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FFTs and Their Applications

Reference: Numerical Recipes, Chapters 12 and 13. Specifically, you should read 12.0-12.2,
glance through other sections of 12, and read 13.0-13.2.

The classic (and good) reference on Fourier Transforms is Ronald Bracewell’s book, The
Fourier Transform and Its Applications.

Googling python fft documentation is also useful.

Definitions

I will mostly use the NR notation, but not always.

If h(t) is a function of time, then its Fourier transform is

H(f) =

∫
∞

−∞

h(t)e2πiftdt.

We can recover h(t) from H(f) by applying an inverse Fourier transform,

h(t) =

∫
∞

−∞

H(f)e−2πiftdt,

i.e., just change the sign in the exponent.

If t is a time in sec, then f is a frequency in sec−1 (Hz).

Another common notation is to write the FT of f(x) as

f̃(k) =

∫
∞

−∞

f(x)e2πikxdx.

This is common when x is a unit of length, in which case the wavenumber k has units of
inverse length.

Caution: Other Fourier conventions are frequently used, such as

H(ω) =

∫
∞

−∞

h(t)eiωtdt, h(t) =
1

2π

∫
∞

−∞

H(ω)e−iωtdt.

The NR convention (2π in the exponent) is standard for numerical FTs, and it leaves you
with less to remember.

However, you always have to check Fourier conventions when comparing to or using papers
or books, and figuring out the conversions can be a pain.

If you use Fourier transforms in a paper, make clear what convention you are using.

1



A8824: Numerical Methods Notes David Weinberg, 2017

Why are Fourier transforms so useful?

Physical description is sometimes more natural in the Fourier domain.

Some mathematical operations (e.g., solving some differential equations) are easier in the
Fourier domain, or it may be possible to apply an approximate solution to modes of long
or short wavelength.

Periodic signals are often interesting. FT can be an efficient way to look for them.

Some numerical operations can be done much faster via FFT if the number of data points
N is large.

For example, convolution is an operation O(N2) if done directly for two functions of length
N . (Sometimes the response function is much shorter than the function being convolved,
in which case the scaling is only O(NdataNresponse).)

But the FFT can be computed in O(N log2 N) time, which may be orders-of-magnitude
less.

Decomposition, identities

Recall that e2πift = cos(2πft) + i sin(2πft).

The FT relation expresses a decomposition of the function h(t) into a sum (integral in the
continuous case) of sinusoidal functions.

The sinusoidal basis is complete and orthogonal. Any function can be decomposed this
way, and different modes are independent, in that, for positive integers m, n:

∫ π

−π

cosnx cosmxdx = πδmn,

∫ π

−π

sinnx sinmxdx = πδmn,

∫ π

−π

cosnx sinmxdx = 0.

In general, a Fourier transform maps a complex function into another complex function.

If h(t) is real, then

H(f) =

∫
∞

−∞

cos(2πft) h(t)dt+ i

∫
∞

−∞

sin(2πft) h(t)dt

is Hermitian, H(f) = [H(−f)]∗, because cosine is an even function and sine is an odd
function.

If h(t) is real and symmetric about zero then H(f) is real (see NR for other symmetries).
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Other useful identities:

If h(t) and H(f) are an FT pair then

h(at) is a Fourier transform pair with
1

|a|
H(f/a).

If a function is narrow in the time domain, then its Fourier transform is broad in the
frequency domain, and vice versa.

For example (a useful one), with our Fourier convention, the FT of a time-domain Gaussian

e−t2/2σ2

t is a frequency-domain Gaussian e−2π2σ2

t f
2

= e−f2/2σ2

f with σf = 1/(2πσt).

With the H(ω) convention, σω = 1/σt.

A shift of origin in the time domain is equivalent to shifting the complex phase in the
Fourier domain,

h(t− t0) is a Fourier transform pair with H(f)e2πift0.

The FT is a linear operation, so the FT of a linear combination of functions is the linear
combination of their FTs.

The Convolution Theorem

The convolution of functions g and h is

g ∗ h ≡

∫
∞

−∞

g(τ)h(t− τ)dτ.

The FT of g ∗ h is G(f)H(f), i.e., the Fourier transform of the convolution is the product
of the Fourier transforms.

Nyquist frequency, aliasing

If a function is tabulated at discrete, evenly spaced locations with separation ∆, then the
highest frequency Fourier component that can be represented is one with critical frequency

fc =
1

2∆
,

known as the Nyquist frequency.

A Nyquist frequency sine wave is sampled with two points per cycle.

If the function h(t) is bandwidth limited, with the amplitude of all Fourier modes with
f > fc equal to zero, then the sampled values at spacing ∆ are enough to compute h(t)
exactly at any point using sinc interpolation (NR eq. 12.1.3).

This is a remarkable fact, and a useful one, e.g., for reconstructing a time series or shifting
images to register them IF the PSF is fully sampled.
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However, if it has power at f > fc, then that power will spuriously contaminate Fourier
modes with f < fc.

This is known as aliasing.

One-Dimensional Fast Fourier Transform

Suppose that we have a function h(t) tabulated on a grid of N evenly spaced values.

An FFT is an efficient algorithm for computing the discrete Fourier transform, the sum

Hn ≡

N−1∑

k=0

hke
2πi kn/N ,

for all values n = −N/2 to N/2.

In this notation, k is indexing time or position values; n represents frequency or wavenum-
ber.

Naively, it looks like computing this for all n should be an O(N2) operation.

The FFT uses the fact that a discrete Fourier transform of length N can be written as a
sum of two discrete Fourier transforms of length N/2.

This rule can be applied recursively to turn computing the Fourier transform into an
O(N log2 N) operation, vastly more efficient.

In practice, instead of n running from −N/2 to N/2, it runs from 0 to N − 1. The 0 value
represents zero frequency n = 0, the values 1 ≤ n ≤ N/2 − 1 correspond to frequencies
0 < f < fc, the values N/2 + 1 ≤ n ≤ N − 1 correspond to −fc < f < 0, and the value
n = N/2 corresponds to both f = fc and f = −fc.

Here fc = N/2 is the critical or Nyquist frequency, the maximum frequency that can be
represented by N evenly spaced values of the function.

From the above equation, one can see that for n = N/2

Hn =
∑

hk

(
eiπ

)k
=

∑
hk(−1)k =

∑
hk

(
e−iπ

)k
= H−n.

The discrete inverse Fourier transform is

hk =
1

N

N−1∑

n=0

Hne
−2πi kn/N .

A forward transform followed by an inverse transform returns the original data values hk.

Some FFTs have a different normalization convention, so that there is no 1/N and a
forward-then-inverse transform returns the original values multiplied by N .

In general, be careful about normalization issues and about which order the data are stored
in. You will typically need to do some experimentation to make sure you have everything
right.
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One-dimensional Real-Valued FFT

An FFT transforms an array of complex numbers to another array of complex numbers.

If you want to Fourier transform an array of real numbers, you can just set the imaginary
parts to zero before applying a regular FFT.

The outputs will be complex numbers, but they will satisfy the Hermitian conditionH(f) =
H∗(−f), so they still contain only N pieces of information.

This strategy is fine if you are not strained for cpu time or memory, but it is clearly wasting
some calculational energy, and it requires your array to be twice as long as it really needs
to be.

A real-to-complex FFT routine takes a real array and returns the independent values of
the Fourier transform.

This is especially valuable when you get to multi-dimensional FFTs, whose storage re-
quirements scale as Nndim .

In python, try

load numpy as np

x=np.random.random(8)

y=np.fft.fft(x)

y

z=np.fft.ifft(y)

z

You’ll notice that while you started with a real array x, the FT y is complex, and z is also
complex (but with zero imaginary values).

Then change np.fft.fft to np.fft.rfft and np.fft.ifft to np.fft.irfft.

Multi-dimensional FFT

A 2-dimensional FFT is

H(n1, n2) ≡

N2−1∑

k2=0

N1−1∑

k1=0

e2πi k2n2/N2e2πi k1n1/N1h(k1, k2).

N-dimensional FFTs can be computed by repeated applications of 1-d FFTs, with a fair
amount of bookkeeping.

It is generally easiest to use a routine specifically written for multi-dimensional FFTs.

If you are starting with a real array, you should try to use a real-to-complex routine to
save memory.

Pay careful attention to how the data are stored — this may be different from one routine
to another, and it is the trickiest thing to figure out.
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Calculating gravitational accelerations by FFT

Computing gravitational potentials is an interesting special case of convolution.

Suppose we want to compute the gravitational forces in a system of N bodies, where N
might be very large (106 − 109, say) to represent a galaxy or a large cosmological volume.

A naive calculation of

aj =
N∑

i=1

−
Gmirij

r3ij

is O(N2) for N particles.

Impossible to do large N . Need more efficient method.

One approach:

∇2φ = 4πGρ

φ(r) =

∫
φ̃(k)e−2πik·rd3k,

where

φ̃(k) =

∫
φ(r)e2πik·rd3r

is the Fourier transform of φ.

~∇φ = −2πik

∫
φ̃(k)e−2πik·rd3k

∇2φ = −4π2k2
∫

φ̃(k)e−2πik·rd3k.

Hence 4πGρ(r) = ∇2φ(r) implies

4πG

∫
ρ̃(k)e−2πik·rd3k = −4π2k2

∫
φ̃(k)e−2πik·rd3k,

implying

φ̃(k) = −
G

πk2
ρ̃(k).

This can be a very efficient means of computing the gravitational potential because of
numerically efficient Fourier transform routines.

Basic scheme:

Compute ρ(x, y, z) on grid from particle distribution by interpolation.

Compute ρ̃(kx, ky, kz) by FFT, then φ̃ from above equation.

Inverse FFT to get φ(x, y, z).

Numerically differentiate φ(x, y, z) to get accelerations.
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There are various subtleties about how to do the differentiation, and about the best choice
of “Green’s function” (which may not be simply 1/k2).

Forces are automatically softened (relative to 1/r2) on the scale of grid cell.

If this is adequate force resolution, then the FFT method is very efficient.

The FFT method naturally imposes a periodic boundary condition, which is sometimes
desirable (e.g., a cosmological volume) and sometimes not (e.g., a galaxy merger).

FFTW

The best library of routines for high-performance FFTs is probably FFTW, “The Fastest
Fourier Transform in the West,” freely available from www.fftw.org.

The FFTW routines analyze your machine to decide what algorithm will actually run
fastest on your available hardware.

Equally important, the library includes multi-dimensional FFTs, real-to-complex FFTs,
and works with any dimension of array, not just powers of 2.

You will probably get the best performance if you use array sizes that are multiples of
powers of 2, 3, and 5.

There is a pyfftw package that supposedly uses fftw implementations with python wrap-
pers so that they are called like the numpy.fft routines.

I have not investigated these, and I do not know how the pyfftw routines compare to the
numpy.fft routines for speed.

If you’re working in python, my advice is start with numpy.fft and investigate pyfftw if
you need more speed.

If you’re working in C or fortran, you may want to use FFTW routines (which are in C)
directly.
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