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III. Homogeneous Cosmological Models

Readings

The material in this section is covered in chapters 3-7 of Ryden, and in chapter 3 of
Peacock.

I very much like the discussion in Jim Gunn’s (1978) article The Friedmann Models and

Optical Observations in Cosmology, from the SAAS-FEE Proceedings Observational Cos-

mology, edited by A. Maeder et al. This article is hard to track down, and I will distribute
the first 40 pages or so (which are the most useful).

For distance measures, I recommend the compact summary by David Hogg, Distance Mea-

sures in Cosmology, available as astro-ph/9905116. It generally does not give derivations,
but it summarizes the standard results in admirably clear form.

Notation differs from one treatment to another. I will try to mostly follow Ryden’s nota-
tion.

The Einstein cosmological model

Cosmological Considerations on the General Theory of Relativity (Einstein, 1917, reprinted
in the Principle of Relativity book)

Einstein constructs the first modern cosmological model, drawing on new concepts of
relativity.

Gives arguments, not particularly persuasive, against an infinite universe.

Introduces hypothesis: universe is homogeneous on large scales.

How can universe be finite and homogeneous? What about boundary?

GR allows a solution: space is positively curved, like the surface of a sphere. Finite, but
no boundary.

Seeks static solution with constant ρ, positive curvature.

Proves that no such solution exists.

In response, Einstein modifies the field equation from

Gµν = 8πTµν to Gµν − Λgµν = 8πTµν ,

adding the “cosmological term.”

Of the “principles” that lead to the field equation, the one he drops is the requirement
that spacetime is flat when Tµν = 0 everywhere.

For a specific relation between the cosmological constant Λ and the matter density ρ, this
allows a static solution.
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The cosmological models subsequently developed by Friedmann and LeMâitre retain some
ideas from the Einstein cosmology — GR, large scale homogeneity, large scale curvature
— but they drop the assumption that the universe is static. They therefore do not require

a cosmological constant.

Einstein abandoned the cosmological term for good when the cosmic expansion was dis-
covered (in 1929). He is reputed to have called it “the greatest blunder of my life.”

The Cosmological Constant

The cosmological constant idea has never completely gone away. It has been especially
prominent in the last 20 years, but it is now viewed as part of Tµν .

Instead of

Gµν − Λgµν = 8πTµν , Gµν = 8π(Tmatter
µν + TVAC

µν ), where

TVAC
µν ≡ Λgµν/8π.

TVAC
µν is the stress-energy tensor of a “false vacuum” or “scalar field” with equation of

state p = −ρ.

The basic effect can be seen from our Newtonian limit result:

∇2Φ = 4π(ρ + 3p).

For p < −ρ/3, gravity pushes instead of pulls.

With the right choice of Λ, can have static model in which push of vacuum energy balances
pull of matter (but unstable).

With larger Λ, get acceleration.

The Friedmann-Robertson-Walker metric

The spatial metric of the Einstein cosmological model is that of a 3-sphere:

dl2 = dr2 + R2sin2(r/R)dγ2,

where dγ2 ≡ dθ2 + sin2θdφ2 is the angular separation.

Here R is the curvature radius of the 3-dimensional space, and r is distance from the origin.

In the coordinate frame of a freely falling observer, time is just proper time as measured
by the observer, and the spacetime metric is

ds2 = −c2dt2 + dl2.

A natural generalization of the Einstein model is to allow the curvature radius R(t) to be
a function of time.
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The universe is still homogeneous and isotropic on a surface of constant t, but it is no
longer static.

In the 1930s, Robertson and Walker (independently) showed that there are only three
possible spacetime metrics for a universe that is homogeneous and isotropic.

They can be written
ds2 = −c2dt2 + a2(t)

[

dr2 + S2
k(r)dγ2

]

,

where
Sk(r) = R0 sin(r/R0), k = +1,

= r, k = 0,

= R0 sinh(r/R0), k = −1.

In this notation, a(t) is dimensionless.

It is defined so that a(t0) = 1 at the time t0 (usually taken to be the present) when the
curvature radius is R0. At other times the curvature radius is a(t)R0.

The radial coordinate r and the radius of curvature R0 have units of length (e.g., Mpc).

I have followed Ryden’s notation in giving Sk(r) units of length. In Gunn’s notation, Sk(r)
is dimensionless, and a(t) is replaced by R(τ), where R(τ) has units of length.

For k = +1, the space geometry at constant time is that of a 3-sphere.

For k = 0, the space geometry at constant time is Euclidean, a.k.a. “flat space.”

For k = −1, the space geometry at constant time is that of a negatively curved, 3-
dimensional “pseudo-sphere.”

Friedmann and LeMâitre used this metric in their cosmological models of the 1920s.
Robertson and Walker proved that they are the only forms consistent with the Cosmolog-
ical Principle (homogeneity and isotropy).

It is commonly called the Friedmann-Robertson-Walker metric, or sometimes the Robertson-
Walker metric.

The FRW metric, space curvature, and spacetime curvature

k = +1 =⇒positive curvature, spherical geometry, finite space

k = 0 =⇒no curvature, Euclidean geometry, infinite space

k = −1 =⇒negative curvature, pseudo-sphere geometry, infinite space

Note: these are descriptions of space at constant t.

For many forms of a(t), spacetime is positively curved even if space is not, (this is always
the case unless a cosmological constant or some other form of energy with negative pressure
is important). In the special relativistic, Milne cosmology, spacetime is flat, but surfaces
of constant time are negatively curved.
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Positive curvature =⇒geodesics “accelerate” (in 2nd derivative sense) towards each other.
Initially “parallel” geodesics converge.

Example: great circles on a sphere.

Zero curvature =⇒no geodesic “acceleration.” Initially parallel geodesics stay parallel.
Euclidean geometry.

Example: straight lines on a plane.

Negative curvature =⇒geodesics “accelerate” away from each other. Initially parallel
geodesics diverge.

Example: geodesics on a saddle.

The substitution x = Sk(r) allows the FRW metric to be written in another frequently
used form:

ds2 = −c2dt2 + a2(t)

[

dx2

1 − kx2/R2
0

+ x2dγ2

]

.

Demonstration is left as a (simple) exercise for the reader.

With r as radial coordinate, radial distances are “Euclidean” but angular distances are
not (unless k = 0). With x as radial coordinate, the reverse is true.

Comoving Observers

The metric depends on the coordinate frame of the observer.

Even a homogeneous and isotropic universe only appears so to a special set of freely falling
observers, called “Fundamental Observers (FOs)” or “Comoving Observers.”

These observers are “going with the flow” of the expanding universe, and the proper
distance between them increases in proportion to a(t).

In the coordinate frame of these observers, the FRW metric applies, and the time coordinate
of the FRW metric is just proper time as measured by these observers.

Comoving spatial coordinates track the positions of these FOs, i.e., the comoving separation
between any pair of FOs remains constant in time.

An observer moving relative to the local FOs has a “peculiar velocity,” where peculiar is
used in the sense of “specific to itself” rather than “odd.”

An observer with a non-zero peculiar velocity does not see an isotropic universe – e.g.,
dipole anisotropy of the cosmic microwave background caused by reflex of the peculiar
velocity.

Examples of application of metric

(1) Any freely falling particle follows geodesics in spacetime, whose solution in comoving coor-
dinates could be found from the geodesic equation. For comoving particles (FO’s), solution
is trivial: r, θ, φ = constant.
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(2) Light rays travel along null geodesics: ds2 = 0. Therefore, along a radial ray (dγ = 0),

dr = c dt/a(t) =⇒ ro − re =
∫ to

te

c dt/a(t).

(3) In a surface of constant t, metric distance along a radial path of constant θ, φ is

l =

∫

ds =

∫ r2

r1

a(t)dr = a(t)(r2 − r1).

(4) In a surface of constant t, metric distance along a path of constant r, θ between two points
of different φ is

l =

∫

ds =

∫ φ2

φ1

a(t)Sk(r)dγ = a(t)Sk(r)sinθ(φ2 − φ1).

Note that this is not a great circle (and hence shortest) path unless θ = π/2.

(5) In a surface of constant t, metric volume of a shell of radius r and width ∆r � r is

V =

∫

d3s =

∫ r+∆r

r

a(t)dr

∫

4π

a2(t)S2
k(r)dγ2 = 4πS2

k(r)a3(t)∆r.

For k = 0 this is just 4πr2∆r × a3(t).

Note that the “metric” distances and volumes in (3)-(5) are “proper,” physical distance
measures and that r is the comoving radial coordinate.

Redshift of photons

A photon emitted by a nearby comoving source at distance d is Doppler shifted:

dν

ν
=

−v

c
=

−Hd

c
= −Hdt,

where H is the Hubble parameter and the last equality follows because d = c dt.

The Hubble parameter is H = ḋ/d = ˙(ar)/(ar) = ȧ/a. Thus,

dν

ν
= −

ȧ dt

a
= −

da

a
=⇒ dlnν = −dlna.

Let the photon be emitted with frequency νe at time te and observed with frequency νo at
time to.

Integrate to get
νe

νo
=

ao

ae
=

λo

λe
≡ (1 + z), z = redshift.

Constant of integration fixed by demanding νo −→ νe as ao −→ ae.

Photon wavelength proportional to a(t).
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Frequency shift =⇒time dilation. Real effect observed in, e.g., supernova light curves.

Could also derive by (a) considering successive crests traveling on null geodesics, or (b)
using equation for evolution of 4-momentum along null geodesic.

Kinematic redshift

Give a particle a “peculiar” velocity with respect to the comoving frame.

The peculiar velocity decays as it catches up with receding particles.

This is a purely kinematic effect, though it looks like a fictitious “friction.”

In the non-relativistic limit, a particle with speed v goes distance v dt and changes its
peculiar velocity by dv = −H(v dt)

=⇒
dv

v
= −

ȧ dt

a
= −

da

a
=⇒

pe

po
=

mve

mvo
=

ao

ae
.

Momentum redshifts like the frequency of a photon.

Gunn shows that this continues to hold in the relativistic case (dv large).

One can also show that this implies that the de Broglie wavelength of a particle redshifts
just like photon wavelengths.

Kinematic redshift profoundly affects the dynamics of instabilities: in an expanding uni-
verse (or any expanding medium), undriven disturbances decay instead of coast.

Flux, diameter, and surface brightness vs. redshift

ds2 = −c2dt2 + a2(t)[dr2 + S2
k(r)dγ2].

From metric application (2) above, we have the comoving distance to an object that emitted
light at time te as

Dc =

∫ t0

te

c dt

a(t)
.

From a ≡ (1 + z)−1 we have da = −dz(1 + z)−2 = −a2dz, and from H ≡ ȧ/a we have
dt = da/(aH) =⇒dt/a(t) = da/(a2H) = −dz/H.

Putting these results together yields

Dc =

∫ z

0

c dz′

H(z′)
=

c

H0

∫ z

0

dz′
H0

H(z′)

for the comoving distance to an object at redshift z.

Using the relation for H0/H(z′) that we will derive later from the Friedmann equation
then reproduces equation (15) of Hogg (1999).
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An object of angular size dγ at time te has a transverse physical size

dl = a(te)Sk(r)dγ = (1 + z)−1Sk(r)dγ.

The angular diameter distance is

DA =
dl

dγ
= (1 + z)−1Sk(r),

where r is the comoving distance Dc as given above.

We will later find from the Friedmann equation that the curvature radius is

R0 =
c

H0
|Ωk|

−1/2,

where Ωtot = 1−Ωk is the ratio of the total energy density of the universe (mass, radiation,
dark energy, ...) to the critical density. For Ωk → 0, R0 → ∞ and the curvature 1/R2

0 → 0.

Together with the definition DH = c/H0, this yields the result of equations (16) and (18)
of Hogg (1999):

DA = (1 + z)−1Ω
−1/2
k sinh(Ω

1/2
k Dc/DH) k = −1,

= (1 + z)−1Dc k = 0,

= (1 + z)−1|Ωk|
−1/2sin(|Ωk|

1/2Dc/DH) k = +1.

The photons from a source at redshift z are distributed over an area 4πS2
k(r) at the present

day, since a(t0) ≡ 1.

Photons emitted in a time dte are received over an interval dt0 = (1 + z)dte, and they are
shifted downward in energy by (1 + z). The bolometric flux F is therefore reduced by an
additional factor (1 + z)2:

F =
L

4πS2
k(r)(1 + z)2

≡
L

4πD2
L

,

where L is the source bolometric luminosity and DL = (1 + z)2DA (Hogg 1999, eq. 21).

In c.g.s. units,
[F ] = erg s−1 cm−2, [L] = erg s−1.

The solid angle subtended by a source of projected area A is Ω = A/D2
A, making the

surface brightness

I0 ≡
F

Ω
=

L

4πD2
L

D2
A

A
=

L

4πA

1

(1 + z)4
=

Ie

(1 + z)4
.
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This is the famous (1 + z)4 surface brightness dimming of cosmological sources, which can
make high redshift galaxies very difficult to detect.

Note, however, that these relations for flux and surface brightness are bolometric, inte-
grated over all wavelengths.

The relation for monochromatic fluxes can be written

ν0Sν0
=

νeLνe

4πD2
L

.

The monochromatic or passband flux of an astronomical object is affected by the redshifting
of the bandpass from ν0 to νe = ν0(1 + z).

This effect is referred to as the K-correction (see Hogg et al. 2002, astro-ph/0210394).

Most important fact about redshift:

If we measure the redshift of a source (e.g., from the frequency of a spectral line), we know
ao/ae.

Given a model of a(t), we also know the radial distance. For angular diameter and lumi-
nosity distances, we also need to know the space curvature (R0 and k, or Ωk).

Nearby (i.e., to first order in z),

cz = c
λo − λe

λe
= H0d, H0 ≡

ȧ(t0)

a(t0)
,

independent of other cosmological parameters.

Alternatively, if we can infer distance from observed flux (of a source of known luminosity)
or observed angular size (of a source of known physical size), we can reconstruct a(t) from
observations, and constrain cosmological parameters.
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Dynamics: the Friedmann equation

Gravity hasn’t entered the picture yet. But to go any further, we need a(t).

Assume GR is correct. We could get equations for a(t) by plugging the FRW metric into
the field equation. This yields two non-trivial equations, one of which is the integral of the
other.

Instead of following this derivation, we’ll use the Newtonian limit, ∇2Φ = 4πG(ρ + 3p),
which will get us almost all the way.

We appeal to Birkhoff’s theorem, which implies that we can think about a small spherical
volume in isolation, ignoring the gravitational effects of the rest of the universe (which
cancel out in spherical symmetry).

Consider a shell of physical radius R comoving with the Hubble flow:

R̈ = −
4π

3
G(ρ + 3p)R3 ×

1

R2
.

But R = ar with r constant, so R̈ = är. Thus,

ä = −
4π

3
G(ρ + 3p)a = −

4π

3
G [3(ρ + p)a − 2ρa] .

This is an “acceleration” equation for the cosmic expansion. We see already that ä < 0 if
ρ + 3p > 0, gravity slows expansion.

We would like to have an “energy” equation for ȧ, which we can get by integrating if we
know how ρ and p change with a.

Use the first law of thermodynamics (energy conservation), assuming that the expansion
is adiabatic:

−pdV = dU = d(ρV ) = ρdV + V dρ

=⇒ dρ = −(ρ + p)
dV

V
= −3(ρ + p)

da

a

=⇒ ȧ =
−a

3(ρ + p)
ρ̇.

(The adiabatic assumption is valid during most of the cosmic expansion, but it is violated
at some special epochs when the number of particles changes substantially.)

Multiply both sides of the acceleration equation by ȧ to get

ȧä = −
4π

3
G
[

−a2ρ̇ − 2ρaȧ
]

=
4π

3
G

[

a2ρ̇ + ρ
d(a2)

dτ

]

.
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Recognize that ȧä = d(ȧ2/2)/dt and that the term in [ ] is d(a2ρ)/dt. Integrate with
respect to t to get

ȧ2 −
8πG

3
ρa2 = constant.

Unfortunately, deriving the integration constant really does require the GR field equation.

We can guess that if the density ρ is high, space will be positively curved, and the universe
will be gravitationally bound, making the constant (which plays the role of a potential
energy) negative.

Conversely, if ρ is low, space will be negatively curved, and the universe will be unbound,
with a positive constant.

GR leads to the conclusion that the integration constant is −kc2/R2
0.

In dimensionally correct form, the Friedmann equation can be written

(

ȧ

a

)2

−
8πG

3
ρ +

kc2

a2R2
0

= 0.

We will sometimes refer to the first term as the “kinetic” term, the second as the “gravi-
tational” term, and the third as the “curvature” term.

The density parameter

Note that ȧ/a = H, so if k = 0 the Friedmann equation =⇒ρ = 3H2/(8πG). Define the
“critical density”

ρc =
3H2

8πG
= density of a k = 0 Friedmann universe.

We can define a dimensionless “cosmological density parameter”

Ω =
ρ

ρc
=⇒ ρ = Ω

3H2

8πG
.

The Friedmann equation can also be written

H2(1 − Ω) =
−kc2

a2R2
0

.

Matching signs implies

Ω > 1 −→ k = +1, closed universe

Ω = 1 −→ k = 0, flat universe

Ω < 1 −→ k = −1, open universe
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Note that Ω = Ω(t), but because k doesn’t change, Ω always remains within whichever of
these 3 regimes it starts in.

If we define Ωk = 1 − Ω, where Ω is the sum of all other energy densities relative to ρc,
then the above equation implies

R0 =
c

H0
|Ωk|

−1/2.

Evolution of energy density

Consider an energy component with equation of state p = wρ (c = 1 units).

How does its energy density ρ change with expansion factor a(t)?

dU = −pdV

d(ρV ) = ρdV + V dρ = −wρdV

V dρ = −(1 + w)ρdV

d ln ρ = −(1 + w)d lnV = 3(1 + w)d ln a (V ∝ a3).

Integrating yields
ρ ∝ a−3(1+w).

Pressureless matter: w = 0, ρ ∝ a−3 (dilution)

Radiation: w = 1/3, ρ ∝ a−4 (dilution plus redshift)

Cosmological constant: w = −1, ρ =const.

If these are the energy components in the universe, then the Friedmann equation becomes

(

ȧ

a

)2

−
8πG

3

[

ρm,0

(a0

a

)3

+ ρr,0

(a0

a

)4

+ ρΛ,0

]

= −
kc2

a2R2
0

.

Here the subscript 0 can represent any fiducial time t0.

If it represents the present day, then a0/a = (1 + z).

Note that even if the curvature term is comparable to the gravitational term today, it will
be negligible at sufficiently high redshift because the ρm and ρr terms grow more rapidly
with (1 + z).

Thus, flat universe (k = 0) solutions are always accurate at high z.

Solutions of the Friedmann equation: single component universe

Empty universe: ρ = 0, k = −1
(

ȧ

a

)2

=
c2

a2R2
0

.
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Solution a = ct/R0, R0 = ct0.

Metric and expansion rate of the Milne cosmology.

Flat universe: k = 0, ρ = ρ0

(

a0

a

)n
.

(

ȧ

a

)2

=
8πG

3
ρ0

(a0

a

)n

.

Solution a ∝ t2/n.

Pressureless matter: n = 3, a = a0(t/t0)
2/3.

Radiation: n = 4, a = a0(t/t0)
1/2.

(Our standard notation has a0 = 1.)

Λ-dominated flat universe: k = 0, ρ = ρΛ

(

ȧ

a

)2

=
8πG

3
ρΛ.

Since ȧ ∝ a, solution is exponential growth:

a = a0e
t/tH , tH =

(

8πGρΛ

3

)

−1/2

.

Solutions of the Friedmann equation: two component universe

Matter + curvature

We have previously written the Friedmann equation in the forms

(

ȧ

a

)2

−
8πG

3
ρ +

kc2

a2R2
0

= 0

and

H2(1 − Ω) =
−kc2

a2R2
0

.

Evaluating the second equation at a = a0 = 1 gives

(1 − Ω0) =
−kc2

R2
0H

2
0

,

which we can use to change the R0 dependence in the first form to an Ω0 dependence.
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For a matter-dominated universe (with or without curvature),

ρ = ρ0a
−3 = Ω0

3H2
0

8πG
a−3,

allowing the Friedmann equation to be written

H2 − Ω0H
2
0a−3 + H2

0 (Ω0 − 1)a−2 = 0,

or
H2

H2
0

= Ω0a
−3 + (1 − Ω0)a

−2.

We see that for Ω0 > 1, H becomes zero at the “turnaround” epoch

amax =
Ω0

Ω0 − 1
.

For Ω0 < 1, H does not reach zero, so it cannot change sign; an expanding sub-critical
universe expands forever.

For Ω0 > 1, the solution (which can be verified by direct substitution and a bit of algebra)
can be written in the parametric form

a(θ) =
amax

2
(1 − cos θ),

t(θ) =
amax

2

1

H0(Ω0 − 1)1/2
(θ − sinθ) =

R0

c
×

amax

2
(θ − sinθ) .

Maximum expansion is reached at θ = π, and the universe collapses in a “big crunch” at
θ = 2π.

For Ω0 < 1, define

a∗ =
Ω0

1 − Ω0
,

and the parametric solution is

a(η) =
a∗

2
(cosh η − 1),

t(η) =
a∗

2

1

H0(1 − Ω0)1/2
(sinhη − η) =

R0

c
×

a∗

2
(sinhη − η) .

where η runs from zero to infinity.

At late times (η � 1), the solution approaches a ∝ t as universe enters “free expansion.”

At early times (η � 1, θ � 1), both solutions approach a ∝ t2/3, as for k = 0.
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Matter + Λ

For a flat universe with a cosmological constant, ΩΛ,0 = 1 − Ωm,0, and the Friedmann
equation can be written

H2

H2
0

= Ωm,0a
−3 + (1 − Ωm,0).

For Ωm,0 < 1, ΩΛ,0 > 0, and the matter density and cosmological constant are equal at an
expansion factor

amΛ =

(

Ωm,0

ΩΛ,0

)1/3

.

The relation between time and expansion factor can be written in the cumbersome but
explicit form

H0t =
2

3(1 − Ωm,0)1/2
ln





(

a

amΛ

)3/2

+

(

1 +

(

a

amΛ

)3
)1/2



 .

At early times

a(t) ≈

(

3

2

√

Ωm,0H0t

)2/3

,

like a flat, matter-dominated universe, while at late times

a(t) ≈ amΛ exp(
√

ΩΛ,0H0t),

giving the exponentially expanding solution for a Λ-dominated universe.

Curvature, Destiny, Topology

As the above solution shows, a matter dominated k = +1 universe eventually collapses,
while a matter dominated k = 0 or k = −1 universe expands forever.

This equation of closed geometry with a bound universe and flat/open geometry with an
unbound universe continues to hold if radiation is added.

But vacuum energy can change the picture.

Following the arguments in Problem Set 2, the Friedmann equation can be written in the
form

H2(a) = H2
0

[

Ωφ,0
ρφ(a)

ρφ,0
+ Ωk,0

(a0

a

)2

+ Ωm,0

(a0

a

)3

+ Ωr,0

(a0

a

)4
]

,

where ρφ(a) is the vacuum energy density at expansion factor a and

Ωk,0 = 1 − Ωm,0 − Ωr,0 − Ωφ,0.
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Note that k = +1 corresponds to negative Ωk and vice versa.

For the universe to recollapse, we must have H(a) = 0 at some time in the future (a > a0).

For Ωφ,0 = 0, this

must happen if Ωk < 0

cannot happen if Ωk > 0.

For Ωφ,0 > 0, recollapse can be avoided if ρφ(a)/ρφ,0 falls slower than a−2.

Best guess current parameters are Ωφ,0 ∼ 0.7, |Ωk,0| � 1, ρφ(a) ∼ const., implying that
the universe could be open, flat, or closed, but that expansion forever is likely.

Future recollapse is possible if Ωk,0 < 0 and vacuum energy changes its equation of state
and starts to fall faster than a−2 in the future.

If Ωφ,0 < 0 (a negative vacuum energy is not favored by observations, but it is not obviously
impossible in principle), then one could have an Ωk > 1 (open) universe that recollapses.

GR does not prohibit the universe from having a complex topology, e.g. a toroidal topology
in which heading off in one direction eventually brings you back to where you started.

Thus, in principle, the universe could be negatively curved or flat and still be spatially
finite.

There have been some (unconvincing) claims for periodic redshifts that could be interpreted
as evidence for complex topology.

People are seriously searching for signs of complex topology in the pattern of CMB
anisotropies.
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