$\left.\begin{array}{|c|}\hline \text { Lecture } 36 \\ \text { Strange New Worlds: } \\ \text { The Properties of Exoplanets }\end{array}\right]$
$\qquad$

This lecture describes the properties of the exoplanets discovered thus far
$\qquad$
760 planets known to date, most discovered by the Radial Velocity and Transit methods.
"Hot Jupiters" - giant gas planets very close to their $\qquad$ parent stars - are a big surprise.

Many of the planets are on very eccentric (elliptical) $\qquad$ orbits, unlike in our Solar System

Planetary Migration is a way to explain how gas giants $\qquad$ can be so close to their stars and on eccentric orbits.

Current techniques are mostly biased against finding $\qquad$ systems like our own, but that is starting to change.

$\qquad$
$\qquad$

Kepler 11: 6 planets, G6 star
Only a handful so far look anything like our
$\qquad$ Solar System..

51 Pegasi b, a $0.5 \mathrm{M}_{\text {Jupiter }}$ planet only 0.05 AU from its parent star, is the prototype "Hot Jupiter"

A surprise when discovered in 1995:
4.23 day period
0.05 AU semi-major axis Gas giant like Jupiter

The surprise was what it was doing so close to its parent star...


Gas giants in our Solar System are distant, out beyond the "Ice Line" where stable ices can exist.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The properties of the known exoplanet systems show a great deal of diversity...

Planet Masses
$\sim 1 \mathrm{M}_{\text {Earth }}-13 \mathrm{M}_{\text {Jupiter }}$
Semimajor Axes
$0.02 \mathrm{AU}-8 \mathrm{AU}$
Eccentricities
$0.0-0.93$
Host Masses
$0.3-5 \mathrm{M}_{\text {sun }}$
Distances
$10-21,000$ light years


Most known exoplanets are Gas Giants, but a few are ice giants or rocky super Earths
a
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Planets are preferentially found around stars that are rich in metals.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

OGLE-2006-109L, found by gravitational lensing, is the first true Solar System analog discovered.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

All planet searches thus far are just becoming sensitive to finding Earth-sized planets
RV method needs to be $\sim 10 x$ more precise.

Transit method is just now finding Earth-sized planets.

Microlensing is very promising, but a few years away.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Kepler-20:

5 planets, 2 near-Earth sized around G star
closer than the star's habitable zone


KOI-961:
3 planets, Earth to near-Mars sized around an M star closer than habitable zone (hot planets)

Lecture 36: Strange New Worlds

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Candidates in the Habitable Zone as of Dec 2012

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


