
A5682: Introduction to Cosmology Course Notes

5. Cosmic Expansion History

Reading: Chapter 5, don’t get too lost in the equations

Solutions of the Friedmann Equation

We now understand the origin of the Friedmann equation
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and the dependence of energy density ε(t) on the expansion factor a(t) for various forms of matter
and energy.

Now we want to know what the solutions of the Friedmann equation are for interesting cases.

For single-component universes, the following cases can be derived by integrating the Friedmann
equation or verified by substitution.

Matter-dominated, critical density (k = 0)

ε = ε0(a/a0)
−3, a(t) = (t/t0)

2/3, H = 2/3t.

Radiation-dominated, critical density (k = 0)

ε = ε0(a/a0)
−4, a(t) = (t/t0)

1/2, H = 1/2t.

Empty (k = −1)
ε = 0, a(t) = (t/t0), H = 1/t.

Cosmological constant, critical density (k = 0)

ε = εΛ =
3H2

0 c
2

8πG
, a(t) = eH0(t−t0).

For the H(t) relation in the matter dominated case, note that if a ∝ t2/3 then
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and thus H = 2/3t. The same argument works for the radiation-dominated and empty cases.

Matter-dominated with curvature

Matter-dominated solutions with curvature are more complicated, but the solutions can be ex-
pressed in parametric form (textbook equations 5.90 and 5.91 for k = +1, and 5.93 and 5.94 for
k = −1).

For k = +1, the universe expands, reaches a maximum at

amax =
Ω0

Ω0 − 1
,

then recollapses and ends in a “big crunch.”
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For k = −1, the universe expands forever.

From the Friedmann equation
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we can see that the two terms on the right-hand side are equal when Ω(t) = 0.5.

At much earlier times, the first term must dominate, and the universe should evolve like a critical
density universe.

At much later times, the second term must dominate, and the universe should evolve like an empty
universe.

Specifically, when a � Ω0/(1− Ω0), the expansion is very close to a(t) ∝ t2/3.

When a � Ω0/(1−Ω0), the expansion is very close to a(t) ∝ t, i.e., “free expansion” (not acceler-
ating or decelerating).

A flat universe with matter and a cosmological constant

A flat universe dominated by matter and a cosmological constant appears to be a good description
of the cosmos we live in.

The behavior is analogous to that of the k = −1 matter-dominated solution discussed above, except
that the transition is to exponential expansion rather than free expansion.

The Friedmann equation in this case can be written
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(Since a0 ≡ 1, we could just drop it from this equation.)

The transition occurs at an expansion factor

(
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)
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)1/3

.

Note that for a critical density universe, we must have ΩΛ,0 = 1− Ωm,0.

Matter-radiation equality

The energy density of radiation in the universe is εr,0 = aSBT
4, where T = 2.7K is the temperature

of the cosmic microwave background (CMB).

Roughly, CMB photons have λ ∼ 1mm, kT ∼ 10−3eV, nγ ∼ 103 photons cm−3, implying εr,0 ∼
1eV cm−3.

The contribution of starlight is negligible compared to the CMB.

The mean density of hydrogen atoms is roughly one atom per cubic meter. Hence there are about
109 CMB photons per baryon, and εbary,0 ∼ 109eV/106 cm3 ∼ 103eV cm−3 ∼ 103εr,0.

(With more accurate numbers, the mean density of hydrogen atoms is about 0.2 per cubic meter,
and the ratio of CMB photons to baryons is about 2× 109.)
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Since εbary = εbary,0(a0/a)
3 = εbary,0(1+ z)3, and εr = εr,0(a0/a)

4 = εr,0(1+ z)4, the radiation and
baryon densities were equal at

(1 + z) ∼ εbary,0
εr,0

∼ 1000.

The “Benchmark Model”

To be more precise, we need to use precise numbers for the above and include two other important
contributions.

The radiation component includes neutrinos, which are nearly as numerous as CMB photons and
are highly relativistic in the early universe.

The matter component includes dark matter, which appears to outweigh baryons by a factor ∼ 6 : 1.

The Benchmark Model in Table 5.2 of the textbook has good current numbers, derived principally
from cosmic microwave background anisotropy measurements assuming a flat universe with cold
dark matter and a cosmological constant.

For H0 = 68km s−1 Mpc−1,
Ωγ,0 = 5.35 × 10−5

Ων,0 = 3.65 × 10−5

Ωr,0 = Ωγ,0 +Ων,0 = 9.0 × 10−5

Ωbary,0 = 0.048

ΩDM,0 ≈ 0.262

Ωm,0 = Ωbary,0 +ΩDM,0 ≈ 0.31

ΩΛ,0 = 1− Ωm,0 ≈ 0.69.

With these numbers, t0 = 0.96/H0 = 13.7Gyr.

The value of Ωγ,0 is precisely known from the CMB temperature.

The cosmic neutrino background cannot be measured directly, but the value of Ων,0 can be precisely
calculated from theory given the standard model of particle physics. However, we have here treated
neutrinos as massless, which is an excellent approximation in the early universe but not today.

The value of Ωbary,0 is well determined (at the ≈ 10% level) by measurements of the cosmic
deuterium abundance and by measurements of anisotropy in the CMB.

The value of ΩDM,0 is the most uncertain, but a variety of measurements imply it is probably known
to 10%.

Based on these numbers, we conclude that radiation and matter had equal energy density at redshift

(1 + zeq) =
Ωm,0

Ωr,0
≈ 3450.

At redshifts much higher than zeq, the universe was radiation dominated, with a(t) ∝ t1/2.

At zeq there was a transition to a matter dominated universe, with a(t) ∝ t2/3.

At much lower redshift (z <∼ 2), dark energy became important.

The age of the universe at zeq is teq = 4.7 × 104 yrs.
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Another Form of the Friedmann Equation

Using the definitions of Ω and H = ȧ/a, one can write the Friedmann equation in another useful
form (textbook eq. 5.81):
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where Ω0 = Ωr,0 +Ωm,0 +ΩΛ,0 is equal to 1 for a flat universe.

If you know H0 and the present-day values of the density parameters, you can use this form to
compute the expansion rate H(t) at earlier times.

The definition H = ȧ/a implies dt = da/aH. This can be combined with the above equation to
get an expression (textbook eq. 5.83) for the age of the universe at redshift z, expansion factor
a = (1 + z)−1.
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.

We can also calculate the comoving distance to an object at redshift z:
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These expressions can also be written with z as the integration variable using da = −(1 + z)−2dz.

For general combinations of Ωx,0 these integrals must be done numerically, though they can be
done analytically in some special cases.
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