

The Galilean Moons of Jupiter

Ganymede (5262 km)

Callisto
(4806 km)

Io
(3642 km)

Europa
(3130 km)

Moon (3474 km)

The Galilean Moons all orbit in the same direction around Jupiter.

The inner 3 are on resonant orbits.

Small Tide

Big Tide

Io and Europa

Mean densities of 3600 \& $3000 \mathrm{~kg} \mathrm{~m}^{-3}$, respectively
lo: Rocky crust, molten mantle \& many active volcanoes

Europa: Icy lithosphere \& rocky core. Likely has a deep-water ocean.

lo's active volcanoes

Europa has a smooth, young icy surface covering a large rocky core.

Composed of bright, shiny water ice.

Very few impact craters implies a young surface

Repaved by water geysering through cracks in the ice.

Ice surface is fractured into ice rafts and floes a few kilometers across

Ganymede \& Callisto are mixed ice \& rock, lowdensity moons.

Mean densities of $\sim 1900 \mathrm{~kg} \mathrm{~m}^{-3}$

Deep ice mantles over rocky/icy cores.

Old, heavily cratered Ganymede surfaces

They lack internal heat and are geologically inactive.

Large Moons of Saturn D > 200 km, mostly spherical

Titan

Tethys

Tiny Irregular Moons of Saturn
D < 200 km

Epimetheus

Helene

Telesto

Pandora

Prometheus

Enceladus is covered in fresh, clean ice.

Surface is lightly cratered, especially in the south.

Tectonic features include scarps, grooves, and ridges, showing geologic activity.

A thin $\mathrm{H}_{2} \mathrm{O}$-vapor atmosphere \& fresh surface ices fed by fountains at surface cracks.

The Fountains of Enceladus

Titan

Radius: 2575 km

Density: ~1900 $\mathrm{kg} \mathrm{m}^{-3}$ Icy mantle over a rocky core.

Cold enough to retain a heavy atmosphere of Nitrogen and Methane.

Pressure is high enough to have liquid methane on the surface.

Titan has a dense Nitrogen and Methane

 Atmosphere
Composition:

$98 \% \mathrm{~N}_{2}$ (nitrogen)
$\sim 1.6 \% \mathrm{CH}_{4}$ (methane)
Argon \& hydrocarbons like Ethane

Cold and dense:
Temperature: 94 K (-290º F)
~1.6 Earth atmospheres pressure
Thick covering haze of brown photochemical aerosols (tholins)
Clouds of methane and ethane

Methane $\left(\mathrm{CH}_{4}\right)$ plays the same role on Titan that water does on the Earth.

All three phases of methane exist at Titan's temperature \& pressure

Atmospheric methane condenses into clouds that rain liquid methane.

Methane "Mud Flats" are water ice grains \& liquid methane.

Liquid methane/ethane lakes found at the poles.

Triton: Neptune's Icy Moon

Diameter: $2710 \mathrm{~km}\left(21 \% \mathrm{R}_{\mathrm{E}}\right)$ Mean density: $\sim 2050 \mathrm{~kg} \mathrm{~m}^{-3}$ Icy mantle over a rocky core.

Temperature $34 \mathrm{~K}\left(-398^{\circ} \mathrm{F}\right)$ $\mathrm{N}_{2}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} \& \mathrm{CO}$ ices Thin N_{2} Atmosphere

Young surface with few craters

Smooth plains paved over by Cryovolcanic flows
N_{2} Geysers:
Plumes of ices \& dark particles Swept downwind, making dark streaks

Feeds Triton's thin N_{2} atmosphere

