\sim 5800 \mathrm{~K}$
Emits mostly Visible, UV \& IR light

Kept hot by nuclear fusion in its core:
Builds Helium from Hydrogen fusion.
Can shine for ~ 10 Gyr by Hydrogen fusion
another ~1 Gyr via Helium fusion

Composed of mostly Silicates and Iron with solid surfaces All are High Density: $3.9-5.5 \mathrm{~g} / \mathrm{cc}$ (rock \& metal)

The Jovian Planets are the giants of the outer Solar
System, located 5-30 AU from the Sun.
\qquad

Composed of mostly gases and ices, with no solid surfaces All are Low-Density: 0.7-1.6 g/cc (gas and gas+ice) \qquad

Lecture 22: The Family of the Sun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Uranus and Neptune are Ice Giants made mostly of \qquad ices with thin Hydrogen \& Helium atmospheres.
\qquad
\qquad
\qquad
\qquad
\qquad
$14.5 \mathrm{M}_{\mathrm{E}}$
Neptune
$4.01 \mathrm{R}_{\mathrm{E}}$
$17.1 \mathrm{M}_{\mathrm{E}}$
$3.88 \mathrm{R}_{\mathrm{E}}$
\qquad

The Dwarf Planets are a new class of Solar System objects defined by the IAU in 2006.
\qquad
\qquad
\qquad
\qquad
Ceres

Haumea

Earth
\qquad
40+ other candidates

\qquad

Lecture 22: The Family of the Sun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Solar System has 7 Giant Moons, mostly found orbiting the giant planets of the outer solar system.
\qquad

Ganymede 5262 km

Titan 5150 km

Callisto
4806 km

Triton 2706 km
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lecture 22: The Family of the Sun

The Trans-Neptunian Objects are a numerous class of small, icy bodies that orbit beyond Neptune.

Composed mostly of ices: density 1.2-2 g/cc
Icy Dwarf Planets (Pluto, Eris,
Haumea, \& Makemake)
Kuiper Belt Objects
(30-50AU)
Pluto's large moon Charon
\qquad
\qquad
\qquad
\qquad
\qquad
Distant large icy bodies
like Sedna \& Quaoar

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Asteroids are rocky or rock/metal aggregates found mostly in the Main Belt between Mars and Jupiter.
\qquad
\qquad
\qquad
253 Mathilde

Made of rock \& metal, some with ices (density $2-3 \mathrm{~g} / \mathrm{cc}$)
Range in size from a few 100km to large boulders (few meters)

Lecture 22: The Family of the Sun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
("Dirty Snowballs").
\qquad
\qquad
\qquad
\qquad
Originate in the outer solar system (Kuiper Belt and Oort Cloud)
Develop longs tails of gas \& dust swept off them by sunlight and the solar wind when they pass near the Sun.
\qquad
\qquad

