
1 Monday, November 28: Comptonization

When photons and electrons coexist in the same volume of space, their scat-
tering interactions can transfer energy from photons to electrons (Compton
scattering) or from electrons to photons (inverse Compton scattering). In
general, therefore, when photons travel through a region containing free elec-
trons, their spectrum will be changed. In other words, the shape of the spe-
cific intensity Iν will be modified as photons are scattered to lower or higher
ν. The change in the spectrum of light due to scattering from electrons is
referred to as Comptonization.

If light passes through a blob of material of finite size, the average change
in a photon’s energy is given by the Compton y parameter. The magnitude
of y is given by the relation

y =
∆ε

ε
× Nes , (1)

where ∆ε/ε is the average fractional change in the photon’s energy ε = hν
from a single scattering, and Nes is the average number of scatterings from
electrons as the photon passes through the medium. If y ¿ 1, then the spec-
trum of light will only be slightly changed as it passes through the medium.
If y À 1, however, the spectrum can be strongly modified.

Computing Nes is fairly easy. Suppose that the medium through which
the light passes has a diameter L. The number density of free electrons in
the medium is ne, and the typical Lorentz factor of the electrons is γ. If
ε ¿ mec

2/γ, as we saw last Wednesday, the photon-electron interactions can
be treated as Thomson scattering in the electron’s rest frame. In that case,
the mean free path of the photons will be `es = 1/(neσT ), where σT is the
Thomson cross-section of the electron. The optical depth of the blob is then

τes = L/`es = neσT L . (2)

If τes ¿ 1, the average number of scatterings will be Nes = τes ¿ 1. If
τes À 1, the photon will random-walk through the medium, traveling an rms
distance

〈R2〉1/2 ≈
√

N`es (3)

after N scatterings. Traversing the medium requires traveling a distance
〈R2〉1/2 ≈ L, implying

Nes ≈ (L/`es)
2 ≈ τ 2

es . (4)
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A good approximation for Nes for all optical depths is

Nes = max(τes, τ
2
es) . (5)

For optically thick media, with τes = neσT L À 1, the photons undergo a
great many scatterings before emerging from the medium.

Computing ∆ε/ε is a little more complicated, since it depends on the dis-
tribution of electron energies. One of the most useful cases is when the light
passes through an ionized gas in which the electrons have a non-relativistic
thermal distribution, characterized by a temperature T < mec

2/k ∼ 6 ×
109 K. In this case, the average fractional energy change of a photon under-
going a single scattering is

∆ε

ε

∣

∣

∣

∣

NR

=
4kT − ε

mec2
. (6)

When 4kT À ε, and the electron’s thermal energy is much larger than the
initial photon energy, the photon gains energy on average. When 4kT ¿ ε,
and the electron’s thermal energy is much smaller than the initial photon
energy, the photon loses energy on average. The break-even point is at
ε = 4kT .1 As an example, let’s consider the Sunyaev-Zel’dovich effect, in
which CMB photons pass through the hot intracluster gas of a rich cluster of
galaxies. In this case, 4kT À ε, and the Compton parameter for the photons
passing through the cluster is2

yNR ≈ 4kT

mec2
max(τes, τ

2
es) . (7)

For CMB photons passing through an optically thin cluster, the Compton y
parameter for the Sunyaev-Zel’dovich effect is

ySZ ≈ 4kT

mec2
neσT L ∼ 4 × 10−5

(

T

107 K

)(

ne

10−3 cm−3

)

(

L

3 Mpc

)

. (8)

1The factor of 4 comes from considering the case in which the electrons and photons
come to thermal equilibrium at temperature T . In that case ∆ε/ε must equal zero.

2You may recall that on November 21, we computed ∆ε/ε ∼ (kT/mec
2)1/2 for Sunyaev-

Zel’dovich scattering, rather than the correct (and smaller) value ∆ε/ε ∼ kT/mec
2. This

is because I assumed that all collisions were head-on, and the photon was always scattered
back the way it came. This produces the maximum possible energy transfer, and hence
leads to an overestimate of ∆ε/ε.
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Even for a big cluster, we expect ySZ ¿ 1.
In general, when low-energy photons (ε ¿ mec

2) interact with non-
relativistic thermal electrons (kT ¿ mec

2), the fractional energy change
in a single scattering is small. This means that the evolution of the spectrum
of photons can be solved using perturbation techniques. Let n(~x, ~p)d3xd3p
be the number of photons in a volume element d3x at position ~x that have
momenta in a momentum element d3p at momentum ~p. The function n(~x, ~p)
is called the phase space density ; those of you who have read ‘Galactic Dy-
namics’ by Binney and Tremaine probably have phase space densities perma-
nently embedded in your brains. Just for practice, let’s compute the phase
space density of blackbody radiation with a Planck spectrum of energies.
Blackbody radiation has an energy per unit volume per unit frequency of

uνd
3xdν =

8πhν3

c3

1

exp( hν
kTrad

) − 1
d3xdν , (9)

and thus a photon number per unit volume per unit frequency of

nνd
3xdν =

uν

hν
=

8πν2

c3

1

exp( hν
kTrad

) − 1
d3xdν . (10)

For isotropic blackbody radiation, the basic momentum element can be writ-
ten as

4πp2dp =
4πh3

c3
ν2dν , (11)

since p = hν/c. Then by setting

nνd
3xdν = n(~x, ~p)d3xd3p = n(~x, ~p)d3xdν

(

4πh3

c3
ν2

)

, (12)

we find that the phase space density of blackbody photons is

n(~x, ~p) =
c3

4πh3ν2
nν =

2

h3

1

exp( hν
kTrad

) − 1
, (13)

which is the famous Bose-Einstein distribution. Above some characteristic
photon energy hν ∼ kTrad, corresponding to a photon momentum hν/c ∼
kTrad/c, the number of photons falls off exponentially.

The equation that tells how n(~x, ~p) evolves in the presence of inverse
Compton scattering from non-relativistic thermal electrons is called the Kom-

paneets equation, after the Soviet scientist A. S. Kompaneets, who derived
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it in the mid-twentieth century. The derivation of the Kompaneets equation
has been called “distinctly non-trivial”. I will simply write it down for your
general cultural enrichment. The equation is simpler in appearance if we use
some dimensionless units. Let x = hν/(kT ) be the photon energy in units
of the thermal energy of the electrons (not their rest energy). In addition,
tc = t(c/`es) = tcneσT is the time in units of the mean time between scat-
terings. We may then write the time evolution of the photon phase space
density n(~x, ~p) in the form

dn

dtc
=

(

kT

mec2

)

1

x2

∂

∂x

[

x4(
∂n

∂x
+ n + n2)

]

, (14)

where T is the temperature of the non-relativistic electrons with which the
photons are interacting. In general, as Rybicki and Lightman gently inform
us, equation (14) is yet another differential equation that must be solved
numerically.

There are a few situations in which the Kompaneets equation can be
tackled analytically. Suppose you have a region filled with hot ionized gas at
a temperature T . There is no magnetic field, so the main photon emission
process is bremsstrahlung. The main photon absorption process is free-free
absorption. The main photon scattering process is Thomson scattering. The
Thomson scattering coefficient, as we know, is independent of frequency:

αes = 1/`es = neσT . (15)

However, the free-free absorption coefficient, as we learned on November 4,
is strongly dependent on frequency in the low frequency limit (hν ¿ kT ):

αff
ν = 0.018cm−1T−3/2 Z2neni

ν2
gff , (16)

where all quantities are in cgs units, and gff is the Gaunt factor. Since
the absorption coefficient is proportional to ν−2, at frequencies lower than a
critical value ν0, absorption will dominate over scattering. For fully ionized
hydrogen (Z = 1, ne = ni), the value of ν0 is given by

ν0 = 1.6 × 1011 HzT−3/4n1/2
e g

1/2

ff . (17)

When ν ¿ ν0, the spectrum is unmodified by scattering; it will just be
the standard bremsstrahlung spectrum cut off by free-free absorption at low
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Figure 1: Spectrum of hot gas, showing the effects of saturated inverse Comp-
ton scattering at high frequencies.

frequencies (as seen in Figure 1). However, when the gas temperature is
kT À hν0, we expect most of the photons produced to have ν > ν0, and
to be significantly affected by scattering as well as free-free absorption. If
the Compton y parameter is y À 1, then the spectrum at high frequencies
will be significantly modified by inverse Compton scattering, creating a lack
of photons at frequencies ν > kT/h. The more detailed calculations in the
text reveal that there will be a “Compton hump” created at the frequency
ν = 3kT/h (Figure 1).

2 Wednesday, November 30: Plasma Effects

Suppose that a linearly polarized, monochromatic plane wave is propagating
along the x axis, so that

~E = E0êy cos(kx − ωt) . (18)

If the wave is propagating through a vacuum, it travels with speed c = ω/k,
its amplitude E0 is constant, and it maintains its linear polarization, with
~E always pointing in the z direction (or the −z direction, depending on
phase). However, if the wave isn’t propagating through a vacuum, its speed,
amplitude, and polarization can all be altered.
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Suppose, first of all, that the wave is traveling through ionized gas (oth-
erwise known as plasma). The number density of free electrons is ne, and
the number density of positive ions is sufficient to maintain charge neutrality.
(For the moment, to keep things simple, let’s assume that there’s no external
magnetic field.) The changing electromagnetic field due to the traveling wave
makes the free electrons accelerate. Since the electron charge is q = −e, the
equation of motion is

me~̇v = −e ~E (19)

in the non-relativistic limit, where v ¿ c. The velocity of the electrons will
thus be

~v =
eE0êy

ωme

sin(kx − ωt) , (20)

where I’ve chosen the constant of integration so that the time averaged elec-
tron velocity is zero. The current density resulting from the electron’s motion
is

~j = −nee~v . (21)

The massive, slow-moving ions don’t contribute significantly to the current,
so we may ignore them. The oscillatory electron motions set up by the plane
wave produce an alternating current:

~j = −nee
2E0êy

ωme

sin(kx − ωt) . (22)

Note that the current ~j is 90◦ out of phase with ~E and has a maximum value

jmax = σE0 , (23)

where σ is the electrical conductivity,

σ =
nee

2

ωme

. (24)

The larger the value of σ, the greater the current set up by a given electric
field ~E. For plane waves traveling through a plasma, the conductivity is
greatest for low-frequency waves.

Now, when we solve Maxwell’s Equations for a plane wave traveling
through a plasma, we must include a current density jq resulting from the
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acceleration of the free electrons. With this current, the dispersion relation
for the plane wave becomes

c2k2 = εω2 , (25)

where the factor ε is the dielectric constant, and has the value

ε = 1 − 4πσ

ωme

= 1 − 4πnee
2

ω2m2
e

. (26)

Note that ε ≤ 1, and is equal to unity only in the limit ne → 0 or ω2 → ∞.
The value of the dielectric constant is frequently written in the form

ε = 1 − ω2
p

ω2
, (27)

where ωp is called the plasma frequency, and has the value

ωp =

(

4πnee
2

me

)1/2

≈ 5.6 × 104 s−1

(

ne

1 cm−3

)1/2

. (28)

The plasma frequency is the frequency of oscillations that would be set up
if all the electrons were displaced by a small distance δ~x with respect to the
positively charged ions.

For angular frequencies ω < ωp, the wavenumber

k =
1

c

√

ω2 − ω2
p (29)

is imaginary, leading to an exponentially decaying wave amplitude. The
plasma frequency represents an angular frequency below which waves cannot
stably propagate through an ionized gas. The Local Bubble, and similar
regions of hot ionized gas in the interstellar medium, has ne ∼ 10−2 cm−3,
implying a plasma frequency ωp ∼ 6000 s−1. Thus, radio waves with ν <
ωp/(2π) ∼ 1 kHz cannot propagate through the hottest portions of the in-
terstellar medium. Instead, they are evanescent, in the jargon of plasma
physicists. This means that the attenuation length over which waves are
damped, ` ∼ 2πc/ωp, is short compared to the wavelength λ = 2πc/ω. In
the Local Bubble, where ωp ∼ 6× 103 s−1, the attenuation length is a trifling
` ∼ 300 km.3

3This is yet another reason why radio astronomers don’t observe at Extremely Low
Frequencies. Electromagnetic waves with ν ¿ 1 kHz are strongly attenuated in the Local
Bubble.
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The speed of light through a plasma is not going to be equal to c. Suppose
that a plane wave of angular frequency ω is propagating through the plasma,
so that

~E = E0êy cos(kx − ωt) . (30)

If we choose a particular wavecrest – for instance, the one for which kx−ωt =
2nπ – the speed with which this crest travels is given by the relation

k
dx

dt
− ω = 0 , (31)

or
dx

dt
=

ω

k
=

c
√

1 − ω2
p/ω

2
. (32)

This speed, vph ≡ ω/k, is known as the phase velocity, since it is the speed
with which a point of fixed phase on a sinusoidal wave travels through space.

Notice that vph > c for light traveling through a plasma with ω > ωp.
Does this mean we should be shocked and alarmed? No, don’t panic; a phase
velocity greater than c doesn’t violate special relativity. As a wavecrest, or
a point of any other phase, travels along at vph > c, it doesn’t carry any
information with it, and thus cannot be used to transmit information at
superluminal speeds. In order to use an electromagnetic wave to carry infor-
mation, you must modulate the wave; that is, you have to modify it in some
way from a monochromatic wave of constant amplitude and constant linear
polarization. You can, for instance, use frequency modulation (like FM radio)
or amplitude modulation (like AM radio).4 Suppose you create an amplitude
modulated signal (Figure 2) in the form of a compact wave packet. This
can be done by adding together many sinusoidal waves of slightly different
angular frequency. The speed with which the wave packet travels is the group

velocity

vg ≡ ∂ω

∂k
. (33)

For waves traveling through a plasma, taking the derivative of the dispersion
relation (equation 29) yields

1 =
1

2c
(ω2 − ω2

p)
−1/22ω

∂ω

∂k
, (34)

4You can also use polarization modulation, but PM radio doesn’t seem to have caught
on commercially.
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Figure 2: Amplitude modulated wave packet.

or

vg =
∂ω

∂k
=

c(ω2 − ω2
p)

1/2

ω
= c

√

1 − ω2
p/ω

2 . (35)

The group velocity is always less than or equal to c for waves with ω > ωp.
The group velocity vg(ω) is greatest for the highest frequency component

of a signal. If an astronomical source emits pulses of light, then the highest
frequency component of each pulse will reach us first, while the lowest fre-
quency components lag behind (or are damped entirely, in the case ω < ωp).
Consider, as an example, a pulsar at a distance d from the Earth. The time
it takes for light of angular frequency ω to reach the Earth is

tp(ω) =
∫ d

0

ds

vg(ω)
=

1

c

∫ d

0

ds
√

1 − ωp(s)2/ω2
. (36)

Since the free electron density ne usually varies along the line of sight to the
pulsar, the plasma frequency ωp ∝ n1/2

e does as well. For frequencies much
greater than ωp, we may write

1
√

1 − ω2
p/ω

2
≈ 1 +

ω2
p

2ω2
, (37)

and thus

tp(ω) ≈ d

c
+

1

2cω2

∫ d

0
ω2

pds . (38)

Suppose you measure the arrival time of a pulse at two different frequencies,
ω1 and ω2, with ω2 > ω1. The higher frequency component will arrive first,
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followed by the lower-frequency component, after a lapse of time

∆t ≡ tp(ω1) − tp(ω2) ≈
1

2c

(

1

ω2
1

− 1

ω2
2

)

∫ d

0
ω2

pds . (39)

Using the relation ω2
p = (4πe2/me)ne, we find that

∆t =
2πe2

mec

(

1

ω2
1

− 1

ω2
2

)

∫ d

0
neds . (40)

The integral of ne along the line of sight to the pulsar is known as the
dispersion measure (DM) of the pulsar. By measuring the time delay between
the arrival time of a pulse at two different frequencies, the dispersion measure
can be measured. The Crab pulsar, for instance, has a dispersion measure of

DMcrab =
∫ dcrab

0
neds = 57 pc cm−3 . (41)

Since we know the distance to the Crab is dcrab ≈ 2000 pc, we can compute
that the average density of free electrons between us and the Crab pulsar is

〈ne〉 =
DMcrab

dcrab

≈ 57 pc cm−3

2000 pc
≈ 0.03 cm−3 . (42)

For pulsars whose distance is unknown, you can estimate the distance by
assuming that the average electron density along the line of sight is ne ≈
0.03 cm−3, but this is fraught with uncertainty, given the inhomogeneity of
the interstellar gas.

3 Friday, December 2: Faraday Rotation (and

Cherenkov Radiation)

In the previous lecture, I discussed the propagation of light through a plasma,
in the absence of an external magnetic field. In that case, the only special
frequency is the plasma frequency,

ωp ≡
(

4πnee
2

me

)1/2

≈ 9700 s−1

(

ne

0.03 cm−3

)1/2

. (43)
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If there exists a constant magnetic flux density ~B0 within the plasma, there
will be an additional frequency of interest: the cyclotron frequency,

ωcyc ≡
eB0

mec
≈ 17 s−1

(

B0

10−6 G

)

. (44)

(I’ve scaled the plasma frequency and the cyclotron frequency to typical
values of ne and B0 you might find in the interstellar medium.) The presence

of ~B0 also introduces anisotropy into the problem. Suppose that ~B0 = B0~ex;
if we locate ourselves at large x, so that ~B0 is pointing toward us, we will
see non-relativistic electrons orbiting in a counterclockwise direction at the
cyclotron frequency. Thus, the magnetic field creates a preferred sense of
orbital direction for the electrons, as well as a preferred orbital frequency,
ωcyc.

The effects of the magnetic field ~B0 = B0~ex on the propagation of light
are seen most clearly if we look at circularly polarized light traveling along
the magnetic flux vector ~B0. As we’ve already seen, circularly polarized light
can be created by superimposing two linearly polarized waves that are 90
degrees out of phase. For instance,

~E = E0[êy cos(kx − ωt) ± êz sin(kx − ωt)] (45)

is a circularly polarized wave traveling in the positive x direction. The two
choices of sign in equation (45) correspond to the two varieties of circular po-
larization. If an observer who sees the wave propagating toward him detects
counterclockwise rotation of ~E at fixed x, the polarization is left-handed. If
the observer detects clockwise rotation of ~E, the polarization is right-handed.

The equation of motion for a non-relativistic electron, accelerated both
by the circularly polarized wave and by the magnetic field ~B0, is

me~̇v = −e[ ~E +
~v

c
× ~B0] . (46)

Since we know ~E and ~B0, we can solve this differential equation to yield ~v,
the velocity of the electron. I will leave it as an exercise for the reader to
demonstrate that

~v = − eE0

me(ω ± ωcyc)
[êy sin(kx − ωt) ∓ êz cos(kx − ωt)] . (47)

The electron moves on a circular orbit (counterclockwise for for left polar-
ization, clockwise for right polarization). The orbital velocity depends on
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ωcyc as well as on ω, and is not the same for right polarized waves as for left
polarized waves.

A right polarized wave produces a maximum current density

jR = −enevR =
e2neE0

me(ω + ωcyc)
, (48)

while a left polarized wave produces a maximum current density

jL = −enevL =
e2neE0

me(ω − ωcyc)
(49)

which is larger than jR for ω > ωcyc > 0. (Note the resonance for left polar-
ized waves at ω = ωcyc.) The difference in current for the two types of circular
polarization results in a difference in dielectric constant, and consequently a
difference in the phase velocity. In the limit ω À ωcyc and ω À ωp,

vph(R) ≈ c

[

1 +
1

2

ω2
p

ω2
− 1

2

ω2
pωcyc

ω3

]

(50)

vph(L) ≈ c

[

1 +
1

2

ω2
p

ω2
+

1

2

ω2
pωcyc

ω3

]

. (51)

The difference in phase velocity for right and left polarized light is small; if
you are observing radio signals through the interstellar medium of our galaxy,
you would expect

∆v ≡ vph(L) − vph(R) ≈ c
ω2

pωcyc

ω3
(52)

∼ 2 × 10−10 cm s−1

(

ν

1 GHz

)

−3

, (53)

for the values of ωp and ωcyc quoted earlier. Although the difference is small,
it has observable consequences.

A linearly polarized wave is the sum of a right circularly polarized wave
and a left circularly polarized wave. The orientation of the plane of polariza-
tion depends on the relative phases of the two waves. As the left polarized
wave slowly pulls ahead of the right polarized wave, the relative phases shift
and the plane of polarization rotates. This rotation is called Faraday rota-

tion, and can be significant for astronomical sources. During a short time
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∆t, the right polarized wave pulls ahead by a distance ∆x = ∆v∆t, and the
plane of polarization rotates by an angle

∆θ = π
∆v∆t

λ
≈ π

(

c
ω2

pωcyc

ω3

)

ω

2πc
∆t (54)

≈ ω2
pωcyc

2ω2
∆t . (55)

If we integrate along the line of sight from a radio source at distance d, the
total rotation of the plane of polarization is

θ ≈ 1

2ω2

∫ d

0
ω2

pωcyc

ds

c
. (56)

Substituting for ωp and ωcyc, we find

θ ≈ 2πe3

m2
ec

2ω2

∫ d

0
neB0ds , (57)

where B0 is the component of the magnetic field that lies along the line of
sight.

Suppose you look at a synchrotron source, such as a pulsar, at two differ-
ent angular frequencies, ω1 and ω2. By measuring the arrival time of pulses
at the two frequencies, you can compute the dispersion measure,

DM ≡
∫ d

0
neds , (58)

as we saw in the previous lecture. By measuring the orientation of the polar-
ization at the two frequencies, you can compute the rotation measure, usually
defined as5

RM ≡ e3

2πm2
ec

4

∫ d

0
neB0ds . (59)

Defined in this way, the rotation measure is the rotation θ of the polariza-
tion divided by the square of the wavelength of observation, λ2 = (2πc/ω)2.
Knowing both the DM and the RM, you can compute an average magnetic
flux density 〈B0〉 along the line of sight:

〈B0〉 =
2πm2

ec
4

e3

RM

DM
= 3.82 × 1016 G

RM

DM
, (60)

5No, I don’t know who defined it in this way, but it’s what you’ll find when you look
through the literature.

13



when all quantities are in cgs units. For instance, according to Lang’s “As-
trophysical Data”, the Crab pulsar has a dispersion measure

DMcrab = 56.791 pc cm−3 = 1.753 × 1020 cm−2 (61)

and rotation measure6

RMcrab = −42.3 rad m−2 = −4.23 × 10−3 cm−2 . (62)

This yields an average magnetic field

〈B0〉 = 3.82 × 1016 G

(

−4.23 × 10−3 cm−2

1.753 × 1020 cm−2

)

= −9.22 × 10−7 G (63)

along our line of sight to the Crab. Similar calculations for other pulsars also
tend to yield magnetic fields at the microgauss level.

While we are talking about ionized gas, I want to say a few words about
Cherenkov7 radiation. Since the group velocity vg in an unmagnetized plasma
is

vg = c
√

1 − ω2
p/ω

2 < c , (64)

it is possible for a highly relativistic charged particle, such as a cosmic ray
proton, to travel with a speed v > vg. Such a particle produces Cherenkov
radiation by a process similar to the production of a sonic boom by a su-
personic particle. If the charged particle is moving with a velocity v > vg,
it forms a conical “photonic shockwave” at an angle θC with respect to the
particle’s direction of motion (Figure 3). The Cherenkov angle θC is given
by the relation

cos θC = vg/v ≈
√

1 − ωp/ω2

β
, (65)

where β = v/c is the dimensionless velocity of the particle. Photons are
emitted with trajectories perpendicular to the conical shockwave.

The group velocity in a plasma increases from 0 to c as the frequency of
light goes from ωp to ∞. Thus, for a given particle velocity v, there exists a

6If I have the sign convention correct, a negative rotation measure means that ~B0 is
pointing toward us, on average.

7You sometimes see the spelling “Cerenkov” or “Čerenkov”. This is just a different
transliteration for the original Cyrillic spelling.
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Figure 3: Geometry of Cherenkov radiation.

maximum possible frequency at which Cherenkov light can be emitted. This
frequency is where vg = v, or

ωmax =
ωp√

1 − β2
= γωp . (66)

Thus, an ultrarelativistic particle traveling through an ionized gas can pro-
duce Cherenkov light with frequency much greater than the plasma frequency
of the gas.
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