1. $30^{\circ} \mathrm{N}$ (from his observation of motion of stars)
2. Obliquity $=0^{\circ}$ (Equal days and nights)
3. Fun follows the celestial equator.
4. $e=0$. Constant solar day.
5. $P_{\text {sid }}=P_{\text {sol }}\left(1+\frac{P_{\text {sol }}}{P_{E}}\right)^{-1}$

Plug in $P_{\text {sol }}=10.101$ zarr,$P_{E}=1000$ zour
get $P_{\text {sid }}=10.000$ zour
6. Figure 2.1 in book.

$$
\begin{aligned}
& C=A / \cos \left(89.42704^{\circ}\right) \\
& C=100 \cdot 00 d_{z o o n} \text { so } \quad 100.00 \text { times further. }
\end{aligned}
$$

7.

$$
\begin{aligned}
\frac{r_{\text {zoon }}}{r_{\text {zun }}} & =\frac{\Theta_{\text {zoon }}}{\Theta_{z u n}} \frac{d_{\text {zoon }}}{d_{z u n}} \\
& =\left(\frac{1}{10}\right)\left(\frac{1}{100}\right) \\
v_{\text {zun }} & =1000.0 \text { r zoon } \Rightarrow 1000.0 \text { times bigger }
\end{aligned}
$$

8.

$$
\begin{aligned}
\tan \left(\frac{\theta_{p}}{2}\right) & =\frac{v_{\text {zearth }}}{d_{\text {zoon }}} \\
d_{\text {zoon }} & =10.000 \text { p zearth }
\end{aligned}
$$

9. You walk from $30^{\circ} \mathrm{N}$ to Equator 0°.

$$
\operatorname{arc}=\underset{\uparrow}{\text { angle }} x \text { radius }
$$

has to be in radians

$$
523.599=30^{\circ} \frac{\pi}{180^{\circ}} \cdot r_{\text {zearth }}
$$

Solve : riearth $=1000.00$ zilometers.
10.

$$
\begin{aligned}
d_{\text {zoon }} & =10 r_{\text {zearth }}=10,000 \text { zilometers } \\
\tan \left(\frac{\theta_{\text {zoon }}}{2}\right) & =\frac{r_{\text {zoon }}}{d_{\text {zoon }}} \Rightarrow r_{\text {zoon }}=d_{\text {zoon }} \tan \left(\frac{\theta_{z o n}}{2}\right) \\
r_{\text {zoon }} & =100.00 \text { zilometers }
\end{aligned}
$$

II.

$$
\begin{gathered}
r_{\text {zun }}=1000 \text { rzoon from (7) } \\
r_{z u n}=100,000 \text { zilometers }
\end{gathered}
$$

13. $\frac{r_{\text {zearth }}}{r_{\text {zoon }}}=10 \quad \frac{r_{\text {zun }}}{r_{\text {zearth }}}=100$
14. 1 ZAu $=$ distance between Zearth and Zun.

$$
\text { dzun }=100 \text { dzoon }=1000,000 \text { zilometers }
$$

So $1 \mathrm{ZAu}=1000,000$ zilometers
14. $\tan \left(\frac{\theta_{d}}{2}\right)=\frac{r_{\text {zearth }}}{d z a n} \Rightarrow \theta_{d}=2 \tan ^{-1}\left(\frac{r_{\text {zearth }}}{d z u n}\right)$
$1 / 500$ radians or 6.8755 arcminute
Yes eye can resolve this.
15. $P_{E}=1000$ zours $\quad P_{\text {visyn }}=546.92$

$$
r_{E}=1000 \text { zours } \quad r_{\text {zenvs }}=\left(\frac{1}{P_{E}}+\frac{1}{P_{v i s y n}}\right)^{-1}=\left(\frac{1}{1000}+\frac{1}{546.92}\right)^{-1}=353.55 \text { zours }
$$

$$
\left.\frac{353.55 \text { zours }}{10 \text { zoust sidereal }} \begin{array}{c}
\text { zay }
\end{array}\right)=35.355 \text { sidereal }
$$

$\begin{array}{ll}\text { From (5): } 1 \text { sidereal zay } & =10 \text { zours } \\ \text { Given: } 1 \text { zear } & =1000 \text { zouss }\end{array}$
So, $P_{\text {zenus }}=353.55$ zours $=35.355$ sideral zay

$$
=0.35355 \text { zear }
$$

16. See figure 2.12 in book.

Given: Zenus never gels further than 30° from the Zun, as seen by doserver on Zearth

$$
\begin{aligned}
& C=1 \mathrm{zAU} \\
& \begin{aligned}
& B=C \sin \theta \\
& d_{\text {zenus-zun }}=(1 \mathrm{ZAU}) \sin 30^{\circ} \\
&=0.50000 \mathrm{ZAU} \\
&=500,000 \text { zilometers }
\end{aligned}
\end{aligned}
$$

17. $P_{E}=1000$ zours $P_{\text {Jisyn }}=1032.655$ zouls

$$
\begin{aligned}
P_{\text {zupiter }}=\left(\frac{1}{P_{E}}-\frac{1}{P_{\text {s.ash }}}\right)^{-1}=\left(\frac{1}{1000}-\frac{1}{1032.655}\right)^{-1} & =31623.2 \text { zours } \\
& =3162.32 \text { sidereal zays } \\
& =31.6232 \text { zears }
\end{aligned}
$$

18. See figure 2.13 in book.

In the time τ between opposition and eastern quadrature, Zupiter sweeps out angle $\omega_{\text {zpp }} \tau$ and Zearth sweeps out angle $\omega_{z} \tau$

$$
\omega_{z e} \tau-\omega_{z p} \tau=\theta
$$

look at $\triangle A B C$,

$$
\omega=2 \pi f
$$

$$
\cos \theta=C / B
$$

where $C=d z u n=1 \mathrm{ZAU}$.

$$
B=\text { dzupiter-zun }=\text { ? }
$$

Now, given that $\tau=24.17011$ zays $=241.7011$ zouss

$$
\text { So, } \begin{aligned}
\omega_{z e} \tau-\omega_{z u p} \tau & =\tau\left(\omega_{z e}-\omega_{z u p}\right) \\
& =\left(241.7011 \text { zanss }(2 \pi)\left(\frac{1}{P_{E}}-\frac{1}{P_{z u p}}\right)\right. \\
& =\left(241.7011 \text { zours) }(2 \pi)\left(\frac{1}{1000}-\frac{1}{31623.2}\right)(\text { (zours })^{-1}\right. \\
& =1.4706 \mathrm{rad} \text { or } 84.261^{\circ}
\end{aligned}
$$

$\begin{aligned} \text { dzupiter-zun }=\frac{1 \mathrm{ZAU}}{\cos \theta}=\frac{1 \mathrm{ZAU}}{0.1} & =10.000 \mathrm{zAU} \\ & =1.00 \times 10^{7} \text { zilometers }\end{aligned}$

$$
\begin{aligned}
& \text { Zenus } \\
& p^{2}=\left(0.35355 \text { zear }^{2}\right)^{2}=0.125 \mathrm{zear}^{2} \\
& a^{3}=(0.5 \mathrm{ZAU})^{3}=0.125 \mathrm{ZAU}^{3}
\end{aligned}
$$

Zupiter

$$
\begin{aligned}
P^{2}=(31.623 \text { zear })^{2} & =1000 \mathrm{zear}^{2} \\
a^{3}=(10 \mathrm{ZAV})^{3} & =1000 \mathrm{ZAU}
\end{aligned}
$$

$p^{2}=K a^{3}$
$\Rightarrow K=1 z^{2} \tan ^{2} Z A U^{-3}$

$$
\begin{aligned}
& p^{2}=K a^{3} \\
& \Rightarrow K=1 \text { zear }^{2} Z A U^{-3}
\end{aligned}
$$

Third low holds.

```
K=1 Zearr ZAU -3
```

1000 zour $=1$ zear

10 zour = 1 sidereal zay
$\Rightarrow \quad 100$ sidereal zays in 1 zear.

$$
\begin{aligned}
K=(100 \text { sidereal zay })^{2} Z A U^{-3} & =1 \times 10^{4} \text { zay }^{2} \mathrm{ZAU}^{-3} \\
K=(1000 \text { zour })^{2}\left(10^{6}\right)^{-3} & =\left(10^{6}\right)(10)^{-18} \text { zour }^{2} \text { zilometer }^{-3} \\
& =10^{-12} \text { zour }{ }^{2} \text { zilometer }^{-3}
\end{aligned}
$$

えて.

$$
e=0.999 \quad r_{p}=0.1 \mathrm{ZAU}
$$

See book pg 69.

$$
r_{p}=a(1-e) \Rightarrow a=\frac{r_{p}}{1-e}=\frac{0.1 \mathrm{ZAU}}{1-0.999}=\frac{0.1}{0.001}=100.0 \mathrm{ZAU}
$$

23. Kepler III

$$
\begin{aligned}
P^{2}=K_{a}^{3} & =1 Z_{e^{2} a^{2} Z A^{-3}(100)^{3} Z A U^{3}} \\
& \Rightarrow P^{2}
\end{aligned}=10^{6} \text { Zear }{ }^{2}
$$

