
3 Hydrostatic Equilibrium

Reading: Shu, ch. 5, ch. 8

3.1 Timescales and Quasi-Hydrostatic Equilibrium

Consider a gas obeying the Euler equations:

Dρ

Dt
= −ρ~∇ · ~u,

D~u

Dt
= ~g − 1

ρ
~∇P,

Dε

Dt
= −P

ρ
~∇ · ~u +

Γ − Λ

ρ
.

Suppose that there is a substantial mismatch between the gravitational acceleration and the pressure
gradient

|~g − 1

ρ
~∇P | ∼ |~g|.

How long does it take for this mismatch to produce an order unity change in the density?
In time ∆t

∆ρ

ρ
∼ −(~∇ · ~u)∆t ∼ (−~∇ · (~g∆t))∆t.

If the gas is self-gravitating, then

~∇ · ~g = −∇2φ = −4πGρ, so

∆ρ

ρ
∼ 4πGρ(∆t)2.

The density therefore changes on a dynamical timescale

∆t ∼ td ∼ (Gρ)−1/2.

Binney & Tremaine (eq. 2-30) define

td ≡
(

3π

16Gρ

)1/2

≈ 3

4
(Gρ)−1/2.

The relevant ρ is that of the gravitationally dominant component.
Since pressure is an increasing function of density, these changes generally go in the direction of
restoring balance between gravity and pressure gradients.

If a gas dynamical system is many dynamical times old, we generally expect it to be in hydrostatic
equilibrium, with

~g =
1

ρ
~∇P.

Suppose that the gas is cooling, so that the pressure drops over time. On what timescale does the
system evolve?
Slow cooling: cooling time t−1

c ∼ 1

ε
Dε
Dt .
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Rapid cooling: dynamical time.

The timescale for cooling, or for other processes that change the pressure, is often much longer
than the dynamical timescale. If a system has balance between gravity and pressure gradients but
evolves on a timescale � td, we say it is in quasi-hydrostatic equilibrium. For such a system, we
ignore time derivatives in the momentum equation but not in the other equations.

3.2 Isothermal plane-parallel atmospheres

For a plane-parallel atmosphere in a uniform gravitational field, ~g = g ẑ, hydrostatic equilibrium
implies

1

ρ

dP

dz
= −g.

With P = (ρ/m)kT we obtain
d lnP

dz
=

1

P

dP

dz
=

−gm

kT
,

with solution

P = P0e
−z/zh , zh ≡ kT

gm

ρ = ρ0e
−z/zh , ρ0 ≡ P0

(

m

kT

)

.

For the earth, g = 980 cm s−2, m ≈ 4.8 × 10−23 g, T ≈ 290K, P0 ≈ 106 dyne cm−2, ρ0 ≈ 1.2 ×
10−3 g cm−3, zh ≈ 8.5 km.
Implication: it’s hard to breathe on top of Mount Everest.

We can get an order-of-magnitude estimate of the scale height from a very simple argument based
on the analogous collisionless case.
The one-dimensional velocity dispersion of particles is σ2 = kT/m, since the mean kinetic energy
per translational degree of freedom, 1

2
mσ2, should equal 1

2
kT .

A particle up from z = 0 with velocity σ comes to rest after time t ∼ σ/g, having traveled a
distance h ∼ σt ∼ σ2/g = kT/(gm).

If we had assumed an adiabatic atmosphere instead of an isothermal atmosphere, with P =
P0(ρ/ρ0)

γ , we would have obtained a very different result:

P (z) = P0

(

1 − z

za

)

γ

γ−1

, ρ(z) = ρ0

(

1 − z

za

)
1

γ−1

, za = 30 km.

What do we make of the negative pressure that comes from this solution at z > za?
Underlying equations break down as ρ −→ 0, corresponding to λ −→ ∞.
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3.3 Scale-height of a thin disk

Consider a disk of gas orbiting at radius r around a central mass providing gravitational acceleration
g = v2

φ/r.
For gas at height z � r above the midplane, the z-component of gravitational acceleration is
gz = −gz/r.
Thus

1

ρ

dP

dz
= −g

r
z,

and
d lnP

dz
=

1

P

dP

dz
= − g

rσ2
z,

with σ2 = kT/m.
The solution is P = P0e

−z2/z2

h with

zh = σ

(

2r

g

)1/2

.

Substituting g = v2
φ/r yields

zh

r
=

√
2

σ

vφ
.

This is again what one would expect in order-of-magnitude from the collisionless case, where a
particle goes a vertical distance zh at vertical speed σ in about the same time that it goes an
azimuthal distance r at azimuthal speed vφ.

3.4 Isothermal sphere in hydrostatic equilibrium

Good discussions in Binney & Tremaine §4.4(b); Shapiro, Iliev, & Raga 1999 (MNRAS, 307, 203)

Consider a self-gravitating spherical distribution of gas with temperature T .
Hydrostatic equilibrium with P = nkT = (ρ/m)kT requires

~∇P = ρ~g =⇒ dP

dr
=

kT

m

dρ

dr
= −ρ

GM(r)

r2
,

and

M(r) =

∫ r

0

4πr2ρdr =⇒ dM

dr
= 4πr2ρ.

Multiply by r2m
ρkT to get

r2 1

ρ

dρ

dr
= −Gm

kT
M(r)

and differentiate to get
d

dr

(

r2 d lnρ

dr

)

= −4π
Gm

kT
r2ρ, (25)

which can be integrated to obtain ρ(r).

Singular isothermal sphere (SIS) solution:
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Assume ρ = Cr−b, implying

lnρ = lnC − b ln r =⇒ d lnρ

dr
= − b

r

d

dr
(−br) = −b = −4π

Gm

kT
Cr2−b

b = 2, C =
kT

2πGm

ρ(r) =
kT

2πGm
r−2 =

σ2

2πGr2

where, as usual, σ =
(

kT
m

)1/2

.

The mass interior to r is

M(r) =
2σ2

G
r

and the circular velocity is

v2
c =

GM(r)

r
= 2σ2.

An isothermal (constant σ2) stellar dynamical (collisionless) sphere obeys the same equation and
has the same structure.

The solution to the differential equation (25) depends on the boundary condition as well as the
equation itself.
The SIS solution has a cusp at r = 0.
What about the solution for finite central density ρ0?

First, we would like to identify a characteristic lengthscale so that we can obtain a general solution
in terms of dimensionless variables.
The dimensional quantities in equation (25) are G, ρ, and the combination σ2 = kT/m.
The combination of these quantities that yields a lengthscale is σ/(Gρ0)

1/2.
Physically, this represents the typical distance a particle travels in a central dynamical time.
Define the King radius (a.k.a. core radius)

r0 ≡
(

9σ2

4πGρ0

)1/2

(26)

and dimensionless variables
ρ̃ =

ρ

ρ0

, r̃ =
r

r0

.

The hydrostatic equilibrium equation becomes

d

dr̃

(

r̃2 d ln ρ̃

dr̃

)

= −9r̃2ρ̃. (27)
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The (numerical) solution is obtained by integrating outwards from r̃ = 0 with the central boundary
conditions

ρ̃(0) = 1,
dρ̃

dr̃
= 0

(the second condition is required for hydrostatic equilibrium, since the interior mass vanishes as
r̃ −→ 0).

The solution bends from a constant ρ̃ at r ∼< 1 to the singular isothermal sphere solution ρ̃ = 2

9
r̃−2

at r̃ ∼> 3. For r̃ ∼< 2, the solution is well described by the simple approximation

ρ̃ = (1 + r̃2)−3/2,

which is accurate to better than 5%, but this approximation fails at r ∼> 3 (it has the wrong
asymptotic slope).

The projected surface density of an isothermal sphere drops to 0.5013 ≈ 0.5 of its central value at
r̃ = 1.

Note that by defining characteristic dimensionless variables we have reduced the family of solutions
with different central densities and temperatures to a single solution for the appropriately scaled
variables.

What is the total mass of an isothermal sphere of central density ρ0 and temperature T ? Infinite.
In order to get a system of finite total mass, we must truncate it at radius rt by confining it with
an external pressure.
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3.5 Polytropes

A spherical, self-gravitating object in hydrostatic equilibrium with a polytropic equation of state
P = Kργ is called a polytrope. The structure of a polytrope is determined by the adiabatic index
γ or by the so-called polytropic index n ≡ (γ − 1)−1.

Consider a polytrope with equation of state

P = Kργ =

(

Pc

ργ
c

)

ργ = Pc

(

ρ

ρc

)1+1/n

,

where Pc and ρc are the central pressure and temperature.
The quantity

α ≡
[

γ

γ − 1

Pc

ρc

1

4πGρc

]1/2

has units of length. We will soon learn that the sound speed is a = (γP/ρ)1/2, so α is proportional
to the speed of sound times the dynamical time in the center of the polytrope.

In terms of the dimensionless variables θ and ξ defined by

ρ = ρcθ
n, P = Pcθ

n+1, r = αξ,

the equation of hydrostatic equilibrium can be written

1

ξ2

d

dξ

(

ξ2 dθ

dξ

)

= −θn,

called the Lane-Emden equation for a polytropic star.
The structure of a non-singular polytrope can be found by integrating this equation with the central
boundary conditions

θ = 1,
dθ

dξ
= 0 at ξ = 0.

The isothermal sphere corresponds to n = ∞. For n ≥ 5 the total mass is infinite. For n < 5, the
density drops to zero at a finite radius.
The cases most interesting for stars are n = 3/2 (γ = 5/3) and n = 3 (γ = 4/3), but these do not
have analytic solutions.
The only analytic solutions are for n = 1 and n = 5. For n = 1 the solution is

θ =
sin ξ

ξ
.

Generically, polytropes with n < 5 have a roughly constant density core whose radius is ∼ α
followed by a falling density profile that eventually drops to zero.
For higher n (lower γ), the polytrope is more centrally concentrated (smaller core) because the
“squishier” (more compressible) equation of state means that a higher central density is required
to support the weight of the layers above.
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3.6 Instability considerations

Two of the instabilities that can affect a fluid in hydrostatic equilibrium are Rayleigh-Taylor insta-
bility and convective instability.

Rayleigh-Taylor instability occurs when a dense fluid sits on top of a light fluid.
It is energetically favorable for dense fluid elements to sink and exchange places with light fluid
elements.
Although a true hydrostatic equilibrium situation with Rayleigh-Taylor instability is unlikely to
arise in astrophysical situations, the instability can be important in, e.g., outflows or supernova
explosions when a light medium tries to accelerate a dense medium.

Convective instability arises if a fluid element that moves upward (against gravity) and expands
adiabatically (because it doesn’t have time to exchange heat conductively with its surroundings)
becomes less dense than its new surroundings, so that it continues to rise.
The Schwarzschild criterion that determines whether a fluid is convectively unstable is

ds > 0 in the direction of gravity.

High-entropy material is buoyant and tends to move past low-entropy material.
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