
6 Sound Waves and Gravitational Instability

Reading: Ryden pp. 20-25, Shu pp. 110-112

6.1 Perturbation equations for a uniform medium

Consider the plane-parallel case =⇒ no y or z dependence
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Now assume a uniform static medium with ρ = ρ0, P = P0, u = 0.
Symmetry =⇒ g = 0, but Poisson’s equation allows this only if ρ = 0.
We will accept the “Jeans swindle” and ignore this problem with our zeroth-order solution, jumping
immediately to the perturbed equations.

Introduce small perturbations ρ1, u1, P1, g1

ρ = ρ0 + ρ1(x, t) P = P0 + P1(x, t) u = u1(x, t) g = g1(x, t)

where |ρ1/ρ1| � 1, |P1/P0| � 1.

Substitute these expressions and keep only the terms that are first-order in the perturbations:
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Assume that P = P (ρ), allowing the second equation to be written
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Note that this is standard first-order perturbation theory: introduce small perturbations, approxi-
mate full equations by keeping only terms first-order in the perturbations, subtracting off or oth-
erwise using the zeroth-order equations as necessary.

Take the time derivative of the continuity equation, subtract the spatial derivative of the momentum
equation and substitute from the Poisson equation
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Hence
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6.2 Negligible self-gravity: sound waves

∂2ρ1

∂t2
− a2 ∂2ρ1

∂x2
= 0, a =

(

dP

dρ

∣

∣

∣

0

)1/2

is a wave equation for waves propagating at the sound speed a.
If ρ1(x, t) = f(x − at) where f is an arbitrary function and f ′ and f ′′ are its first two derivatives
with respect to its argument:
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For P = P0(ρ/ρ0)
γ , a0 =
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.

Note that the sound speed is ∼ particle thermal speed; it is not surprising to learn that this is the
speed with which a disturbance can propagate. In physical units,

a = 1.63 × 106
(

γ

5/3

)1/2 (

µ

0.6

)−1/2 (

kT0

1 eV

)1/2

cm s−1 ∼ 16 km s−1.

A memorable number is (kT/mp)
1/2 ≈ 10 km s−1 at kT = 1 eV, T = 11, 600K.

A sound wave cannot be created with wavelength less than the mean free path λ, which is ∼ 0.2
AU even in a dense molecular cloud. The frequency of such a wave is ∼ a/λ ∼ 10−8 Hz.

Ryden (pp. 22-24) shows that the effects of viscosity and heat conduction are to damp sound waves
(converting acoustic energy into thermal energy) with an attenuation length

L1 ∼
Λ2

λ
, Λ = sound wavelength, λ = mean free path.

=⇒ if Λ � λ, sound propagates many wavelengths.
For sound waves in air, Λ ≈ 300m s−1/300Hz = 1m, λ ∼ 10−4 cm = 10−6 m, L1 ∼ 106 m.
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6.3 Non-negligible self-gravity

Go back to equation (40). Consider a perturbation of the form

ρ1(x, t) = exp[i(ωt − kx)].

Because sine waves are a complete basis set, we can represent any perturbation at time t0 as a
superposition of such perturbations.
This is an especially useful approach in linear perturbation theory because the different modes do
not interact to first order, so we can solve for the evolution of each one separately and add up the
results.

∂2ρ1

∂t2
= −ω2ρ1

∂2ρ1

∂x2
= −k2ρ1,

so equation (40) implies
ω2 = k2a2

0 − 4πGρ0.

For k > kJ ≡ (4πGρ0)
1/2/a0, ω is real, implying sound waves that oscillate and propagate without

growing.
For k < kJ , ω is imaginary: long wavelength perturbations grow exponentially because of self-
gravity.
For k � kJ , the growth timescale is ∼ (Gρ0)

−1/2 ∼ tdyn.

The Jeans wavelength is

λJ =
2π

kJ
∼ a0(Gρ0)

−1/2.

Thus, a perturbation is gravitationally unstable if a sound wave cannot cross it in a dynamical
time. Shorter wavelength perturbations are stable because pressure gradients build up fast enough
to counter gravity.
A general perturbation may decompose into short wavelength components, which do not grow, and
long wavelength perturbations, which do.
In the non-linear regime, perturbations of different wavelengths influence each other.

The Jeans criterion can also be derived approximately on energetic grounds, by considering a
spherical region whose density is increased by a factor (1 + δ), with δ � 1.
The perturbed gravitational potential energy is

∆W ∼
−GM∆M

R
∼

−GM(R3ρ0δ)

R
.

The perturbed thermal energy is
∆U ∼ δMa2

0.

Thus ∆W + ∆U < 0 if

GM(R3ρ0δ)

R
> δMa2

0 =⇒ R > a0(Gρ0)
−1/2.
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Large scale perturbations decrease their energy by growing in amplitude, but small scale perturba-
tions increase their energy by growing in amplitude.

Numerical values:

λJ ≡ 2π
kJ

= π1/2a0

(Gρ0)1/2
= 3.6 kpc ×

(

γ

5/3

)1/2 (

0.6

µ

) (

kT0

1 eV

)1/2 (

n

1 cm−3

)−1/2

MJ ≡ 4π
3

(

λJ
2

)3
ρ0 = π

6 λ3
Jρ0 = 3.7 × 108M� ×

(

γ

5/3

)3/2 (

0.6

µ

)2 (

kT0

1 eV

)3/2 (

n

1 cm−3

)−1/2

in a regime relevant to cosmology, or

λJ = 0.025 pc × γ1/2
(

2
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) (
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n
106 cm−3

)−1/2
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2
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)2 (
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)3/2 (
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)−1/2

in a regime relevant for star formation.
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