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Astronomy 8824: Statistics Notes 3
Correlated errors, χ2, Gaussian Likelihood, MCMC

Bivariate and Multivariate Gaussians

(Ivezic §§3.5.2-3.5.4)

Suppose we have two independent variables x and y drawn from Gaussian distributions of
width σx and σy. The joint distribution p(x, y) = p(x)p(y) is a bivariate Gaussian, and
the values of x and y are uncorrelated:

〈(x− µx)(y − µy)〉 = 0.

If we now consider
x′ = x cosα − ysinα

y′ = xsinα+ y cosα

then we “rotate” the distribution by angle α. The distribution p(x′, y′) is still a bivariate
Gaussian, but now the values of x′ and y′ are correlated.

If we have a number of random variables yi, i = 1...M , which we combine into a vector y,
then the covariance matrix is

Cij = 〈(yi − 〈yi〉)(yj − 〈yj〉)〉 .

If the distribution p(y) is a multivariate Gaussian then

p(y) =
1

(2π)M/2
√

det(C)
exp

(

−
1

2
∆yiC

−1
ij ∆yj

)

,

where ∆yi = yi − 〈yi〉, C
−1
ij is the inverse covariance matrix and I have used the Einstein

summation convention: repeated indices (i, j in this case) are automatically summed over.

This can also be written in vector/matrix notation.

Correlated Errors: Observables and Parameters

Sometimes the errors on data points are correlated.

For example, there may be a calibration uncertainty that affects many data points in
the same way. For galaxy clustering statistics, measurement errors at different scales are
usually correlated.

Even if the errors on data points are uncalibrated, the errors on parameters derived from a
multi-parameter fit to the data (e.g., the slope and amplitude of a line) are often correlated,
unless one has deliberately constructed parameters that have uncorrelated errors.

It is also possible to have correlated errors on data and uncorrelated errors on parameters,
though this is less generic than the reverse case.
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Gaussian Likelihoods and χ2

If we have uncorrelated, Gaussian errors on observables y and a model that predicts yk =
ymod(xk) then the likelihood is L ∝ e−χ2/2 where

χ2 =
∑

k

(∆yk)
2

σ2
k

with ∆yk = yk − ymod(xk).

However, if the errors are correlated then we instead have

χ2 = ∆ykC
−1
kl ∆yl.

The two definitions coincide for a diagonal covariance matrix Ckl = σ2
kδkl, in which case

C−1
kl = δklσ

−2
k .

Parameter Errors in a Maximum Likelihood (or MAP) Estimate

(Ivezic section 4.2.5.)

For a Gaussian probability distribution p(x) = (2πσ2)−1/2e−(x−µ)2/2σ2

,

ln p = −
1

2

(x− µ)2

σ2
+ const.

Suppose we have estimated a parameter θ by maximizing either the likelihood L or the
posterior probabiliity Lp. The first derivative vanishes at the maximum, so a Taylor
expansion gives

lnL ≈ lnL0 +
1

2

(

∂2 lnL

∂θ2

)

(θ − θ0)
2 ,

where θ0 is the location of the maximum.

Identifying the two equations, we infer that if L(θ) is adequately described by this Taylor
expansion, the 1σ error on θ is

σθ =

(

−
∂2 lnL

∂θ2

)−1/2

,

where the derivative is evaluated at the maximum.

For the more general case of a vector of parameters θi, we can define the second-derivative
matrix

Hjk = −
∂2 lnL

∂θj∂θk
,

which is sometimes called the Hessian matrix or curvature matrix (though terminology
and notation are not standard).

2



A8824: Statistics Notes David Weinberg, 2017

One can approximate the log-likelihood as a multi-dimensional paraboloid near its max-
imum, to find that the likelihood itself is a multi-dimensional Gaussian with covariance
matrix

Cov(θj , θk) = σjk = H−1
jk

Here (σii)
1/2 is the error on parameter θi marginalized over uncertainties in other param-

eters.

If σjk 6= 0 for some j 6= k then the uncertainties on parameters θj and θk are correlated.

The expression in Ivezic equation (4.6) is different (it takes the reciprocal of matrix elements
instead of the inverse of the matrix), but I think it is incorrect for the case where Hjk is
not diagonal (and I think I even confirmed this with Ivezic). When Hjk is diagonal, the
two definitions are the same.

I have phrased this discussion in terms of likelihood, but it could equally well be phrased in
terms of posterior probability: the log of the posterior probability can also be approximated
as a paraboloid about its maximum, and one would just substitute Pposterior for L in the
expressions.

Notational caution: Whenever I write A−1
jk I mean the jk element of the inverse of matrix

A, not the reciprocal of the jk element of A, which I would write (Ajk)
−1.

Monte Carlo Markov Chains

A fairly common statistical problem is estimating the probability distribution of parameters
in a high-dimensional parameter space.

If the 2nd-order expansion described above is adequate, then one “just” needs to find the
maximum likelihood solution and compute the second-derivatives of the likelihood with
respect to the parameters.

But sometimes this approximation isn’t adequate – a rule-of-thumb that doesn’t always
work is that the parabolic approximation is good when the fractional errors on all of the
parameters are small.

One option is to grid the parameter space finely and compute the posterior probability
at all grid locations within it. Marginal distributions can be computed by summing over
axes.

This approach is robust and therefore shouldn’t be ignored, but it is often computationally
impractical.

For example, we might be trying to determine the constraints from a CMB data set D
on the set of cosmological parameters ~θ = (Ωm, h,Ωb, A, n, τ) that determines the CMB
spectrum in the simplest current cosmological scenario.

There are tools for calculating p(D|~θI), but this calculation might take a few seconds, or
minutes, for each model in the parameter space.

Since the parameter space is six-dimensional, even a relatively coarse grid with 10 points
along each parameter direction over the plausible range requires 106 evaluations of p(D|~θI),
and if we add another two parameters then 106 becomes 108.
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Thus, a naive grid-based evaluation of the likelihood to find best-fit parameters and error
bars may be prohibitively expensive.

Monte Carlo Markov Chains (MCMC) are a useful tool for this kind of problem, and this
approach has taken rapid hold in the cosmology literature.

In effect, MCMC is doing the necessary integrals for marginalization by Monte Carlo
integration.

For details, see the references listed below and the things that they in turn refer to, but
in brief the idea is as follows.

The goal is to map the posterior probability distribution p(~θ|DI) ∝ p(~θ|I)p(D|~θI), in the
neighborhood of its maximum value.

If the prior p(~θ|I) is flat, then we just have p(~θ|DI) ∝ L.

Procedure:

1. Start from a randomly chosen point in the parameter space, ~θ = ~α1.

2. Take a random step to a new position ~α2.

3. If p(~α2|DI) ≥ p(~α1|DI), “accept” the step: add ~α2 to the chain, and substitute
~α2 → ~α1. Return to step 2.

4. If p(~α2|DI) < p(~α1|DI), draw a random number x from a uniform distribution
from 0 to 1. If x < p(~α2|DI)/p(~α1|DI), “accept” the step and proceed as in 3. If
x ≥ p(~α2|DI)/p(~α1|DI), reject the step. Save ~α1 as another (repeated) link on the chain,
and go back to 2.

The chain takes some time to “burn in,” i.e., to reach the neighborhood of the most likely
solutions.

However, once this happens, a “long enough” chain will have a density of points that is
proportional to p(~θ|DI).

To get, for example, the joint pdf of a pair of parameters, one can just make contours of
the density of points in the space of those two parameters. Other “nuisance” parameters
are marginalized over automatically, because the points sample the full space.

If you want to calculate the posterior distribution of some function of the parameters (e.g.,
the age of the Universe, given parameter estimates from the CMB), you can just calculate
that function for all points in the chain, then plot the pdf of the result.

There are numerous technical issues related to determining whether a chain has “con-
verged” (i.e., is fairly sampling the probability distribution), and to choosing steps in a
way that produces fast convergence and good “mixing” (sampling the distribution fairly
with a relatively small number of points).

There is an increasingly extensive literature on MCMC methods. Some starting points are:
Sections 5.8.1 and 5.8.2 of Ivezic et al., and section 15.8 of the 3rd edition of Numerical
Recipes, though this topic wasn’t in the 1st or 2nd edition.

An exceedingly useful and enjoyably written reference is Hogg & Foreman-Mackey (2017,
arXiv:1710.06068). Another that goes a bit further in introducing more advanced methods
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is Sharma (2017, ARAA, 55, 213).

Properly implemented, MCMC should sample tails or multiple modes of a distribution
that are not well described by the Gaussian approximation.

However, if the Gaussian approximation is adequate, then MCMC is not a computationally
efficient way to find the parameter PDF.
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