
Problem Set 5: Inflation

Due Wednesday, November 21

For parts 1, 2, and 4, we will work at an order-of-magnitude level, so you don’t need to
keep track of factors of 2, π, etc. However, we’ll keep track of these factors in part 3.

Part 1: The Horizon Problem

For a start, assume a standard FRW universe, which at early times is radiation dominated.
Using your result from Problem Sets 3/4 that

t(T ) ≈ 1

(

kT

MeV

)

−2

s, (1)

what is the approximate size dhor(tGUT) of the particle horizon at the time tGUT when the
temperature falls to kT = kTGUT ≈ 1015 GeV, the temperature at which the grand unified
phase transition is expected to occur? Express your answer in light-seconds.

The CMB temperature today is kT ∼ 10−4 eV. Assuming standard FRW cosmology, what
is the physical size of dhor(tGUT) today, accounting for the expansion from t = tGUT to t0?

What is the (approximate) physical distance to the CMB last scattering surface, in light-
seconds? (Remember that eq. [1] only applies to a radiation-dominated universe.) What
is the ratio of this distance to the present day value of dhor(tGUT)?

Now assume that inflation occurs when T ≈ TGUT. During inflation the universe expands
as a(t) ∝ eHt, and the temperature remains at T = TGUT instead of dropping as a−1.
(More accurately, the radiation temperature drops during inflation, but it is restored to
T ≈ TGUT at the end of inflation when the inflaton field decays and converts its energy
into photons and other relativistic particles.)

How many e-folds of inflation are required to solve the horizon problem, i.e., to ensure
that the entire region out to the last scattering surface was in one causally connected
patch before inflation began?

From now on, we will refer to this minimum number of e-folds as Nmin.

Part 2: The Flatness Problem

Suppose that before inflation begins the gravitational and curvature terms in the Fried-
mann equation are of similar order, and therefore

H2
∼

8πG

3
ρ ∼

c2

a2
. (2)

What is the approximate value of the curvature radius a at time tGUT, just before inflation
begins?

If the number of e-folds is the minimum number Nmin required to solve the horizon problem,
what is the curvature radius today?



Is it possible for inflation to solve the horizon problem and still produce a universe with Ω
measurably different from one today? Is it likely for this to happen? (Here Ω represents
the contribution of all energy components — matter, radiation, dark energy — but it does
not include Ωk, since it would then equal one by definition.)

After reheating at the end of inflation, the entropy within the curvature radius is

S ∼

(

kTGUT

h̄c

)3

a3. (3)

What is the value of S assuming the minimum number of e-folds? (Remember that h̄c =
1.97 × 10−5eV − cm.)

Part 3: Constraints on the Initial Conditions

Assume that during inflation, the energy density is dominated by the potential energy
V (φ) of a scalar field φ. As in Problem Set 4, we’ll adopt high energy physics units with
h̄ = c = 1 and G = m−2

Pl
, where mPl = (h̄c/G)1/2 is the Planck mass. The Friedmann

equation during the inflation era is therefore

H2 =
8π

3m2

Pl

V (φ). (4)

Note that H, mPl, and φ have units of GeV and that V (φ) has units of GeV4.

We’ll assume that φ obeys the slow roll condition discussed in class, which is necessary for
inflation to occur. The evolution equation is therefore

3Hφ̇ = −V ′(φ), (5)

where V ′(φ) = dV/dφ.

Assume that φ starts at time ti at some initial value φi and rolls until φ = 0, V (φ) = 0,
at which point inflation ends. Argue that the number of e-folds of inflation during this
evolution is

N =

∫ tend

ti

H(t)dt =

∫ 0

φi

H(φ)dt =
8π
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Pl

∫ φi

0

V (φ)

V ′(φ)
dφ. (6)

(Hint: use the relation between dt, φ̇, and dφ.)

Now assume a specific form for the potential: V (φ) = λφ4, where λ is a dimensionless
“coupling constant.” Show that the necessary condition for obtaining N > Nmin e-folds of
inflation is

φi >

(

Nmin

π

)1/2

mPl. (7)

For the value of Nmin obtained in Part 1, what is the minimum value of φi required to get
enough inflation to solve the horizon problem?



Part 4: Primordial Density Fluctuations

For the V (φ) = λφ4 potential, show that the number of e-folds is

N ∼
H2

λφ2
, (8)

where we have used the approximation that the inflationary epoch is characterized by a
single value of φ ∼ φi and H ∼ H(φi).

Now assume that the rolling scalar field experiences quantum fluctuations of typical mag-
nitude δφ. These fluctuations cause different regions of the universe to expand for slightly
different amounts of time during inflation, with fluctuations δt = δφ/φ̇. Since a ∝ eHt,
these δt fluctuations lead to volume fluctuations δV ∼ (δa)3 ∼ e3Hδt

∼ 3Hδt, where we
have assumed Hδt � 1. The typical density fluctuations present on the horizon scale at
the end of inflation are therefore

δH ∼ Hδt. (9)

(This argument is obviously very rough, and more detailed versions appear in the text-
books, e.g., Peacock or Peebles. Formidably proper treatments can be found in the litera-
ture.)

Since H is the only energy scale in the problem, and we are using units with h̄ = 1, we
can reasonably guess that δφ ∼ H, and a proper quantum field theory calculation shows
this to be true.

Show that

Hδt ∼
H3

V ′
. (10)

Use this result, the result (8) for N , the minimum number of e-folds from Part 1, and the
fact that CMB measurements show δH ∼ 10−5 to derive an upper limit on the dimensionless
coupling constant λ. (Hint: first show that Hδt ∼ λ1/2N3/2.)


