Exploring Planetary Systems with Transits and Microlensing B. Scott Gaudi, Institute for Advanced Study

Available @ http://www.sns.ias.edu/~gaudi/presentations.html (soon)

Conclusions:

Transits and Microlensing offer complementary methods of exploring extrasolar planetary systems.

Transits & "Hot Jupiters"

Need precise photometry, *many* (>20) *consecutive* nights.
Optimal targets are homogeneous, compact, populous (#>3000) systems.
Open clusters provide good (but not ideal) targets.
NGC1245 (1 Gyr, [Fe/H]~ 0) f < 10% (95 c.l.) Inclusion.
1-2 clusters per year.

Microlensing & "Cool Neptunes"

<33% of M-dwafs in the Bulge have Jupiter-Mass companions between 1.5-4 AU
Probe fractions of 5% down to Neptune Mass in 5 Years with OGLE-III Alerts.
Possible to push sensitivity to Earth-mass planets (but hard!)

Hot Jupiters and Cool Neptunes, B. Scott Gaudi, Institute for Advanced Study

Collaborators:

 Probing Lensing Anomalies NETwork (PLANET) Penny Sackett, PI <u>http://mplanet.anu.edu.au/</u>

•Microlensing Follow-Up Network (**mFUN**) http://www.astronomy.ohio-state.edu/~microfun

•Search for Transiting Extrasolar Planets in Stellar Systems (STEPSS) Chris Burke, S.G., Darren DePoy, Rick Pogge, Jennifer Marshall http://www-astronomy.mps.ohio-state.edu/~cjburke/STEPSS/

Hot Jupiters and Cool Neptunes, B. Scott Gaudi, Institute for Advanced Study

The Search for Planets

100 known planets via RV
Features:
BD Desert
"Hot Jupiters"
Freq. vs. [Fe/H]
Piling Up at P=3d
Lack of Massive, Close-in Planets

Terrestrial Planets? Currently Undetectable via RV, Transits, Astrometry

http://exoplanets.org/

The Search for Planets

Piling up at P=3d •Consequence of Migration?

Paucity of Giant,Close-In Planets•Related to BD Desert?

How Many Transiting Planets?

The Search for Planets

Frequency Increases with Metallicity

Gonzalez (1997), Laughlin (2000) Santos et al. (2001), Reid (2002)

Nature? •Planet(esimal) Accretion?

Nurture? •Low metallicity inhibits formation.

47 Tuc?•Stellar density

Transits

Transits

Transits – What can we measure?

Measure

 \mathbf{r}, t_T, P

(also inclination, limb darkening)

•Depth $r = \frac{R_p}{r}$ R_* •Duration $t_T \cong \frac{\boldsymbol{q}_*}{\boldsymbol{m}_*} = \frac{R_*}{a} \frac{P}{2\boldsymbol{p}}$ •Period $P = \frac{2p}{\sqrt{GM_*}} a^{3/2}$

(if R_*, M_* are known, or very precise lightcurve

 R_{P}, a

Need to know the properties of the primary **Need absolute magnitude & color** Late M dwarfs, BD, giant planets have similar radii **Need RV follow-up of candidates.**

 $P = P_T P_O P_W$

Probability of Transit

Probability of Exceeding S/N Requirement

 $R_* + R_p$ \mathcal{A} Ω $d(\cos i)$

 $P = P_T P_O$

 $P_Q = \Theta(Q - Q_{\min})$ Where Q is the signal-to-noise

 $\sqrt{N} \frac{\mathbf{r}^2}{\mathbf{s}} = \sqrt{\frac{2t_T}{t_{\text{exp}}}} \frac{\mathbf{r}^2}{\mathbf{s}}$ Q = R_p

"Window" Probability- probability that n transits occur during the observation windows.

$$P = P_T P_Q P_W$$

 $P_T \approx 8\%$ (uniform for 3d<P<11d)</td> $P_Q \approx 1$ P = 1.6% $P_w \approx 20\%$ (uniform for 3d<P<11d)</td>

$$N_{\rm det} = f N_* P = 3 \left(\frac{P}{1.6\%} \right) \left(\frac{N_*}{3750} \right) \left(\frac{f_{a<0.1AU}}{5\%} \right)$$

Transit Searches - Flavors

Bright Targets

- RV Follow-up
- All-Sky

Intermediate Targets

- Large FOV STARE, Vulcan, WASP
- **Faint Targets**
- Field Stars (Galactic Disk, Bulge) EXPLORE, OGLE
- Clusters*
 PISCES, EXPORT, STEPSS

Amenable to Follow-up (RV, Oblateness, Atmospheres, Rings, Moons, etc.)

Not Amenable to Follow-up
 Primaries too faint for precise mass
 measurement.
 Confirmation (limits) only.

Why? Statistics!

Survey for Transiting Extrasolar Planets in Stellar Systems (STEPSS) (Open Clusters)

Advantages:

Primaries have common properties Explore the effects of: Stellar Density Age Metallicity [Fe/H]>0 *Primaries have known properties* Statistics easy. *Compact systems* Point-and-shoot

Disadvantages:

Relatively Faint Stars Follow-up difficult *Small Number of Stars* Difficult to probe f<5%

Requirements: •Many (20) Consecutive Nights •Relatively Large FOV •Modest Aperture

Members: Chris Burke, S.G., Darren DePoy, Rick Pogge, Jennifer Marshall

STEPSS

•MDM 2.4m

•8192x8192 4x2 Mosaic CCD

•25x25 arcmin^2

•0.18"/pixel

Fall 2001

- 19 nights
- NGC 1245

 Gyr
 [Fe/H]~0.0

•4-5 minute sampling

•15 nights with data

•9 full nights

•0 photometric nights

Saturate at I=16
Sensitive to Jupiter-size for G0-M0 primaries

•6881 objects
-259 variable
-519 saturated
-652 blended
-43 too faint
5408 pass all cuts

~2500 cluster members

Ideal Sampling:

19 Nights 8 Hours per Night $< P_W >_{3-11} = 19\%$ (uniform) $< P_W >_{3-11} = 24\%$ (log)

Actual Sampling:

19 Nights 8 Hours per Night $< P_T >_{3-11} = 12\%$ (uniform) $< P_T >_{3-11} = 15\%$ (log)

Expect ~2 transits for f=10% (uniform) Expect ~3 transits for f=10% (log)

Period = 3.2 days, Depth ~ 4% ==>Grazing Binary

STEPSS – Results & Future Prospects

NGC 1245 • $f_{3-10} \le 10\%$ •Fe/H]=??

NGC 2099

•[Fe/H]=0.05

•35 nights (now!)

Future:

•1-2 Clusters/Year

Metallicity determinations

Lens Equation:

$$\boldsymbol{b}=\boldsymbol{q}-\boldsymbol{q}_{E}^{2}/\boldsymbol{q}$$

Single Lens Parameters:

- •Impact parameter
- •Time of Maximum Mag.
- •Timescale

$$t_E = \frac{\boldsymbol{q}_E}{\boldsymbol{m}} \approx 20 \text{days} \sqrt{\frac{M}{0.3M_{\odot}}}$$

Planet Parameters:

Angle wrt Binary AxisProjected SeparationMass Ratio - q

$$t_p = \sqrt{q} t_E \approx 1 \text{day} \sqrt{\frac{M_p}{M_J}}$$

Microlensing Searches for Extrasolar Planets

Detection Efficiency: Naïve Estimate: $\approx \frac{q_p}{q_E} \approx 3\% \sqrt{\frac{q}{10^{-3}}}$ Enhanced Probability: $\approx A \frac{q_p}{q_E} \approx 15\% \sqrt{\frac{q}{10^{-3}}}$ High-Magnification Events Higher Efficiencies

Maximized at $a \approx r_E$

Mao & Paczynski 1991, Gould & Loeb 1992, Griest & Safizadeh 1998

Advantages:

Sensitive to Jupiters at 1-10 AU. Extend Sensitivity to Lower (>Mars!) Masses.

Disadvantages:

Follow-up Difficult (almost purely statistical information).Non-repeatable.Short Timescale Perturbations.

Basic Requirements:

Nearly Continuous Sampling. Good Photometry for Detection.

Alerts and Follow-up

"Survey" Collaborations

- Insufficient Sampling
- Real-time Alerts

Current and Past Alerts

- EROS
- MACHO*
- MOA
- OGLE III (500 per year?)

Alerts and Follow-up

Follow-up Collaborations

- High Temporal Sampling
- Good Photometry

Current Collaborations

- EXPORT
 - (Tsapras et al. 2001)
- μFUN (new collaboration)
 - MOA (Bond et al 2002)
- MPS
 - (Rhie et al. 2000)
- PLANET (Albrow et al. 1998)

Microlensing sensitive to Jupiters from 1-10 AU

Five Years of PLANET Data

95-99 PLANET Sample•43 Events

Albrow et al. 2001 Gaudi et al. 2002

Search for Planets

- $-4 < \log(q) < -2$
- -1 < log(d) < 1
 No Viable Detections

<33% Have Jupiter-mass companions between 1.5-4 AU <45% Have 3 x Jupiter-mass companions between 1-7 AU

Pushing to Lower Fractions

- More Efficient Monitoring
- Image Subtraction Processing
- Increasing the Number of Alerts (OGLE III)

OGLE-III Camera

Factor of 3 improvement

(Gaudi & DePoy in prep)

- 8 2045x4096 CCDs
- 35' x 35' field-of-view
- ~500 alerts per year

$$R_{\rm exp} \approx 1 \,{\rm yr}^{-1} \left(\frac{q}{10^{-3}}\right)^{1/2} \left(\frac{f}{5\%}\right) \left(\frac{R_{\rm alert}}{500 \,{\rm yr}^{-1}}\right)^{1/2}$$

P=25% for A>10
BD from 0.5-30 AU
mass ratio to 10⁻⁵

"Cool Neptunes" $M_p = 0.05M_J, a = 2AU$

Expect N~10f/year

Pushing to Lower Fractions

- Increasing the Number of Alerts (OGLE III)
- More Efficient Monitoring
- Image Subtraction Processing Pushing to Earth Masses
- Main Sequence Alerts

Need Main Sequence Sources

Pushing to Lower Fractions

- Increasing the Number of Alerts (OGLE III)
- More Efficient Monitoring
- Image Subtraction Processing Pushing to Earth Masses
- Main Sequence Alerts
- Larger Apertures?
- Difficult with 2-tier approach

Next Generation/Space Based?

Conclusions:

Transits and Microlensing offer complementary methods of exploring extrasolar planetary systems.

Transits & "Hot Jupiters"

Need precise photometry, *many* (>20) *consecutive* nights.
Optimal targets are homogeneous, compact, populous (#>3000) systems.
Open clusters provide good (but not ideal) targets.
NGC1245 (1 Gyr, [Fe/H]~ 0) f < 10% (95 c.l.) Inclusion.
1-2 clusters per year.

Microlensing & "Cool Neptunes"

<33% of M-dwafs in the Bulge have Jupiter-Mass companions between 1.5-4 AU
Probe fractions of 5% down to Neptune Mass in 5 Years with OGLE-III Alerts.
Possible to push sensitivity to Earth-mass planets (but hard!)

Hot Jupiters and Cool Neptunes, B. Scott Gaudi, Institute for Advanced Study