
II. Relativity

The Electrodynamics of Moving Bodies

Lorentz transformations:

Translation: t′ = t, x′ = x − A, y′ = y, z′ = z

Rotation: t′ = t, x′ = x cos θ + ysinθ, y′ = −xsinθ + y cos θ, z′ = z

Lorentz boost along x-axis:

Homogeneity =⇒ linear

Symmetry =⇒ y′ = y, z′ = z

x′ = ax′xx + ax′tt, t′ = at′xx + at′tt

x = 0 =⇒ x′ = −vt′ =⇒ ax′t = −vat′tt.

Consideration of a spherical light wave emitted at t = t′ = 0 shows that

x2 + y2 + z2 = c2t2 must imply x′2 + y′2 + z′2 = c2t′2

if c is observer independent.

=⇒ x2 − x′2 + c2(t′2 − t2) = 0.

Expanding and setting coefficients to zero yields three more constraints.

Final result:

t′ = β(t − vx/c2), x′ = β(x − vt), y′ = y, z′ = z, where β ≡ (1 − v2/c2)−1/2.

Contrast to “Galilean boost”: t′ = t, x′ = x − vt, y′ = y, z′ = z

Implications:

Length contraction, time dilation, velocity composition formula.

Can do electrodynamics by transformed electrostatics:

magnetic and electric fields transform, removing asymmetry between them

F = e(E + v × B)

Doppler effect, with relativistic corrections. Aberration of light.

Energy transformation. (Note that he doesn’t quote E = hν.)

Radiation pressure.

Impossibility of accelerating to c.

Later: E = mc2.
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Space and Time (Minowski, 1908)

Great rhetoric.

Many important concepts: spacetime, worldline, past and future light cones, spacelike and
timelike separations, invariant interval

spacelike: an observer could see both events as simultaneous

timelike: an observer could pass through both events

null: a light signal could pass through both events

invariant interval: ds2 = −c2dt2 + dx2 + dy2 + dz2

The Equivalence Principle

Newtonian gravity: a = F/m, F = GMmr̂/r2.

Why is this unsatisfactory?

Implicitly assumes infinite speed of signal propagation.

Coincidental equality of inertial and gravitational mass.

Einstein, 1907: “The happiest thought of my life.”

Influence of Gravitation . . . article, 1911, a reflection on part of 1907 review article.

Equivalence between uniform gravitational field and uniform acceleration of frame. True
in mechanics. Assume exact equivalence.

Equivalence principle implies gravitational and inertial masses must be equal.

Allows extension of relativity to accelerating frames.

Implies that extension of relativity must involve gravity.

Third frame trick −→ gravitational mass of electromagnetic energy, gravitational redshift
and time dilation, bending of light (incorrect answer because ignores curvature of space)

Restatement of equivalence principle: In the coordinate system of a freely falling observer,
special relativity always holds locally. No gravity.

Over larger scales, gravity can’t be eliminated — tidal effects. E.g., freely falling objects
in an inhomogeneous gravitational field may accelerate towards or away from each other.

Now we’ll skip years of struggle . . .
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MTW Summary of General Relativity

Spacetime tells matter how to move. (Along geodesic paths.)

Matter tells spacetime how to curve. (Field equation.)

Need to learn mathematical tools to describe this with precision (part of what took Einstein
so long); we’ll do a cursory job. My sources: Einstein, Padmanabhan, Peebles, MTW.

Tensors

Einstein: Expressions of physical laws should be independent of choice of coordinates
=⇒generally covariant.

Tensor – a family of “linear machines,” which operate on other tensors. Built of components
that transform under change of coordinates in specified, linear way.

Note that coordinate transformations can be complicated. E.g., Cartesian to polar, or
spatially variable “grid size,” or moving with accelerated observer.

Scalar (rank-0 tensor): 1 component, invariant under transformation.

Non-relativistic examples: density, temperature, speed

Vector (rank-1 tensor): Magnitude and “direction.” Components change under coordinate
transformation, though vector itself does not. Dot-product with another vector yields a
scalar.

Non-relativistic example: Velocity.

v · r̂ = speed in direction r̂.

v · v = speed2

Rank-2 tensor: Operates on vector to give a vector.

Non-relativistic example: moment of inertia tensor I, Iij =
∫

d3xρ(x)xixj .

If angular velocity vector is o, angular momentum vector is

L = I · o =⇒ Li =
∑

j Iijoj = Iijoj (Einstein summation convention)





L1

L2

L3



 =





I11 I12 I13

I21 I22 I23

I31 I32 I33









o1

o2

o3



 .

L · r̂ = I · o · r̂ = Iijoj r̂i = angular momentum in direction r̂

In 4-d spacetime, rank-2 tensor components form a 4× 4 matrix, change under coordinate
transformation.

Importance of tensors to GR: Because components transform linearly under coordinate
changes, if a physical law is expressed in the form Tensor=0 (all components equal to
zero), it must hold in all coordinate systems.
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Component Transformations, Covariant and Contravariant Tensors

Consider a change of coordinates from xµ to xν(x), µ, ν = 0, 1, 2, 3. Vectors and tensors
have new components in the new coordinate system.

Vector component transformations:

Covariant : Aµ = Aν
∂xν

∂xµ
(=

∑

µ,ν

Aν
∂xν

∂xµ
by summation convention)

Contravariant : Aµ = Aν ∂xµ

∂xν

Rank-2 tensor component transformations:

Covariant : Aστ = Aµν
∂xµ

∂xσ

∂xν

∂xτ

Contravariant : Aστ = Aµν ∂xσ

∂xµ

∂xτ

∂xν

Mixed : Aσ
τ = Aµ

ν

∂xσ

∂xµ

∂xν

∂xτ

Units

For most of our discussion of GR, we will adopt the common convention of adopting units
where G = c = 1 (see MTW, box 1.8).

4-velocity vector

A basic vector is 4-velocity u of an observer, the derivated of spacetime position with re-
spect to the observer’s proper time. For an observer moving with 3-velocity v = {vi, vj, vk}
in a Cartesian coordinate frame {t, x, y, z},

u0 =
dt

dτ
=

1
√

1 − |v|2

uj =
dxj

dτ
=

vj

√

1 − |v|2

Note that dxj/dt = vj , as expected from the definition of 3-velocity.

In an observer’s local Lorentz frame, the components of the 4-velocity are always u =
{1, 0, 0, 0}.
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Metric tensor

In GR (and differential geometry), a fundamental role is played by metric tensor gµν .
(Einstein just calls it the “fundamental tensor.”)

ds2 = gµνdxµdxν is a scalar (invariant)

ds2 < 0 : |ds| = proper time measured by an observer passing through events

ds2 > 0 : |ds| = distance measured by an observer who sees both events as simultaneous

Equivalence principle =⇒in frame of freely falling observer, there is at least an infinitesimal
region in which gµν has the special relativistic form

gµν = diag(−1, 1, 1, 1) ≡ ηµν =⇒ ds2 = −dt2 + dx2 + dy2 + dz2 (c = 1 units)

Squared length of a vector is |A|2 = A · A = gµνAµAν .

Inner product is A · B = gµνAµBν .

Since 4-velocity is {1, 0, 0, 0} in local Lorentz frame, 4-velocity always has length=
√
−1.

Raising and lowering indices

Can transform contravariant to covariant indices with gµν , e.g.

Aµ = gµνAν , Aµ = gµνAν , Aµ
ν = gµσAσν .

Covariant differentiation

Denote partial derivative by , – e.g., φ,ν ≡ ∂φ
∂xν .

Gradient of φ has components φ,ν .

But Aµ,σ is not a tensor; doesn’t transform right.

Problem is making parallel transport coordinate independent – have to “bring vectors to
the same place” in a well-behaved way before taking difference.

Denote true covariant differentiation by ; instead of by , .

Scalar: φ;α = φ,α .

Vector: Aµ;β = Aµ,β − Γν
µβAν ≡ DAµ

dxβ .

The “Christoffel symbol” or “affine connection” is

Γµ
σδ ≡ 1

2
gµν

(

−∂gσδ

∂xν
+

∂gσν

∂xδ
+

∂gνδ

∂xσ

)

= Γµ
δσ.

Covariant derivative of a rank-2 tensor:

Aα
β;µ = Aα

β,µ + Γα
νµAν

β − Γν
βµAα

ν .
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Geodesics

Suppose we have a timelike curve (tangent vector is always timelike) connecting 2 events,
E1 and E2. Can parametrize position on curve by s =

∫

E1

ds, since ds is invariant under
coordinate transformations.

In a specified coordinate system, the geodesic curve, which minimizes
∫ E2

E1

ds, satisfies

d2xα

ds2
+ Γα

βγ

dxβ

ds

dxγ

ds
= 0, α = 0, 1, 2, 3.

Four 2nd-order differential equations that determine xα(s), given initial position and 4-
velocity.

Recall: 4-velocity u =
{

dt
dτ

, dxj

dτ

}

, in rest frame of traveling observer = {1, 0, 0, 0}.

The Riemann tensor

A rank-4 tensor built from derivatives of the metric.

Completely characterizes curvature of spacetime through the geodesic deviation equation

D2l

dτ2
+ Riemann(u, l,u) = 0,

where u =4-velocity along geodesic, l =separation vector to nearby geodesic.

In component language
D2lα

dτ2
+ Rα

βγδ

dxβ

dτ
lα

dxδ

dτ
= 0.

If R = 0, spacetime is flat and geodesics do not converge or diverge. True in any coordinate
system, since coordinate transformation cannot alter the fact that R = 0.

R = 0 is a necessary condition for there to exist coordinates in which gµν = constant,
since gµν = constant =⇒ R = 0.

Now we have the minimal mathematical ingredients and concepts for defining GR.
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GR: Effect of geometry on matter

Suppose: special relativity holds in some finite region.

With appropriate coordinates, gµν = ηµν = diag{−1, 1, 1, 1}.
Free particles move in straight lines, at uniform velocity.

Change coordinates =⇒gµν change, particles follow curved paths that are independent
of mass. By equivalence principle, we interpret this as motion under the influence of a
gravitational field (uniform or non-uniform, depending on transformation).

Particle paths are still geodesics, since these are coordinate independent.

If the supposition above doesn’t hold:

Retain the view that gµν describe the gravitational field.

Assume that freely falling particles still follow geodesics.

What else could they do? No other “special” paths.

Can derive from least-action principle and special relativity form of energy.

Implications:

Geodesic equation gives path of freely falling particle in specified coordinate system.

Geodesic deviation equation describes relative accelerations.

Example: Follow great circles on a sphere, plot separation vs. time. Looks like edge-on
spacetime diagram of binary star orbit. Geodesic deviation equation is

d2l

ds2
+ Rl = 0.

GR: Effect of matter on geometry

Need an equation to tell how matter produces spacetime curvature, since to get motion of
particles we need the metric gµν .

Must regain Newtonian gravity in appropriate limit −→ use Poisson’s equation for guid-
ance: ∇2Φ = 4πGρ.

We want: [curvature] = [matter]
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Right-hand side: the stress-energy tensor

Relativistic generalization of ρ is stress-energy tensor T.

−T · u · u ≡ −Tαβuαuβ = energy density seen by observer with 4-velocity u.

−T · u · r̂ ≡ −Tαβuαr̂β = component of 4-momentum density in direction r̂ in Lorentz
frame defined by u

Ideal fluid: Tαβ = (ρ + p)uαuβ + pgαβ.

General: all stress-energy except that of gravitational field.

In a Lorentz frame, equation for conservation of energy and momentum is T µν
,ν = 0. Time

derivative = spatial divergence.

E.g., perfect fluid, Newtonian limit, |vj | � 1, p � ρ.

T 00 = (ρ + p)u0u0 − pη00 ≈ ρ (u0 ≈ 1).

T 0j = T j0 = (ρ + p)u0uj ≈ ρvj.

T jk = (ρ + p)ujuk + pδjk ≈ ρvjvk + pδjk.

T 00
,0 + T 0j

,j =
∂ρ

∂t
+ ∇ · (ρv) = 0, continuity equation.

Can be written in component form as

∂ρ

∂t
+ ρ

∂vk

∂xk
+ vk ∂ρ

∂xk
= 0.

T j0
,0 + T jk

,k =
∂ρvj

∂t
+

∂ρvjvk

∂xk
+

∂p

∂xj

= ρ
∂vj

∂t
+ vj

[

∂ρ

∂t
+ vk

∂ρ

∂xk
+ ρ

∂vk

∂xk

]

+ ρvk ∂vj

∂xk
+

∂p

∂xj
= 0.

Rewritten in vector form:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p, Euler equation.

The covariant expression for energy-momentum conservation must be T µν
;ν = 0, or T ;ν

µν = 0.
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Left-hand side: the Einstein tensor

[ ] = κTµν , κ = constant to be determined

∇2Φ ∼ relative accelerations ∼ Riemann tensor; 2nd derivatives of gµν are ∼ ∇2Φ, gµν ∼ Φ,

We want

(1) A symmetric, rank-2 tensor which

(2) is built from metric and derivatives up to 2nd order (=⇒from gµν and Rαβγδ, which is the
only tensor that can be built from derivatives of the metric) and

(3) is linear in curvature (Riemann tensor) and

(4) vanishes when spacetime is flat (when R = 0) and

(5) automatically satisfies conservation law, [ ];ν = 0.

These conditions lead uniquely to the Einstein tensor

Gµν = Rµν − 1

2
gµνR

where Rµν = Rα
µαν is the Ricci tensor, R = gµνRµν is the Ricci (or curvature) scalar.

(Notation in Einstein paper is different.)

Vanishing of G;ν
µν is a geometrical identity known as the Bianchi identity. Conservation of

energy-momentum is an automatic consequence of the way it affects spacetime.

The field equation

We have arrived at the Einstein field equation.

Gµν = 8πTµν ,

where the constant of 8π will be justified by demanding Newtonian correspondence.

Einstein didn’t know Bianchi identity, so followed a more roundabout route.

Hilbert derived from action principle based on R, the only appropriate scalar for describing
curvature. Action is

S =

∫

Ω

d4x
√−g

(

Lmatter −
R

16πG

)

.

Operate on both sides of the Einstein Equation (i.e., take the trace) to find

gµνRµν − 1

2
gµνgµνR = R − 1

2
δµ
µR = R − 2R = −R = 8πgµνTµν = 8πT.

The equation can therefore be written

Rµν = 8π(Tµν − 1

2
gµνT ),

which is the form (with different notation and a not yet specified constant) in equation (53)
of the Einstein paper.
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Solutions of the field equation

Note that G = 8πT is a set of ten, second-order differential equations for the ten compo-
nents of gµν .

Second-order =⇒
boundary conditions matter

spacetime can be curved even where T = 0

propagating wave solutions exist

G;ν
µν = 0 =⇒ 4 identities, so there are only six independent constraints on gµν .

Remaining four degrees of freedom reflect freedom to choose coordinates arbitrarily.

Nonlinear =⇒hard to solve.

Some exact solutions, e.g.

T = 0 everywhere −→ flat spacetime, “Minkowski space”

Spherically symmetric, flat at ∞, point mass at r = 0 −→Schwarzschild solution

Generalization to include angular momentum −→Kerr solution

Homogeneous cosmologies, which we will study

In other cases, approximate.

Some relevant limits:

gµν ≈constant, i.e. gradients can be ignored −→special relativity

gµν = ηµν + hµν with |hµν | � 1 −→weak field approximation

Weak field and v � c −→Newtonian limit

Correspondence to Newtonian gravity

Recall that a particle moving at constant 3-velocity v in a “Cartesian” frame has 4-velocity
u = {uα} with

u0 =
dt

dτ
=

1
√

1 − |v|2
, ui =

dxi

dτ
=

vi

√

1 − |v|2
.

In the Newtonian limit, v � c,

u0 ≈ 1, ui =
dxi

dτ
� 1 (i = 1, 2, 3).

We’ll need the definition of the Christoffel symbol:

Γαβγ =
1

2
(gαβ,γ + gαγ,β − gβγ,α) = gανΓν

βγ ,

Γν
βγ = gναΓαβγ .
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Geodesic equation:

d2xi

dτ2
= −Γi

βγuβuγ

≈ −Γi
00 (u0 ≈ 1 � ui)

≡ −giαΓα00

≈ −Γi00 (gµν ≈ ηµν)

= −1

2
(2h0i,0 − h00,i)

≈ 1

2
h00,i (v � c =⇒ small time derivatives).

Field equation:

Use the form

Rµν = 8π(Tµν − 1

2
gµνT ),

where T = gµνTµν is the trace of the stress-energy tensor.

We’ll adopt the stress-energy tensor of an ideal fluid,

Tαβ = (ρ + p)uαuβ + pgαβ

≈ diag(ρ, p, p, p) (u0 ≈ 1 � ui, gµν ≈ ηµν).

From the geodesic equation above, we see that we only need the 00 component in order to
get particle motion.

R00 = 8π(T00 −
1

2
g00T )

≈ 4π(2T00 + (−T00 + T11 + T22 + T33)) (gµν ≈ ηµν)

= 4π(T00 + T11 + T22 + T33)

≈ 4π(ρ + 3p).

Now we need the definition

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓβ

µα.

With the Newtonian limit, this implies

R00 ≈ Γα
00,α − Γα

0α,0 (other terms are second − order)

≈ Γi
00,i (time derivatives are small)

= giαΓα00,i

≈ Γi00, i (gµν ≈ ηµν).
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With the definition of Γ, we find

R00 ≈ 1

2
(hi0,0 + h0i,0 − h00,i),i

≈ −1

2

∑

i

∂2h00

(∂xi)2
(time derivatives are small)

= −1

2
∇2h00.

If we identify h00 = −2Φ, we find

d2xi

dτ2
=

1

2
h00,i = − ∂Φ

∂xi
,

∇2Φ = −1

2
∇2h00 = 4π(ρ + 3p).

For a non-relativistic fluid, p � ρ, and we get the equation of motion of a particle moving
under the influence of a gravitational potential Φ that obeys Poisson’s equation.

Tests of GR

• yields Newtonian gravity in appropriate limit

• precision tests of equivalence principle

• precession of Mercury – the key from Einstein’s point of view

• bending of light – historically important

• gravitational redshift

• higher-order solar system tests =⇒measured values of “post-Newtonian parameters” agree
with GR predictions

• binary pulsars:

gravity wave dissipation rate – very strong test
precession of orbit in an external system
gravitational time delay, effects up to ∼ (v/c)3

Other low precision tests: structure of dense stars, gravitational lensing

Fails badly in description of outer parts of galaxies and in galaxy groups and clusters.
We’ll interpret this failure as evidence for dark matter, but we should remember that the
right interpretation could be different.

(Is the historical precedent Mercury, Neptune, or Pluto?)

Despite the excellent confirmation of GR (with the dark matter caveat), application to
cosmology requires a gigantic extrapolation, can’t rest on empirical basis of small-scale
tests. [One could make a similar comment about the strong field regime – black holes, etc.]
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The Einstein cosmological model

Cosmological Considerations on the General Theory of Relativity (Einstein, 1917)

Einstein recognizes the extrapolation point made above and modifies the field equation:

Rµν = 8π(Tµν − 1

2
gµνT ) −→ Rµν − λgµν = 8π(Tµν − 1

2
gµνT ).

In terms of our discussion, he drops the requirement that the left-hand side of the field
equation vanish when space is flat (when Rαβγδ = 0).

Why?

Field equation must be supplemented by boundary conditions at ∞.

Finite mass distribution with gµν = ηµν at ∞ has 2 problems:

(1) System evaporates, like a globular cluster

(2) Inertia is not determined by mass distribution alone (violates Mach’s principle)

Could avoid by having an infinite potential barrier, but this violates “the most important
fact that we draw from experience,” that relative velocities of stars are � c.

Alternative: finite, bounded universe like surface of sphere (large scale approximation).

Assume homogeneous: “we are prompted to the hypothesis that ρ is to be independent of
locality.”

Derives metric from homogeneity condition and assumption that universe is static.

Doesn’t fit field equation. Adds cosmological term.

λ must have specified value so that universe is in equilibrium.

It was later pointed out that this equilibrium is unstable.

De Sitter, Einstein, Friedmann, Lemâitre, and others later went on to discuss expanding
cosmologies.

Einstein abandoned the cosmological term for good when the cosmic expansion was dis-
covered (in 1929). He is reputed to have called it “the greatest blunder of my life.”

The cosmological constant idea has never completely gone away. It has been especially
prominent in the last 20 years, but it is now viewed as part of Tµν .

Instead of

Gµν − Λgµν = 8πTµν , Gµν = 8π(Tmatter
µν + TVAC

µν ), where

TVAC
µν ≡ Λgµν/8π.

TVAC
µν is the stress-energy tensor of a “false vacuum” or “scalar field” with equation of

state p = −ρ. We’ll reencounter this idea when we get to inflation.
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