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Astronomy Statistics Notes

David Weinberg, Fall 2007

Some References

Bayesian Methods

From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics, by T. Loredo

The Promise of Bayesian Inference for Astrophysics, by T. Loredo

both of these are available at http://www.astro.cornell.edu/staff/loredo/bayes/tjl.html

There is substantial overlap between the two articles. The first is more “philosophical” in
orientation, the second more “practical.”

Fitting lines to data

Fits, and especially linear fits, with errors on both axes, extra variance of the data points,
and other complications, by G. D’Agostini, astro-ph/0511182

Monte Carlo Markov Chains

First-Year WMAP Observations: Parameter Estimation Methodology, by L. Verde et al.,
ApJS 148, 195. See §3, especially §3.3.

Analyze This! A cosmological constraint package for CMBEASY, by M. Doran & C. M.
Müller, astro-ph/0311311

General Statistics

Statistics in Theory and Practice, by R. Lupton, Princeton University Press

Probability and Statistics, by M. DeGroot, Addison-Wesley

Statistical Tasks in Astrophysics

Four common statistical tasks:

Parameter estimation

Comparison of hypotheses

“Absolute” evaluation of a hypothesis

Forecasting of errors

Simple example: Data points with error bars.

Parameter estimation: What are slope and amplitude of a power-law fit?

Assumes that power-law description is valid.

Hypothesis comparison: Is a double power-law better than a single power-law?

Hypothesis comparisons are trickier when the number of parameters is different, since one
must decide whether the fit to the data is sufficiently better given the extra freedom in
the more complex model.

A simpler comparison would be single power-law vs. two constant plateaus with a break
at a specified location, both with two parameters.
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Absolute evaluation: Are the data consistent with a power-law?

Absolute assessments of this sort are generally much more problematic than hypothesis
comparisons.

Forecasting of errors: How many more objects, or what reduction of uncertainties, would
allow single and double power-law models to be clearly distinguished?

Need to specify goals, and assumptions about data.

Common need for observing proposals, grant proposals, satellite proposals ...

Complicated example: CMB power spectrum with errors.

Parameter estimation: In a “vanilla” ΛCDM model, what are the best values of Ωm, Ωb,
h, n, and τ?

Often want to combine CMB with other data to break degeneracies, get better constraints.

Hypothesis comparisons: Are data consistent with Ωm = 1? Do they favor inclusion of
space curvature, or gravity waves?

Typically involves comparison of models with different numbers of parameters.

Absolute assessment: Can the restricted, “vanilla” ΛCDM model be rejected?

Forecasting: What constraints or tests could be achieved with a new experiment?

This kind of analysis played a key role in the design and approval of WMAP and Planck.

There is now lots of work along these lines for SNAP, Sunyaev-Zel’dovich surveys.

Warmup

Some Definitions

If p(x) is the probability distribution function (pdf) of a random variable x, then p(x)dx
is the probability that x lies in a small interval dx.

The expectation value of a function y(x) is 〈y(x)〉 =
∫

∞

−∞
y(x)p(x)dx.

The distribution mean is µ = 〈x〉 =
∫

∞

−∞
xp(x)dx.

The variance is V (x) =
〈

(x − µ)2
〉

≡ σ2.

The standard deviation is σ =
√

σ2. This is also called the dispersion.

For independent random variables y1, y2, ... yN (drawn from the same distribution or
different distributions), the variance of the sum is the sum of the variances:

V (y1 + y2 + ...yN) =
∑

i=1,N

V (yi).

This can be proved by induction.

Some Simple Estimators

Suppose we have N independent data points drawn from an unknown distribution p(x).
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The obvious estimator for the mean of the distribution is the sample mean, x = 1

N

∑

xi.

〈x〉 =

〈

1

N

∑

xi

〉

=
1

N

∑

〈xi〉 = µ.

Thus, the sample mean is an unbiased estimator of µ.

The variance of this estimator is

〈

(x − µ)2
〉

= V

(

1

N

∑

xi

)

=
1

N2
V

(

∑

xi

)

=
1

N2

∑

V (xi) =
1

N2
× Nσ2 =

σ2

N
,

where σ2 is the variance of the underlying distribution.

We have used the fact that 〈x〉 = µ, and we have used the assumed independence of the
xi to go from the variance of a sum to a sum of variances.

An alternative estimator for the mean is the value of the third sample member, x3.

Since 〈x3〉 = µ, this estimator is unbiased, but V (x3) = σ2, so this estimate is noisier than
the sample mean by

√
N .

A more reasonable estimator is the sample median, though this is a biased estimator if
p(x) is asymmetric about the mean.

If p(x) is Gaussian, then the variance of the sample median is π
2

σ2

N , so it is a less efficient

estimator than the sample mean.

However, if p(x) has long non-Gaussian tails, then the median may be a much more efficient
estimator of the true mean (i.e., giving a more accurate answer for a fixed number of data
points), since it is not sensitive to rare large or small values.

Estimators that are insensitive to the extremes of a distribution are often called robust

estimators.

The obvious estimator for the variance of the distribution is the sample variance

s2 =
1

N

∑

(xi − x)2 =
1

N

∑

x2

i − x2.

However, a short derivation shows that

〈

s2
〉

=
N − 1

N
σ2,

biased low because we had to use the sample mean rather than the true mean, which on
average drives down the variance.

An unbiased estimator is therefore

σ̂2 =
1

N − 1

∑

(xi − x)2.
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If you compute the mean of a sample, or of data values in a bin, the estimated standard

deviation of the mean is

σ̂µ =

[

1

N(N − 1)

∑

(xi − x)2
]1/2

.

Note that this is smaller by N−1/2 than the estimate of the dispersion within the bin. You
should always be clear which quantity (dispersion or standard deviation of the mean) you
are plotting.

If p(x) is Gaussian, then the distribution of x/σ is a Gaussian of width N−1/2. However,
the distribution of x/σ̂ is broader (a Student’s t distribution).

What is wrong with this plot?

Bayesian Statistics

Suppose we have measured the mean mass of a sample of G stars, by some method, and
say: at the 68% confidence level the mean mass of G stars is a ± b. What does this
statement mean?

Bayesian answer: There is some true mean mass α of G stars, and there is a 68% probability
that a − b ≤ α ≤ a + b.

More pedantically: The hypothesis that the true mean mass α of G stars lies in the range
a − b to a + b has a 68% probability of being true.

The probability of the hypothesis is a real-numbered expression of the degree of belief we
should have in the hypothesis, and it obeys the axioms of probability theory.

In “classical” or “frequentist” statistics, a probability is a statement about the frequency
of outcomes in many repeated trials. With this restricted definition, one can’t refer to the
probability of a hypothesis — it is either true or false. One can refer to the probability of
data if a hypothesis is true, where probability means the fraction of time the data would
have come out the way it did in many repeated trials.

So the statement means something like: if α = a, we would have expected to obtain a
sample mean in the range a ± b 68% of the time.

This is the fundamental conceptual difference between Bayesian and frequentist statistics.

Bayesian: Evaluate the probability of a hypothesis in light of data (and prior information).
Parameter values or probability of truth of a hypothesis are random variables, data are
not.

Frequentist: Evaluate the probability of obtaining the data — more precisely, the fraction
of times a given statistic (such as the sample mean) applied to the data would come out
the way it did in many repeated trials — given the hypothesis, or parameter values. Data
are random variables, parameter values or truth of hypotheses are not.

My opinion: The Bayesian formulation corresponds better to the way scientists actually
think about probability, hypotheses, and data. It provides a better conceptual basis for
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figuring out what to do in a case where a standard recipe does not neatly apply. But
frequentist methods sometimes seem easier to apply, and they clearly capture some of our
intuition about probability.

Bottom line: One should be a Bayesian in principle, but maybe not always in practice.

Probability Axioms and Bayes’ Theorem

Probabilities are real numbers 0 ≤ p ≤ 1 obeying the axioms

p(A|C) + p(A|C) = 1.

p(AB|C) = p(A|BC)P (B|C)

Here C means “not C” and AB means “A and B” and is thus equivalent to BA.

From this equivalence we see that

p(AB|C) = p(A|BC)p(B|C) = p(BA|C) = p(B|AC)p(A|C).

From the 2nd and 4th entries above, we arrive at Bayes’ Theorem

p(A|BC) = p(A|C)
p(B|AC)

p(B|C)
.

In application to scientific inference, this theorem is usually written

p(H|DI) = p(H|I)
p(D|HI)

p(D|I)
,

where

H = hypothesis, which might be a statement about a parameter value, e.g., the population
mean lies in the range x → x + dx.

D = data

I = background information, which may be minimally informative or highly informative.

p(H|I) = “prior” probability, i.e., before data are considered

p(D|HI) = “likelihood” of data given H and I

p(D|I) = “global likelihood”

p(H|DI) = “posterior” probability, the probability of the hypothesis after consideration
of the data

Thus, Bayes’ Theorem tells us how to update our estimate of the probability of a hypothesis
in light of new data.

It can be applied sequentially, with the posterior probability from one experiment becoming
the prior for the next, as more data become available.
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Calculation of likelihood, P (D|HI), is sometimes straightforward, sometimes difficult. I
may specify assumptions like Gaussian error distribution, independence of data points.

Important aspect of Bayesian approach: only the actual data enter, not hypothetical data
that could have been taken.

All the evidence of the data is contained in the likelihood.

The global likelihood of the data, P (D|I) is the sum (or integral) over “all” hypotheses.
This can be a slippery concept.

Often P (D|I) doesn’t matter: in comparing hypotheses or parameter values, it cancels
out.

When needed, it can often be found by requiring that p(H|DI) integrate (or sum) to one,
as it must if it is a true probability.

The Bayesian approach forces specification of alternatives to evaluate hypotheses.

Frequentist assessment tends to do this implicitly via the choice of statistical test.

Criticism of Bayesian approach

The incorporation of priors makes Bayesian methods seem subjective, and it is the main
source of criticism of the Bayesian approach.

If the data are compelling and the prior is broad, then the prior doesn’t have much effect
on the posterior. But if the data are weak, or the prior is narrow, then it can have a big
effect.

Sometimes there are well defined ways of assigning an “uninformative” prior, but sometimes
there is genuine ambiguity.

Bayesian methods sometimes seem like a lot of work to get to a straightforward answer.

In particular, we sometimes want to carry out an “absolute” hypothesis test without having
to enumerate all alternative hypotheses.

Criticism of frequentist approach

Doesn’t correspond as well to scientific intuition. We want to talk about the probability
of hypotheses or parameter values.

The choice of which statistical test to apply is often arbitrary. There is not a clear way
to go from the result of a test to an actual scientific inference about parameter values or
validity of a hypothesis.

Bayesians argue (and I agree) that frequentist methods obtain the appearance of objectivity
only by sweeping priors under the rug, making assumptions implicit rather than explicit.

Frequentist approach relies on hypothetical data as well as actual data obtained. Choice
of hypothetical data sets is often ambiguous, e.g., in the “stopping” problem.

Sometimes we do have good prior information. It is straightforward to incorporate this in
a Bayesian approach, not so in frequentist.

Frequentist methods are poorly equipped to handle “nuisance parameters,” which in
Bayesian approach are easily handled by marginalization.
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Parameter Estimation

Hypothesis is “true value of parameter is θtrue = θ” (discrete) or “true value of parameter
is θ ≤ θtrue ≤ θ + dθ” (continuous).

p(θ|DI) = p(θ|I)
p(D|θI)

p(D|I)
.

If θ is continuous, then, technically, p(θ|DI) and p(θ|I) both have a dθ attached.

A Bayesian searches for the parameter value with maximum posterior probability p(θ|DI).

If p(θ|I) is flat, then this is also the value with maximum likelihood p(D|θI).

Maximum likelihood estimators play a major role in both Bayesian and classical ap-
proaches.

Example: Estimate mean from N measurements xi, when dispersion σ is known, and xi

are Gaussian distributed and independent. (Following Loredo, §5.2.2)

Flat prior: p(µ|I) = (µmax − µmin)−1.

Likelihood:

p({xi}|µI) =
∏

i

(2πσ2)−1/2 exp

[

− (xi − µ)2

2σ2

]

= (2πσ2)−N/2 exp

[

− 1

2σ2

∑

i

(xi − µ)2

]

= (2πσ2)−N/2 exp

[

−Ns2

2σ2

]

exp

[

− N

2σ2
(x − µ)2

]

,

where x = 1

N

∑

xi is sample mean and s2 = 1

N

∑

(xi − x)2 is sample variance.

Global likelihood: p({xi}|I) =
∫ µmax

µmin

p({xi}|µI)dµ.

Final result is

p(µ|{xi}I)dµ = K

(

N

2πσ2

)1/2

exp

[

− N

2σ2
(x − µ)2

]

, µmin ≤ µ ≤ µmax,

a Gaussian with mean x and dispersion σ/
√

N , truncated at µmin and µmax, with K a
normalization constant such that the probability integrates to one.

As long as prior range is big compared to σ/
√

N , prior doesn’t matter, otherwise it does,
by truncation and normalization K > 1.

If new measurements come in, they can be incorporated by taking output of this result as
prior for new analysis.

At least at informal level, this is often done, e.g., H0 priors on CMB analyses.
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To have p(θ|DI) ∝ p(D|θI), we need the prior p(θ|I) to be flat in the range allowed by
the data, not universally.

For example, we may know that µ > 0 on physical grounds. If x̄ � σ/
√

N , then p(µ|I)
is approximately flat in the allowable range if it is “broad” compared to σ/

√
N . But if

x̄ ∼ σ/
√

N , then a flat prior cannot be a good approximation.

For a positive-definite parameter where we have essentially no prior knowledge about its
value, a common choice of prior is p(θ|I) ∝ 1/θ, i.e., flat in ln θ instead of θ itself.

Another example: slightly more complicated, but standard.

Determine best values of a and b in linear fit y = ax + b, given data points with known
errors on y, assuming Gaussian error distribution:

p(ŷi|yi) = (2πσ2

y,i)
−1/2 exp

[

−(ŷi − yi)
2

2σ2
y,i

]

,

where yi is the true value and ŷi is the observed value.

Likelihood
L = p({ŷi}|a, b) =

∏

i

p(ŷi|axi + b)

=
∏

i

(2πσ2

y,i)
−1/2 exp

[

− (ŷi − axi − b)2

2σ2
y,i

]

.

It is often convenient to work with the logarithm of the likelihood

lnL = −1

2

∑ (ŷi − axi − b)2

2σ2
y,i

+ C,

where C depends on the (known) errors σy,i but is independent of a and b.

The maximum likelihood solution is thus the solution with minimum

χ2 =
∑ (ŷi − axi − b)2

σ2
y,i

,

and lnL = exp(−χ2/2) + C.

For this problem, one can find standard analytic expressions for a and b in terms of the
data and error bars by solving the equations that define the maximum of the likelihood
function,

∂lnL
∂a

= 0,
∂lnL
∂b

= 0.

Another example: Very useful, but non-standard.

Now consider a more complicated variation of this problem: fit y = ax + b, with measure-
ment errors in x and y and intrinsic scatter in the relation between y and x.
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A model with intrinsic scatter (here assumed constant from point to point and denoted σ)
is usually more realistic than the commonly adopted, perfect correlation model.

If all of the scatters are Gaussian distributed, we have

p(yi|xi) = (2πσ2)−1/2 exp

[−(yi − axi − b)2

2σ2

]

p(ŷi|yi) = (2πσ2

y,i)
−1/2 exp

[

−(ŷi − yi)
2

2σ2
y,i

]

p(x̂i|xi) = (2πσ2

x,i)
−1/2 exp

[

−(x̂i − xi)
2

2σ2
x,i

]

.

In this case we want to maximize

L =
∏

i

p(ŷi|x̂i) =⇒ lnL =
∑

i

ln p(ŷi|x̂i).

So we need the expression for p(ŷi|x̂i).

p(ŷi|x̂i) =

∫

∞

−∞

dyi p(ŷi|yi) p(yi|x̂i)

=

∫

∞

−∞

dyi p(ŷi|yi)

∫

∞

−∞

dxi p(yi|xi) p(xi|x̂i).

Now assume a flat prior on xi, p(xi) =const., so that p(xi|x̂i) = p(x̂i|xi) (by Bayes’ theorem
and the requirement that probabilities integrate to one). This assumption is non-trivial,
but usually OK because we only require flatness over the range allowed by x̂i.

We can now substitute our expressions for the probabilities, and several pages of algebra
and integrals lead eventually to the expression

p(ŷi|x̂i) = (2π)−1/2(σ2 + σ2

y,i + a2σ2

x,i)
−1/2 exp

[

− (ŷi − ax̂i − b)2

2(σ2 + σ2
y,i + a2σ2

x,i)

]

.

This expression looks eminently sensible. For σx,i = 0, we get a Gaussian whose width is
the quadrature sum of the intrinsic and observational scatter in y. Non-zero σx,i increases
the probability of larger deviation between observed and predicted yi by allowing the true
value of axi + b to be closer to ŷi than ax̂i + b.

A deviation ∆yi/σy,i has similar weight to a deviation a∆xi/σx,i. If you think of x and
y as having different units, then it is obvious that a factor of a is needed to give σy,i and
aσx,i the same dimensions.
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The maximum likelihood solution requires maximizing

∑

i

ln p(ŷi|x̂i) = − 1

2

∑

i

ln(σ2 + σ2

y,i + a2σ2

x,i)

−
∑

i

(ŷi − ax̂i − b)2

2(σ2 + σ2
y,i + a2σ2

x,i)
+ constant,

and thus solving the equations

∂lnL
∂a

= 0,
∂lnL
∂b

= 0,
∂lnL
∂σ

= 0.

There is a straightforward algebraic solution for b,

b =
−

∑

i(ax̂i − ŷi)Wi
∑

i Wi
,

where the weights are

Wi =
1

2(σ2 + σ2
y,i + a2σ2

x,i)
.

This is just an inverse-variance weighted average of the individual estimates of b.

I couldn’t find algebraic solutions for a and σ, but it is straightforward to search a grid of
(a, σ), finding the best b for each (a, σ) from the above equation and evaluating the overall
likelihood.

There are a couple of points worth noting about the likelihood expression.

First, you might naively have thought that with intrinsic scatter as a free parameter, the
maximum likelihood solution would be to have a very large intrinsic scatter, since then
each deviation would contribute very little to χ2.

However, while the second term in the likelihood always rewards large σ2, the first term
penalizes it, basically because the prediction ax + b is diluted by being spread over a large
range, so it doesn’t get much “credit” when it is close.

If a significant fraction of points have deviations that put them on the exponential tail of
the Gaussian, then raising σ will increase the likelihood, but once the typical deviation
falls to ∼ 1σ, raising σ will decrease the likelihood.

This is, of course, what ought to happen. If the prediction is a scatterplot (as happens in
the limit of large intrinsic scatter), then it is unlikely to actually have the points lie close
to a line.

Second, if we reverse the roles of y and x, letting the intrinsic scatter be on x rather than
y, then the solution for a and b (especially a) will be different.

Intrinsic scatter on y is a different hypothesis from intrinsic scatter on x, and the corre-
sponding best fit slopes and intercepts are different.

The difference goes away if σ is small compared to the observational errors.
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Confidence intervals, nuisance parameters, and marginalization

From a Bayesian point of view, the end result of a parameter estimation calculation is the
posterior probability distribution p(θ|DI). For a flat prior p(θ|I), this is just proportional
to the likelihood.

If you give an expression for, table of, or plot of the likelihood function, then you have
presented all of the evidence of the data, and others can apply prior probabilities or
frequentist assessments as they wish. Thus, if statistics are important to your answer,
there is much to be said for presenting things this way if you can.

We often summarize the results of a calculation with an estimate and a confidence interval.

Typically, one would quote the maximum likelihood (or maximum posterior probability)
value as the estimate, though if the likelihood function is far from Gaussian people some-
times quote the likelihood weighted mean.

The confidence interval is a region of highest likelihood (or posterior probability) and is
characterized by the fraction of the probability that it contains.

For a 1-dimensional problem (1 parameter), this is usually straightforward, though even
here a complicated likelihood function may have multiple maxima.

For a Gaussian likelihood function,

lnL = lnLmax − 1

2
∆χ2, L = Lmaxe

−∆χ2/2.

The regions ∆χ2 ≤ 1, ∆χ2 ≤ 4, and ∆χ2 ≤ 9 contain 68.3%, 95.4%, and 99.73% of the
probability.

For a non-Gaussian likelihood function, it can be useful instead to quote the values where
L falls to some fraction of its maximum value, say 0.1, in which case the parameter value is
10 times less probable than its most probable value. This particular fraction corresponds
in the Gaussian case to 2.14σ, since e−2.142/2 = 0.1.

If there are multiple parameters, then confidence intervals are defined by contours in a
multi-dimensional parameter space.

If the likelihood function is a multi-variate Gaussian, then these contours are ellipses, with
the direction of the ellipse axes depending on the covariance of the errors in the parameters.

For the 2-d case, the contours ∆χ2 = 2.30, 6.17, and 9.21 enclose 68.3%, 95.4%, and 99%
of the probability. See the Numerical Recipes chapter on “Modeling of Data” for higher
dimensions and more discussion.

In some cases, a sensible choice of parameters will eliminate or minimize covariance, making
results easier to interpret. An obvious case is the slope and intercept of a linear fit. These
are usually highly correlated, but the covariance can be eliminated by defining the intercept
at an appropriate “pivot point,” fitting y = a(x − xp) + b instead of y = ax + b.

Suppose we have fit the slope and intrinsic scatter of a relation as in the previous section
(and we for some reason know the intercept without fitting).
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What if we are only interested in the slope and its errors, and σ is something we have to
include in the fit but don’t care about?

In this case, σ is what is called a “nuisance parameter,” and we get rid of it by integrating
over its probability distribution, a procedure called “marginalization.”

p(a|DI) =

∫

∞

0

dσp(a, σ|DI).

This procedure can be used to go from any number of parameters to any smaller subspace,
e.g., if we included b in our fits:

p(ab|DI) =

∫

∞

0

dσp(abσ|DI)dσ

p(a|DI) =

∫

∞

−∞

db

∫

∞

0

dσp(abσ|DI).

Hypothesis Comparison

Bayes’ Theorem gives a straightforward expression for the relative probability of two hy-
potheses:

p(H1|DI)

p(H2|DI)
=

p(H1|I)

p(H2|I)
× p(D|H1I)

p(D|H2I)
.

We multiply our prior probabilities by the relative probabilities of obtaining the data under
the two hypotheses. The global likelihood p(D|I) cancels out of the comparison.

If the hypotheses are simple, with no free parameters, then this comparison is straight-
forward. However, if the hypotheses are models with parameters, we must integrate over
the possible parameter values. This can be complicated, but it also has interesting effects
when comparing two models with different numbers of parameters, or even with the same
number of parameters but different degrees of prior predictiveness.

Example (From Loredo, §5.3)

We previously gave

p(D|µI) = (2πσ2)−N/2 exp

[

−Ns2

2σ2

]

exp

[

− N

2σ2
(x − µ)2

]

as the probability of obtaining the data D = {xi} drawn from a Gaussian distribution
with mean µ and dispersion σ.

Consider the competing hypotheses

H1 = mean of distribution is a specified value µ1

H2 = mean of distribution is in range µmin ≤ µ ≤ µmax, with a flat prior p(µ|I) =
(µmax − µmin)−1 in this range.
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H2 will always fit the data better, unless the mean happens to be exactly µ1, in which case
it fits equally well.

But does this mean H2 is actually the preferred hypothesis?

P (D|H1I) = K × exp

[

− N

2σ2
(x − µ1)

2

]

,

where

K = (2πσ2)−N/2 exp

[

−Ns2

2σ2

]

is independent of µ1.

p(D|H2I) =

∫ µmax

µmin

p(D|µI)p(µ|I)dµ

= K(µmax − µmin)−1

∫ µmax

µmin

dµ exp

[

− N

2σ2
(x − µ)2

]

.

If µmax − x and x − µmin are both � σ/
√

N , then the integral is just (2πσ2/N)1/2, since
a Gaussian (2πσ2)−1/2 exp(−x2/2σ2) integrates to one.

In this case

p(D|H1I)

p(D|H2I)
=

(

2πσ2

N

)

−1/2

(µmax − µmin) exp

[

− N

2σ2
(x − µ1)

2

]

.

If we considered the two hypotheses equally probable before hand, p(H1|I) = p(H2|I),
then this ratio is also the ratio of posterior probabilities.

Model 2 is “penalized” for having less predictive power than Model 1, and the amount of
the penalty depends on the ratio of (µmax − µmin) to the actual uncertainty in the mean
σ/

√
N .

Model 1 is penalized because it doesn’t fit the data as well as the best fit versions of Model
2. If it is nonetheless fairly close, then it may win out as the more probable hypothesis,
otherwise it won’t.

More generally, we can see from the structure of the integral
∫

p(θ|I)p(D|θI)dθ that a
model with a free parameter θ will gain to the extent that its best fit value yields a greater
likelihood p(D|θ̂I), but will lose to the extent that p(θ|I) is broad and “spreads out” the
predictive power.

The Bayesian expression for hypothesis comparison thus yields Occam’s razor as a result:
the preferred model is the one that fits the data adequately with the least freedom to be
adjusted to do so.

In principle, this provides a well defined way to decide whether a more complicated model
is “worth it.”
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In general cases, the integrals over parameter values may be impossible to do analytically,
though they can probably be done numerically.

Note that while we have used a Gaussian example here, the analysis is not restricted to
any particular probability distribution.

Indeed, one could use these ratio tests to compare the hypothesis that the data have Gaus-
sian errors with a fixed dispersion to the hypothesis that there is an additional “outlier”
population drawn from a broader Gaussian, or that the error distribution is exponential
instead of Gaussian.

Leaving aside the Bayesian approach, we should also mention the ∆χ2 rule of thumb: an
additional parameter should reduce χ2 by ∆χ2 > 1 to be considered significant.

Roughly, you can think of this rule as saying that one parameter can be chosen to per-
fectly explain one data point, so it should typically reduce ∆χ2 by one even if the more
complicated model has no more explanatory power than the simpler model.

This rule can be justified more rigorously in the case of linear models, where the yi are
linear functions of the model parameters (but not necessarily of the independent variables
xi, so yi = axi + bx2

i is a linear model). Adding N parameters to a linear model that
already adequately describes the data reduces the expected value of χ2 by N .

This reduction in 〈χ2〉 applies whether or not the observational errors are Gaussian, but
the variance of χ2 is different (generally higher) if the errors are non-Gaussian, so the
values of χ2 that correspond to different levels of “absolute” goodness-of-fit are different.

Absolute model assessment

In a Bayesian approach, there is really no such thing as an absolute model assessment.

If one has an exhaustive set of possible hypotheses, H1, H2, ... HN , then one can ask
about the probability that any one of those hypotheses is correct

p(Hi|DI) = p(Hi|I)
p(D|HiI)

p(D|I)
,

where

p(D|I) =
N

∑

i=1

p(D|HiI)

is computed by summing over all of the hypotheses.

But there isn’t a Bayesian way to assess a hypothesis in isolation without specifying alter-
natives.

The traditional way to do an absolute model assessment in the frequentist approach is to
compute some statistic, say χ2, that increases for worse fits, then ask how often one would
expect to get a value that large or larger if the hypothesis were true.

If this probability α is small, then the model is rejected at the 1 − α confidence level.

14



A810: Statistics Notes

There are some problems with this approach: the answer depends on what statistic you
choose, it may depend on what you think the alternative “data sets” are, and there is
sometimes ambiguity about what “tail” of the distribution one should consider. For exam-
ple, low χ2 values can be as improbable as high χ2 values — should a model be rejected
because it fits the data too well?

Despite these problems, these frequentist assessments seem to make good sense in some
cases, and choices among seemingly ambiguous alternatives (e.g., whether to reject low χ2

values) can often be made sensibly in the context of a specific problem.

Where does the error bar go?

Suppose you measure the average depression of flux in a quasar caused by absorption from
the Lyman-alpha forest. You find that 30% of the flux is absorbed, DA = 0.3.

You have two models that predict DA = 0.32 and DA = 0.4, respectively. Which do the
data favor? Is either ruled out?

To answer, we need an error bar, and this may be different for the two models.

If the first model predicts DA = 0.32 on average and an rms variation of 0.002 from one
quasar to another, then the predicted DA = 0.32± 0.002 is strongly inconsistent with the
observed DA = 0.3, unless the predicted distribution of variations is highly non-Gaussian.

If the second model predicts DA = 0.4 on average and an rms variation of 0.05 from one
quasar to another, then its prediction DA = 0.4±0.05 is marginally inconsistent with your
measurement. The data favor this model even though its mean prediction is further from
the observed value.

This example illustrates the Bayesian insistence that error bars really belong on the model,
not on the data, since different models may predict different error bars for the same data
set.

But suppose we measure the decrement for 20 quasars instead of one, and we find a mean
of 0.3 and an rms variation about the mean of 0.05.

Here it seems legitimate to say that the uncertainty on the mean is 0.05/
√

20 = 0.01, and
that our measurement implies DA = 0.3 ± 0.01.

What allows us to attach an error bar to the data, and to implicitly claim that it is model
independent?

In effect, this procedure relies on the assumption (which should be good in this case) that
any model that will fit the data must also predict an rms variation similar to the value 0.05
that you measured, and that it will therefore predict an error on the mean for a sample of
20 quasars that is close to 0.05/

√
20.

A model that predicts a mean DA = 0.35 and an rms quasar-to-quasar variation of 0.3
gives DA = 0.35 ± 0.06 for a sample of 20 quasars. But although its mean prediction is
consistent with the measured mean within its expected error, the rms variation for this
model is inconsistent with the measured rms variation of 0.05, so the model is ruled out,
or at least disfavored, on other grounds. (To decide just how inconsistent the model is, we
would need to calculate the error bar on the rms variation.)
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For quantities that are well measured (i.e., determined to fairly high fractional precision),
it is usually OK to “transfer” the error bar in this way, because the data have sufficient
power to constrain the variation within the sample and yield an estimated error bar that
must be close to that of any model that would be consistent with the data.

However, you should be very cautious about “transferring” the error bar in any case where
the estimated fractional uncertainty is large. In these cases, the error bar is often highly
model dependent.

The extreme, and often relevant, example is a survey that turns up one object of a certain
class.

It is tempting to say that the measured number of objects is 1±1 and therefore consistent
with zero.

It is true that a model that predicts a mean of one object in a survey of this size predicts
(assuming Poisson statistics) that a fraction e−1 = 0.37 of such surveys would detect no
objects, and that a model that predicts a mean of two objects predicts that 21e−2/1! = 0.27
of such surveys should yield one object and is therefore consistent with the data.

However, a model that predicts a mean of 0.001 objects predicts that only 0.0011e−0.001/1! =
0.001 of such surveys should yield one object, so it is ruled out (or at least strongly disfa-
vored).

Estimating error bars from the data: subsample, jackknife, bootstrap

In a case like the average quasar flux decrement above, it is obvious how to estimate the
error bar from the data using the rms variation.

But suppose we are doing something more complicated, e.g., measuring the power spectrum
of the flux (a 1-d function) after fitting a continuum to each spectrum, removing metal
lines, and subtracting photon noise. We have done some complicated processing, and the
signal-to-noise of the measurement in each individual spectrum may be quite different from
one quasar to another.

One way to proceed in a complicated case like this is to divide the data into subsamples,
say five groups of four quasars each. You can then apply your measurement separately to
each subsample and estimate errors from the subsample-to-subsample variation.

For example, you now have N = 5 estimates kPi of the power spectrum on spatial scale i,
where k = 1, ...N . You can estimate the error bar σii on Pi as

σ2

ii =
1

N − 1

N
∑

k=1

(kPi − P̄i)
2

N
,

where P̄i is your estimate from the full sample of all quasars.

You might also want to estimate the covariance of errors from two different length scales
i and j:

σ2

ij =
1

N − 1

N
∑

k=1

(kPi − P̄i)(
kPj − P̄j)

N
.
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This approach can run into problems if you really need something close to your full sample
size to get a usable measurement in the first place, so that the estimates from your much
smaller subsamples are wildly varying. (This is especially problematic if, for instance, you
know that the quantity you are measuring is positive-definite but noise means that you
can get negative values in individual measurements.)

An attractive, more robust alternative is jackknife error estimation, where you omit each
subsample in turn, and apply your measurement to all of the remaining data. The error
estimate in this case is

σ2

ii =
N − 1

N

N
∑

k=1

(kPi − P̄i)
2,

where kPi now represents the estimate of Pi after subsample k is omitted from the data
sample.

The pre-factor is larger by a factor of (N − 1)2, but the variation (kPi − P̄i) is smaller
because each subset k is now close to the full sample.

In the case we are considering, the individual subsamples could now be single quasars, so
we could set N = 20 and omit each quasar in turn.

Where the jackknife and subsample error estimates would give different answers, I think
the jackknife estimate is generally preferable.

A widely used variant on the same theme is bootstrap resampling. Here you create new
samples the same size as the original data sample by drawing from that sample “with
replacement.”

Each of the N bootstrap samples has M = 20 quasars randomly drawn from the original
set, but in an individual sample quasar 1 may appear three times, quasar 2 twice, and
quasar 3 not at all.

The error bars are simply computed from the dispersion among the M bootstrap samples,

σ2

ii =
N

∑

k=1

(kPi − P̄i)
2

N
,

where P̄i is the estimate from the full sample, not the mean of the bootstrap samples.
There is no pre-factor because now each bootstrap sample is the same size as the full
sample.

All of these approaches are implicitly “transferring” the error bars as discussed above.

The idea behind all three is that the data are drawn from some distrbution and that we can
estimate that distribution from the data themselves. Each subsample (or jackknife sample,
or bootstrap sample) is drawn from this distribution, so we get an internal estimate of what
variation is expected in data drawn from this distribution.

Again, we are implicitly assuming that any model that would actually fit the data would
have a similar distribution and would therefore predict similar errors.
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A critical assumption for any of these methods is that the individual subsamples are
independent.

For the quasar case described above, this assumption is probably fine, since the regions of
the universe sampled by different quasars are far enough apart that they are uncorrelated.

Suppose we are instead trying to estimate uncertainties in the galaxy correlation function
measured from a redshift survey.

Each galaxy is a separate data point, but they are highly correlated because they trace
the same underlying structure (e.g., the same clusters and superclusters).

Using subsamples, jackknife, or bootstrap with individual galaxies would severely under-
estimate the errors.

For this case, we need to define subsamples that are spatially contiguous volumes, large
enough that the estimates of the correlation function in each subsample are independent.
Roughly speaking, we want to be sure that the spatial size of each subsample is large
compared to the largest coherent structures that are found in the universe.

For an example of this approach, see Zehavi et al. 2005, ApJ, 630, 1

If we have a model that we want to test, and we can generate complete, independent
artificial data sets from the model, then it is better to estimate errors and covariances
from large numbers of mock data sets instead of using these “internal” techniques.

Whichever approach one uses, one should be aware of the potential problem of noise in
the estimated covariance matrix, since one may be estimating large numbers of σij .

Even if the individual estimates are unbiased, noise may cause some of them to be artifi-
cially large. Since it is the inverse of the covariance matrix that gets used in evaluating the
likelihood (see Andy’s lectures), noisy estimates of the covariance matrix can cause mis-
leading conclusions about best-fit parameter values, parameter uncertainties, or relative
merit of models.

Monte Carlo Markov Chains

A fairly common statistical problem is estimating the probability distribution of parameters
in a high-dimensional parameter space.

For example, we might be trying to determine the constraints from a CMB data set D
on the set of cosmological parameters ~θ = (Ωm, h, Ωb, A, n, τ) that determines the CMB
spectrum in the simplest current cosmological scenario.

There are tools for calculating p(D|~θI), but this calculation might take a few seconds, or
minutes, for each model in the parameter space.

Since the parameter space is six-dimensional, even a relatively coarse grid with 10 points
along each parameter direction over the plausible range requires 106 evaluations of p(D|~θI),
and if we add another two parameters then 106 becomes 108.

Thus, a naive grid-based evaluation of the likelihood to find best-fit parameters and error
bars may be prohibitively expensive.

Monte Carlo Markov Chains (MCMC) are a useful tool for this kind of problem, and this
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approach has taken rapid hold in the cosmology literature.

For details, see the references listed at the top and the things that they in turn refer to,
but in brief the idea is as follows.

The goal is to map the posterior probability distribution p(~θ|DI) ∝ p(~θ|I)p(D|~θI), in the
neighborhood of its maximum value.

If the prior p(~θ|I) is flat, then we just have p(~θ|DI) ∝ L.

Procedure:

1. Start from a randomly chosen point in the parameter space, ~θ = ~α1.

2. Take a random step to a new position ~α2.

3. If p(~α2|DI) ≥ p(~α1|DI), “accept” the step: add ~α2 to the chain, and substitute
~α2 → ~α1. Return to step 2.

4. If p(~α2|DI) < p(~α1|DI), draw a random number x from a uniform distribution
from 0 to 1. If x < p(~α2|DI)/p(~α1|DI), “accept” the step and proceed as in 3. If
x ≥ p(~α2|DI)/p(~α1|DI), reject the step. Save ~α1 as another link on the chain, and go
back to 2.

The chain takes some time to “burn in,” i.e., to reach the neighborhood of the most likely
solutions.

However, once this happens, a “long enough” chain will have a density of points that is
proportional to p(~θ|DI).

To get, for example, the joint pdf of a pair of parameters, one can just make contours of
the density of points in the space of those two parameters. Other “nuisance” parameters
are marginalized over automatically, because the points sample the full space.

If you want to calculate the posterior distribution of some function of the parameters (e.g.,
the age of the Universe, given parameter estimates from the CMB), you can just calculate
that function for all points in the chain, then plot the pdf of the result.

There are numerous technical issues related to determining whether a chain has “con-
verged” (i.e., is fairly sampling the probability distribution), and to choosing steps in a
way that produces fast convergence and good “mixing” (sampling the distribution fairly
with a relatively small number of points).

These issues are discussed briefly in the references provided, and I gather that they are
the subject of an extensive literature.

But with a few basic tricks described in these references, an effective version of MCMC is
relatively straightforward to implement.
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