
A5682: Introduction to Cosmology Course Notes

2. General Relativity

Reading: Chapter 3

An accurate theory of cosmology was really not possible prior to the discovery of GR.

We will largely use pseudo-Newtonian approximations to GR for our calculations in this course,
but one can only see what those approximations should be thanks to GR.

Special Relativity

Postulates of theory:

1. There is no state of “absolute rest.”

2. The speed of light in vacuum is constant, independent of state of motion of emitter.

Implies: Simultaneity of events and spatial separation of events depend on state of motion of
observer.

Observers in relative motion disagree on the time separation ∆t and the spatial separation ∆l =[
(∆x)2 + (∆y)2 + (∆z)2

]1/2
between the same pair of events.

But they agree on the “spacetime interval” (∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 between
events.

Analogy: Stationary observers with rotated reference frames disagree on ∆x, ∆y but agree on

∆l =
[
(∆x)2 + (∆y)2

]1/2
.

The Equivalence Principle

“Special” relativity restricted to uniformly moving observers. Can it be generalized?

Newtonian gravity: a = F/m, F = −GMmr̂/r2.

Why is this unsatisfactory?

Implicitly assumes infinite speed of signal propagation.

Coincidental equality of inertial and gravitational mass.

Einstein, 1907: “The happiest thought of my life.” If I fall off my roof, I feel no gravity.

Equivalence between uniform gravitational field and uniform acceleration of frame. True in me-
chanics. Assume exact equivalence, i.e., for electrodynamics as well.

Equivalence principle implies gravitational and inertial masses must be equal.

Allows extension of relativity to accelerating frames.

Implies that extension of relativity must involve gravity.

From the equivalence principle alone, can infer

(a) that gravity should bend light

(b) gravitational redshift.

From gravitational redshift, one can demonstrate that gravity affects the flow of time and that
energy has an effective gravitational mass m = E/c2.

Restatement of equivalence principle: In the coordinate system of a freely falling observer, special
relativity always holds locally (to first order in separation). No gravity.
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Over larger scales (second order in separation), gravity doesn’t vanish in a freely falling frame —
tidal effects. E.g., freely falling objects in an inhomogeneous gravitational field may accelerate
towards or away from each other.

Gravitational Redshift Thought Experiment

Consider a box of height h in a gravitational field of acceleration g.

If you shoot an object of mass m from the bottom of the box to the top, how much kinetic energy
does it lose?

What happens if you send a photon of frequency ν from the bottom of the box to the top? Not
obvious.

Apply the equivalence principle, considering a box that is accelerating upward with acceleration of
g in empty space.

The time required for the photon to traverse the box is t = h/c.

In this time the box acquires an upward velocity v = gt = gh/c.

The usual Doppler formula tells us that the frequency of the photon at the top is therefore decreased
(wavelength increased) by a fractional amount ∆ν/ν = v/c = gh/c2.

Since E = hP ν (where hP is Planck’s constant, not the height of the box), ∆E/E = ∆ν/ν.

Therefore ∆E = (gh/c2)E = (E/c2)gh, the same as for a massive object of mass m = E/c2.

Summary of General Relativity

With aid of equivalence principle, can change relativity postulate from “There is no absolute rest
frame” to “There is no absolute set of inertial frames.”

More informally, “There is no absolute acceleration.”

Uniform acceleration can be treated as uniform gravitational field; the two are indistinguishable.

A geodesic path is a path of shortest distance, e.g.,

In flat space, a straight line.

On a sphere, a great circle.

In relativity, a geodesic path is a path of shortest spacetime interval.

In flat spacetime, a straight line at constant velocity.

Freely falling particles move along these geodesics in flat spacetime.

GR description of gravity:

All freely falling particles follow geodesic paths in curved spacetime.

Distribution of matter (more generally, stress-energy) determines spacetime curvature.

Misner, Thorne, and Wheeler’s catchy summary of GR:

Spacetime tells matter how to move. (Along geodesic paths.)

Matter tells spacetime how to curve. (Field equation.)

Compare to equivalent description of Newtonian gravity:

Gravitational force tells matter how to accelerate. (F = ma.)

Matter tells gravity how to exert force. (F = GMm/r2.)

The “equivalence of inertial and gravitational mass” in Newton’s description is not a coincidence
but a necessary consequence of the assumption that all freely falling particles follow geodesic paths.
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Space curvature and the spatial metric

On a flat, two-dimensional surface, the angles of a triangle satisfy

α+ β + γ = π.

The spatial separation dl between two nearby points is

dl2 = dx2 + dy2,

or, in polar coordinates,
dl2 = dr2 + r2dθ2.

The total length l of a path can be found by integrating dl along the path.

On the surface of a sphere, the angles of a triangle add to

α+ β + γ = π +A/R2,

where A is the area enclosed by the triangle and R is the radius of the sphere.

If r is the spatial distance along a great circle from the origin (e.g., the North Pole) and θ the
azimuthal angle (e.g., the longitude), then the spatial separation of nearby points is

dl2 = dr2 +R2sin2(r/R)dθ2.

Analogously, on a negatively curved (saddle-like) surface of constant curvature, the angles of a
triangle add to

α+ β + γ = π −A/R2,

and the spatial separation is
dl2 = dr2 +R2sinh2(r/R)dθ2.

Formulas that relate coordinate separations to length separations are called metrics. In general,
a metric is a matrix (more precisely a tensor) of functions that tells how to go from differential
coordinate separations to differential distances.

For more examples and discussion, see my notes on metrics and metric notation.

These results for two-dimensional surfaces can be naturally generalized three-dimensional spaces.

The metrics for flat, positively curved, and negatively curved spaces of constant curvature radius
R, in “spherical” coordinates, are, respectively,

dl2 = dr2 + r2
[
dθ2 + sin2θdφ2

]
dl2 = dr2 +R2sin2(r/R)

[
dθ2 + sin2θdφ2

]
dl2 = dr2 +R2sinh2(r/R)

[
dθ2 + sin2θdφ2

]
.

Note that dθ2 + sin2θdφ2 is just the squared angular separation, dΩ2 in Ryden’s notation.

Positive curvature =⇒geodesics “accelerate” (in 2nd derivative sense) towards each other. Initially
“parallel” geodesics converge.

Example: great circles on a sphere.
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Zero curvature =⇒no geodesic “acceleration.” Initially parallel geodesics stay parallel. Euclidean
geometry.

Example: straight lines on a plane.

Negative curvature =⇒geodesics “accelerate” away from each other. Initially parallel geodesics
diverge.

Example: geodesics on a saddle.

Example of how following geodesic paths can “look like” gravity: explorers following lines of con-
stant longitude from the equator to the south pole and onwards, vs. two point masses in outer
space.

Caution: this is a loose analogy. Freely falling objects follow spacetime geodesics, not just space
geodesics.

Spacetime metric

With special relativity, Einstein showed that one cannot separate space and time in a way that is
independent of the observer. We must therefore work with a more general 4-d spacetime.

We can generalize the notion of metric to 4-d spacetime, relating coordinate separation of events
to the spacetime intervals between them.

In special relativity (flat spacetime) with Cartesian coordinates, the metric is

ds2 = −c2dt2 + dx2 + dy2 + dz2

or in spherical coordinates
ds2 = −c2dt2 + dr2 + r2dΩ2 .

In a general case, with coordinate separations between two events dxµ where µ = 0, 1, 2, 3 (with
0 representing time), the spacetime interval is

ds2 =
∑
µ,ν

gµνdx
µdxν ,

where the quantity gµν is called the metric.

It is a symmetric, 4× 4 matrix, with ten independent components.

Note that gµν is, in general, a function of spacetime position.

Observers in relative motion, and/or with different coordinate systems, may disagree on dxµ and
gµν , but they will agree on ds2.

Newtonian Gravity Equations

To make the analogy with GR, it is useful to formulate Newtonian gravity in terms of

An acceleration equation
d2x

dt2
= g = −�∇Φ

and the Poisson equation
∇2Φ = −�∇ · g = 4πGρ .

The first equation governs the motion of freely falling particles in terms of the gravitational potential
Φ(x).

4



A5682: Introduction to Cosmology Course Notes

The second equation determines the potential Φ(x) from the matter density field ρ(x).

You may be more familiar with the integral version of the Poisson equation

Φ(r) = −G

∫
ρ(x)

|x− r|d
3r ,

but the differential form is often more useful.

Note that in Cartesian coordinates

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
.

Note that the gravitational potential has units of (velocity)2 , and that traversing a gravitational
potential difference ∆Φ will typically induce a velocity change ∆v2 ∼ ∆Φ.

General Relativity Equations

Mathematically, GR is defined by “two” equations.

The first is the equation for geodesic paths, which gives the equation of motion for freely falling
particles (or photons) in a specified coordinate system.

In practice, this equation represents four 2nd-order differential equations that determine xα(τ),
given initial position and 4-velocity, where τ is proper time measured along path of particle:

d2xα

dτ2
+

∑
µ,ν

F [metric]
dxµ

dτ

dxν

dτ
= 0.

The geodesic equation is the relativistic analog of the Newtonian equation g = −�∇Φ.

The metric gµν is the relativistic generalization of the gravitational potential. Note that every
component of gµν may change as a function of spacetime location.

When the Newtonian limit is accurate, it is typically g00 that is equivalent to the Newtonian Φ.

The second is the Einstein Field Equation, which relates the curvature of spacetime to the distri-
bution of matter and energy.

This is the analog of Poisson’s equation ∇2Φ = 4πGρ.

The Field Equation is usually written

Gµν = 8πGNewtonTµν .

Gµν is the Einstein tensor, built from gµν and its derivatives up to second order. (Like ∇2Φ.)

Tµν is the stress energy tensor, the relativistic generalization of density.

For an ideal fluid at rest, Tµν = diag(ρ, p/c2, p/c2, p/c2), where ρc2 is the energy density.

The constant 8πGNewton, where GNewton is Newton’s gravitational constant, is determined by de-
manding correspondence to Newtonian gravity in the appropriate limit.

Solutions of the field equation

Note that Gµν = 8πGNewtonTµν is a set of ten, second-order differential equations for the ten
components of gµν .
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Second-order =⇒
boundary conditions matter

spacetime can be curved even where Tµν = 0

propagating wave solutions exist

Nonlinear =⇒hard to solve.

Some exact solutions, e.g.

T = 0 everywhere −→ flat spacetime, “Minkowski space”

Spherically symmetric, flat at ∞, point mass at r = 0 −→ Schwarzschild solution

Generalization to include angular momentum −→ Kerr solution

Homogeneous cosmologies, which we will study

In other cases, approximate, by considering small departures from an exact solution (perturbation
theory).

Recall that the (Newtonian) gravitational potential Φ has units of velocity2.

The “weak field” limit of GR corresponds to Φ � c2. Spacetime curvature is weak; photons travel
on nearly straight paths.

The combination of the weak field limit and v � c leads to the Newtonian limit, in which GR
approaches Newtonian gravity.

Tests of GR

High-Precision Quantitative Tests

• Yields Newtonian gravity in appropriate limit

• Precision tests of equivalence principle

• Precession of Mercury – the key from Einstein’s point of view

• Bending of light – historically important

• Gravitational redshift

• Higher-order solar system tests =⇒measured values of “post-Newtonian parameters” agree with
GR predictions

• Post-Newtonian effects (up to ∼ (v/c)3) measured for pulsars in binary systems – precession,
gravitational time delay

Lower precision qualitative tests

• Gravitational lenses

• Black holes: existence of dark massive objects, producing strong gravitational redshifts, apparently
with event horizons rather than hard surfaces

• The Event Horizon Telescope has imaged the shadow of the event horizon and strong light bending
effects of the central supermassive black holes in M87 and the Milky Way (in 2019 and 2021,
respectively), with the expected properties.

• Successes of the big bang theory built on GR; GR predicts expansion of the universe, curvature of
space

Gravitational waves

As noted by Einstein already in 1916, GR permits the existence of propagating spacetime ripples,
generated by accelerating masses.
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• Binary pulsar orbits shrink because energy radiated in gravitational waves; theory and measurement
agree at 1% level (1974 onward)

• Direct detection of gravitational waves from merging black holes (at a distance of about 1 Glyr);
properties agree with model predictions for black holes (2015)

• Direct detection of gravitational waves from a merging binary neutron star, also seen in electro-
magnetic radiation; speed of light and speed of gravitational waves are identical to high precision
(2017)

• Now many dozens of gravitational wave mergers detected, consistent with GR predictions for merg-
ing black holes at the few percent precision level.

Cosmology and GR

Despite these impressive tests, application to cosmology requires gigantic extrapolation in length
and time scale.

Can’t rest comfortably on empirical basis of small-scale tests.

Cosmological models based on GR are impressively successful, but they require two strange ingre-
dients: dark matter and dark energy.

Existence of these ingredients could be an indication that GR is breaking down in some way on
cosmological scales, though we will generally take the view that it is not.
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