
scicoder.orgSciCoder 2013

Introduction to Python
Demitri Muna

OSU

8 July 2013

Monday, July 8, 13

scicoder.orgSciCoder 2013

Introduction to Python
• No experience with Python is necessary, but we’re

assuming you’ve written programs before.

• Using Python 2.6 or higher. Can test your Python
version with:

• Python 3.0 is out. It breaks some old code (not
much), but most people are still on 2.6/2.7.

• Language is continually being updated and modified.
More libraries are being added, both in the language
and by third parties.

• Try out the examples as we go through them.

% python --version

Monday, July 8, 13

scicoder.orgSciCoder 2013

Hello World
The simplest application:

Run as:
% python hello_world.py

or, make it an executable:
% chmod +x hello_world.py
% hello_world.py

tells OS what to run
the program with

I left space to explain the code, but...

Monday, July 8, 13

scicoder.orgSciCoder 2013

#!/usr/bin/python

numbers
a = 42
b = 12 + 45

numeric types
c = 3
d = 3L
e = 027
f = 027.
g = 10j
h = conplex(3,5)
print h.real, h.imag

print 10/3

Numbers

Assigning variables, familiar syntax.

Numeric types
integer
long integer
octal (base 8)
decimal
complex

Don’t write numbers with leading zeros --
they become octal!

Append a “j” to a number to make it
complex (engineers use “j”, physicists use “i”
for).

comment
in Python

“long” integers
can be any length!

p
�1

Note: this
behavior will
change in the
future (see
truncating
division).

Monday, July 8, 13

scicoder.orgSciCoder 2013

Numbers
Python operators: exponent

import

This command makes an external package
available for additional functionality. This
one is built into Python.

Note the format of
moduleName.value (or function)

(This keeps the runtime light since you
are only loading the functionality that you
use.)

You will get a different result running on a
32-bit vs a 64-bit machine (something to
be aware of when running your code in
different places.)

same, but only use !=

bitwise operators

truncating
division modulo

#!/usr/bin/python

import sys

largest integer number on this machine
print sys.maxint

smallest integer on this machine
print -sys.maxint - 1

Monday, July 8, 13

scicoder.orgSciCoder 2013

Truncating Division
In most languages, we expect: 10/3 3 operands are integers, result is an integer

Python 2.x
>>> 10/3
3
>>> 10//3
3
>>> 10./3.
3.3333333333333333
>>> 10/3.
3.3333333333333333

>>> from __future__ import division
>>> 10/3
3.3333333333333333
>>> 10//3
3

Python 3.x
>>> 10/3
3.3333333333333333
>>> 10//3
3

Can’t wait
for Python 3?

In some instances, future features are available in
earlier versions, but need to be turned on.

(we recommend putting
this in all your code)

Monday, July 8, 13

scicoder.orgSciCoder 2013

Boolean Values

Boolean values (True/False)
are native types in Python.

The capitalization is
important.

success = True
didFail = False

a = true!# invalid syntax
b = FALSE! # also invalid

Monday, July 8, 13

scicoder.orgSciCoder 2013

this form
time = "It's five o'clock."

is better than
time = 'It\'s five \'oclock.'

a = "Ray, when someone asks you \
if you're a god, you say, 'Yes!'"

b = "Roads? Where we're going, " +
! "we don't need roads."
!
c = "line 1" + "\n" + "line 2"

d = '''this is
all a single string
with the linefeeds included.'''

e = "col 1" + "\t" + "col 2"

Strings

Strings can be delimited using
single quotes, double quotes, or
triple quotes. Use whatever is
convenient to avoid having to
escape quote characters with a
“\”.

Strings can be joined together
with the “+” operator.

Triple quotes are special in that
they let you span multiple lines.
Can be three single quotes or
three double quotes.

newline

tab

Monday, July 8, 13

scicoder.orgSciCoder 2013

None

None is a special value that
indicates null. Use this, for
example, to indicate a variable has
not yet been set or has no value
rather than some number that has
to be “interpreted”.

don't do this:

mass = -1 # -1 means that
! ! # the mass has not
! ! # yet been set
if mass == -1: # ...

do this instead

mass = None

if mass == None: # ...

Monday, July 8, 13

scicoder.orgSciCoder 2013

Lists
Can mix types
Mutable
Lists, as proper OO objects, have built-in methods.

Containers – Tuples and Lists
Tuples
Groups of items
Can mix types
Can’t be changed once created (immutable)

Slices

a = [5,3,6,True,[210,220,'a'],5]
b = list() # new, empty list

add items to a list
b.append(86)
b.append(99)

print len(b) # number of items in b

a.sort() # sort elements in place
a.reverse() # reverse elements in place
a.count(5) # number of times "5" appears in list

print a.sort() # returs "None"
print sorted(a) # does not modify a
print sorted(a, reverse=True) # reverse order

a = (1,2,3)
b = tuple() # empty tuple
c = ('a', 1, 3.0, None)

a = ['a', 'b', 'c', 'd', 'e', 'f']
print a[3:5] # ['d', 'e'], 4th up to 5th item (not inclusive)
print a[-1] # last item ('f')
print a[:3] # first three items: ['a', 'b', 'c']
print a[2:] # all items from 3rd to end: ['c', 'd', 'e', 'f']
print a[:] # whole list

Monday, July 8, 13

scicoder.orgSciCoder 2013

a = [100, 365, 1600, 24]

a[0] # first item
a[3] # 4th item

ages = dict()
ages['Lisa'] = 8
ages['Bart'] = 10
ages['Homer'] = 38

len(ages) # no. of items in dictionary

ages.keys() # all keys as a list
ages.values() # all values as a list
del ages['Lisa'] # removes item
ages.has_key('Marge') # returns False
ages.clear() # removes all values

ages = {'Lisa':8, 'Bart':10, 'Homer':38}

Containers – Dictionaries
Dictionaries
A group of items that are accessed by a value.

Lists are accessed by index - the
order is important. To access a
given item, you have to know
where it is or search for it.

A lot of data isn’t inherently ordered. Takes
ages of people in a family. You don’t think

“Bart was the third one born, so must be 10.”
You mentally map the name to the age.

ages[key] = value

dictionary
name

can be almost any type - numbers,
strings, objects (but not lists)

can be any type

Dictionaries are not ordered. You can
iterate over them, but the items can be returned in
any order (and it won’t even be the same twice).

shorthand method of creating a dictionary

Note: Called hashes or associative arrays
in Perl, available as std::map in C++.

(Compare this idea to the everything box...)

Monday, July 8, 13

scicoder.orgSciCoder 2013

Control Structures
In C, we delineate blocks of code

with braces – whitespace is
unimportant (but good style).

In Python, the whitespace is
the only way to delineate

blocks (because it’s good style).

You can use tabs or spaces to create the indentation, but you cannot mix the two.
Decide which way you want to do it and stick to it. People debate which to use
(and if you can be swayed, I highly recommend tabs).

C/C++

Python

Example:
Given an
array a of 10
values, print
each value
on a line.

Can be anything in the list, and
can create them on the fly:

for Loops void my_c_function {
 # function code here
}

for simpson in ages.keys():
 print simpson + " is " + ages[simpson] + "years old"

a = 12 # this is outside of the loop

given a list of 10 values
for (int i=0;i<10;i++) {
 value = a[i]
 printf ("%d", value)
}

for value in a:
 print value

for string in ['E', 'A', 'D', 'G', 'B', 'e']:
! # do something

Monday, July 8, 13

scicoder.orgSciCoder 2013

Control Structures
If you do need an index in the loop: if statement

expressions are
Boolean statements

while loop

useful for debugging; set
to False when done

a = ['a', 'b', 'c', 'd', 'e']:
for index, item in enumerate(a):
 print index, item

Output
0 a
1 b
2 c
3 d
4 e

if expression1:
 # statement 1
 # statement 2
elif expression2:
 pass
elif expression3:
 ...
else:
 statement 3
 statement n

How many times is this
number divisible by 2?
value = 82688
count = 0
while not (value % 2):
 count = count + 1
 value = value / 2
 print value
print count

if True:
 # debug statements

Monday, July 8, 13

scicoder.orgSciCoder 2013

a = 12.4 # type is float (f)
b = 5 # type is integer (d = decimal)

print "The value of a is: %f" % a
print "The value of a is %f and the value of b is %d" % (a,b)

Format float output:
print "The value of a is: %.3f" % a # three decimal places

a = 12.2
b = 5
c = [a,b,42]
dict = {"tiger":"Hobbes", "boy":"Calvin", "philosopher":"Bacon"}

print "The value of a is: {0}".format(a)
print "The value of a is {0} and the value of b is {1}".format(a,b)
print "First and second elements of array: {0[0]}, {0[1]}".format(c)
print "A {0[boy]} and his {0[tiger]}.".format(dict)
print "Formatted to two decimal places: {0:.2f}, {1:.2f}".format(a, b)
print "Pad value to 10 characters: {0:10}".format(a)
print "Cast value to string: {0!s}".format(a) # same as ...format(str(a))

Printing Variables
format method on strings

first item in format list second item

this is a tuple

This is standard
printf style

formatting - google
“printf format” for

examples

Deprecated older ‘%’ style, shown since you’ll come across it:

Note the need for parentheses
with more than one value.

Monday, July 8, 13

scicoder.orgSciCoder 2013

filename = "rc3_catalog.txt"
f = open(filename)
rc3_catalog_file = open(filename)
read file
rc3_catalog_file.close()

Files
bad style - be

descriptive in your
variable names!

Open a file

The actual filename is an input to your program. Try to abstract your inputs and place them
at the top of the file.

Code defensively – what if the file isn’t there? You’ll be surprised how much time this will
save you.

• Minimize how much you put in the try: block.
• Determine what the error is by making the code fail in a simple program.

try:
 rc3_catalog_file = open(filename)
except IOError:
 print "Error: file '{0}' could not be opened.".format(filename)
 sys.exit(1)

Monday, July 8, 13

scicoder.orgSciCoder 2013

for line in rc3_catalog_file:
 if line[0] == '#':
 continue
 line.rstrip("\n")
 values = line.split()
rc3_catalog_file.close()

Files

Read over all of the
lines in the file:

skip lines that begin with a ‘#’

strip the newline character
from each line (split also

removes \n)

separate the values by whitespace
and return as an array

Write to another file: output_file = open("output_file", "w")
output_file.write(a,b)
output_file.close()

Monday, July 8, 13

scicoder.orgSciCoder 2013

try/except

You don’t have to exit from an error –
use this construct to recover from
errors and continue.

import sys

a = 1
b = 0

print a / b

Result:
ZeroDivisonError: integer division or modulo by zero
try:
 c = a / b
except ZeroDivisionError:
 print "Hey, you can't divide by zero!"
 sys.exit(1) # exit with a value of 0 for no error, 1 for error

try:
 c = a / b
except ZeroDivisionError:
 c = 0

continues

check if a dictionary has
a given key defined
try:
 d["host"]
except KeyError:
 d["host"] = localhost

Although, this command does the same thing:
d.get("host", "locahost")

Monday, July 8, 13

scicoder.orgSciCoder 2013

try/except

(From the Python documentation.)

provides the opportunity
to clean up anything
previously set up –

always called

called only when
try succeeds

Monday, July 8, 13

scicoder.orgSciCoder 2013

with

A common pattern:

set things up
try:
! # do something
except SomeError:
! # handle error
else:
! # if no error occurred
finally:
! # clean up regardles of path

datafile = open("filename.txt")
try:
! data = datafile.read()
except SomeError:
! # handle error
finally:
! datafile.close()

want to close file
whether there was

an error or not

with open("filename.txt") as file:
! data = file.read()

Example:

• The file is automatically closed at the end of the
block, even if there was an error.

• The file is only defined in the block.
• This extra functionality is built into the object.
• The with statement isn’t that common, and it’s not

trivial to write your own. But there are times it’s
useful.

Monday, July 8, 13

scicoder.orgSciCoder 2013

Casting

Where appropriate, you can covert between types:

Other examples:

a = "1234" # this is a string
b = int(a) # convert to an integer

but to be safer...

try:
 b = int(a)
except ValueError:
 b = None

a = '12.3e4'

print float(a) # 123000.0

print complex(a) # (123000+0j)

#print int(a) # ValueError

print int(float(a)) # 123000

print bool(a) # True

print str(complex(a)) # (123000+0j)

Monday, July 8, 13

scicoder.orgSciCoder 2013

my_values = list()
some code to populate my_values

assert len(my_values) > 1, "my_values was empty!"
for i in my_values:
 # do stuff

Code Defensively – asserts
As your program runs, you make certain assumptions about your code. For example, we
have an array that some process fills, and we assume it won’t be empty.

If my_values is
empty, this loop is
skipped silently.

If this fails, then
the exception

AssertionError is
thrown and this

message is
printed out.

Be liberal with assert statements - they cost nothing. When your script is ready for
production use, you can turn them off in two ways:

% python -O myScript.py

command lineheader in file

Can perform more than one check:

#!/usr/bin/python -O

assert a > 10 and b < 20, "Values out of range."

Monday, July 8, 13

scicoder.orgSciCoder 2013

[myFunction(x) for x in a]

List Comprehension

Take the numbers 1-10 and create an array that contains the square of those values.

}
Using list comprehension

Using a for loop

One of the nicest
features of Python!

List comprehension
generates a new list.

Can also filter at the same time: Convert data types:

Call a function for each item in a list:

can ignore return value (which is a list)

a = range(1,10+1)

a2 = list()
for x in a:
! a2.append(x**2)

a2 = [x**2 for x in a]

read from a file
a = ['234', '345', '42', '73', '71']
a = [int(x) for x in a]

a = range(1,50+1)
even numbers only
b = [x for x in a if x % 2 == 0]

Monday, July 8, 13

scicoder.orgSciCoder 2013

def myFormula(a=1, b=2, c=3, d=4):
 ''' formula: (2a + b) / (c - d) '''
 return (2*a + b) / (c - d)

print myFormula(b=12, d=4, c=5)

def myFormula(a, b, c, d):
 ''' formula: (2a + b) / (c - d) '''
 return (2*a + b) / (c - d)

Functions / Methods
Useful math tools:document function with

triple-quoted string

indent as with loops

can set default values on
some, all, or no parameters

If a default value is set, you don’t have to call it at all.

Note order doesn’t matter when
using the names (preferred method).

import math

constants
a = math.pi
b = math.e

c = float("+inf")
d = float("-inf")
e = float("inf")
f = float("nan") # not a number

def myFormula(a, b, c, d):
! ''' formula: (2a + b) / (c - d) '''
! num = 2 * a + b
! den = c - d
! try:
! return num/den
! except ZeroDivisionError:
! return float("inf")

tests
math.isnan(a)
math.isinf(b)

Monday, July 8, 13

scicoder.orgSciCoder 2013

def myFunction3(*args, **kwargs):
 print "ok"

myFunction3()
myFunction3(1, 2, name="Zaphod")
myFunction3(name="Zaphod")
myFunction3(name="Zaphod", 1, True)

def myFunction2(**kwargs):
 for key in kwargs.keys():
 print "Value for key '{0}': {1}".format(key, kwargs[key])

myFunction2(name="Zaphod", heads=2, arms=3, president=True)

Output:
Value for key 'president': True
Value for key 'heads': 2
Value for key 'name': Zaphod
Value for key 'arms': 3

def myFunction(*args):
 for index, arg in enumerate(args):
 print "This is argument {0}: {1}".format(index+1, str(args[index]))

myFunction('a', None, True)

Output:
This is argument 1: a
This is argument 2: None
This is argument 3: True

Functions / Methods
Passing parameters into function / methods.

Accepts any number of
arguments (of any type!)Unlike C/C++, the

parameter list is dynamic,
i.e. you don’t have to know
what it will be when you
write the code.

You can also require that
all parameters be specified
by keywords (kwargs).

Note two ‘**’ here vs. one above.

kwargs = keyword arguments

Note the output order is not the
same (since it’s a dictionary).

Can be mixed:

Invalid - named arguments
must follow non-named
arguments (as defined).

zero args are ok

Monday, July 8, 13

scicoder.orgSciCoder 2013

range(10) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(10,20) # [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
range(10,20,2) # [10, 12, 14, 16, 18]

Odds and Ends
Range

(start, stop, step) - step can only be an integer

useful in loops

Objects and Copies

Does not make a
copy – these are
the same objects!

Copies all of the
items into a new

object.

generate ranges in non-integer steps[x * 0.1 for x in range(0,10)]

ages = {'Lisa':8, 'Bart':10, 'Homer':38}
simpsons = ages
ages['Bart'] = 9
print simpsons['Bart'] # output: 9

ages = {'Lisa':8, 'Bart':10, 'Homer':38}
simpsons = ages.copy()
ages['Bart'] = 9
print simpsons['Bart'] # output: 10

simpsons = dict(ages) # also makes a copy

Monday, July 8, 13

scicoder.orgSciCoder 2013

class Circle(Shape):

 radius = 0.0

 def __init__(self, r=0.0):
 self.radius = r

 def area(self):
 return math.pi * self.radius *
self.radius

 def __add__(self, other):
 c = Circle()
 c.radius = self.radius + other.radius

c1 = Circle(r=5)
c2 = Circle(r=10)
c3 = c1 + c2

print c3.radius # Result: 15

Odds and Ends
The in operator: Create Strings from Lists with a Delimiter

Operator Overloading
We know ‘+’ adds two
numbers, but it also “adds”
two strings together. We
can define that operator to
mean custom things to our
own objects.

(This is a powerful feature!)

added a new
init method
that takes a
radius

radius is
optional

override +
operator

now we can add two
Circle objects together
to create a new Circle

a = ['a', 'b', 'c', 'd', 'e', 'f']
print 'a' in a # True
print 'x' not in a # True

strings = ['E', 'A', 'D', 'G', 'B', 'e']
print "|".join(strings)
Output: E|A|D|G|B|e

Monday, July 8, 13

scicoder.orgSciCoder 2013

Further Reading
This is a great reference for Python. Keep this bookmark handy.

http://rgruet.free.fr/PQR27/PQR2.7.html

Several people have emailed me this – it’s also a good introduction.

http://www.greenteapress.com/thinkpython/thinkCSpy/html/

This web page has over one hundred “hidden” or less commonly known features or tricks. It’s
worth reviewing this page at some point. Many will be beyond what you need and be CS
esoteric, but lots are useful. StackOverflow is also a great web site for specific programming
questions.

http://stackoverflow.com/questions/101268/hidden-features-of-python

And, of course, the official Python documentation:

http://docs.python.org

Finally, if you are not familiar with how computers store numbers, this is mandatory reading:

http://docs.python.org/tutorial/floatingpoint.html

Monday, July 8, 13

http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python
http://stackoverflow.com/questions/101268/hidden-features-of-python

