
Radiative Gas Dynamics

Problem Set 6: 1-d Hydro Code: Gravity

Due Friday, March 9

Add gravity to your 1-d hydro code with artificial viscosity (you should actually add it as an option

that can be either on or off). Specifically, change the velocity equation to
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The gravitational acceleration is determined by the fluctuating part of the density field via the

Poisson equation:
∂g

∂x
= −

∂2φ

∂x2
= −4πG(ρ − ρ̄box), (2)

where ρ̄box = (
∑

i ρi)/N is the average density in the box.

We will determine g by integrating from x = 0. There are other methods that involve solving for

and differentiating the gravitational potential, but in this 1-d case a straightforward integration

will suffice. If you think about it carefully, you will realize that there are some subtle issues related

to where the calculated gravitational acceleration actually is relative to the mass and velocity —

at the center of a cell or the edge of a cell. The following scheme appears to work fine, and I

recommend adopting it:

g1 = 0.0

gi = gi−1 − 4π∆x
[
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2
(ρi−1 + ρi) − ρ̄box

]

, i = 2, N.
(3)

Put a loop to do this calculation of g just after the loop that calculates the pressure (again, you

will need two such loops per timestep, one for the half step, and one for the full step). Remember

to apply periodicity: g0 = gN , gN+1 = g1. The mean density ρ̄box can be calculated just once at

the beginning of the program, after the initial density field is assigned, since mass is conserved.

One disadvantage of the scheme (3) is that it does not ensure that the acceleration of the box is

zero, only that the acceleration of the first cell is zero. Thus, momentum is not conserved. You

can correct this problem by computing an offset goff =
∑

ρigi/ρ̄box and subtracting it from all of

the accelerations after doing the calculation in (3). We will use symmetric initial conditions that

ensure that the acceleration of the first cell is zero, so for the calculations here it won’t make a

difference whether you include this offset in your computations or not.

Note that equation (3) has adopted units in which G = 1. What does this mean? Why didn’t we

adopt G = 2, or G = 6.67 × 10−8? The real way that G enters the calculation is by effectively

defining the unit of density. In our previous calculations, the value of the density has been arbitrary,

and only the fractional perturbation to the density mattered. (Try rerunning one of the sound wave

perturbations with ρ = 10 instead of ρ = 1 and the same fractional perturbation amplitude — you’ll

get the same results except for the overall change of the density.) Now, however, the value of ρ will

determine the importance of gravity relative to pressure gradients. Alternatively, one may think

of gravity as introducing a new timescale to our calculations. Previously, the only characteristic

timescale (and the one we used to define our time unit) was the sound crossing time of the box.
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What new timescale does gravity introduce? How does the ratio of this timescale to the sound

crossing time depend on the mean density ρ̄? How does it depend on the temperature T ?

For all of the the calculations below, return to the periodic boundary condition, instead of the hard

boundary condition.

First use the Gaussian perturbation initial conditions adopted in PS 4, slightly modified because

now we won’t necessarily have the unperturbed density ρ = 1. The initial density field is

ρ(x, t = 0) = ρ̄

(

1 + ∆exp

[

−

(x − 0.5)2

2 × 0.052

])

, (4)

the initial velocity field is u(x) = 0.0, and the initial temperature field is

T (x, t = 0) = T̄

(

ρ

ρ̄

)γ−1

. (5)

(Note that it is now T̄ that should be specified, not T1, because we don’t necessarily want to change

the mean temperature if we change the mean density. Note also that there is a subtle difference

between ρ̄ and ρ̄box, since the presence of the perturbation means that the average density in our

box is not actually the unperturbed average density ρ̄.)

Evolve these initial conditions using ρ̄ = 1, T̄ = 1, ∆ = 0.02, N = 200, ∆t = 2 × 10−4, Cq = 4,

Dq = 0.1. Plot the density field at t = 0.1, 0.3, 0.7, 0.8, 0.9, 1.0. How do the results compare

(qualitatively) to the results you obtained in PS 4 with no gravity?

(If you get stuck and can’t get your code to work, you can look at or, if necessary, use mine, which

is at http://www.astronomy.ohio-state.edu/∼A825/hydro3.c.)

Now evolve the same initial conditions but with ρ̄ = 10 (still T̄ = 1). You may not make it all the

way to t = 1.0. Plot the results, and explain the difference from the case for ρ̄ = 1.

To understand the gravitational effects quantitatively, it is helpful to return to the standing wave

initial conditions, which pick out a single wavelength. Modified to allow for a mean density other

than 1, these are

ρ(x, t = 0) = ρ̄(1 + ∆cos(kx)) for all x, (6)

with k = 2π/λ, u = 0 and T (x, t = 0) determined by equation (5).

For all of the remaining calculations, use N = 800 (to get better resolution of shocks), ∆t = 10−4,

Cq = 4, Dq = 0.5. Evolve to t = 2.0 or until the program stops because of negative densities

or thermal energies (or arithmetic errors). Obtain output at time intervals of 0.1, and plot the

density, velocity, temperature, and entropy fields for t = 0.1, 0.3, and the last four output times

before the calculation halts (e.g., if the calculation crashes at t = 1.15, plot t = 0.1, 0.3, 0.8, 0.9,

1.0, 1.1). Start with a perturbation amplitude ∆ = 0.02 in all cases. I have put my routines for

making multi-panel plots that show all of these quantities at multiple output times on the course

web page, if you want to use them.

Do the following cases:
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• λ = 0.5, ρ̄ = 25, T̄ = 1

• λ = 0.5, ρ̄ = 25, T̄ = 4

• λ = 0.5, ρ̄ = 15, T̄ = 1

• λ = 0.25, ρ̄ = 25, T̄ = 1

Describe your results for the first case in moderate detail – i.e., explain whatever features of your

numerical results you can.

You will probably get gravitational collapse eventually in all cases except the second, but the

time evolution should be very different for the last two from the first — almost no growth in the

amplitude of the perturbation for a long time, then rapid growth once non-linear changes to the

density field push the system into instability. The clearest way to see this will be to look at the

energy vs. time. Since your equation for energy (equation 6 of PS 4) does not include gravitational

potential energy, it will not be conserved once gravity is included, and the departure from the initial

energy provides a measure of the strength of the perturbation.

Why is the behavior of the first case fundamentally different from that of the subsequent three?

(Hint: calculate the Jeans wavelength for T̄ = 1, ρ̄ = 25.)


