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“I don’t understand.  You are looking for planets you can’t
see around stars you can’t see.”

“Microlensing is a cult.”
            -Dave Koerner

-Debra Fischer



Planet Formation
• Core-accretion Model

• Dust  Planetesimals (non G)

• Planetesimals  Protoplanets

• Protoplanets  Gas Giants
(Outer Solar System)

• Protoplanets  Terrestrial Planets
(Inner Solar System



Planet Formation
• “Semi-analytic” Planet

Formation

• Three classes of planets
– Terrestrial Planets
– Gas Giants
– Ice Planets

• Segregation in Mass/Separation

• Frequency versus  M* and Mp(D. Lin)



Assertions:

• This field is observationally driven.

• Understanding planet formation requires a
complete census of  planets

• Issues of habitability are inexorably tied up
with planet formation, and in particular
processes beyond the snow line.



• Ground-based µlensing surveys probe low-mass planets at or beyond
the snow-line.

• A space-based survey will provide a complete picture of the diversity
of planetary systems for a > 0.5 AU (from 0 to ∞ with Kepler)

• Without µlensing, we will remain ignorant of many of the details of
planetary systems



Gravitational Lensing
• Point Lens Equation

• Einstein Ring Radius
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Microlensing

≈ 2θEImage Separation                        Magnification =
Area of Image
Area of Source

=
β
θE



Microlensing Events

Single Lens Parameters
• Impact Parameter
• Time of Maximum
• Timescale

 
tE =

θE
µ
≈ 20 days M

0.3M⊙











1/2



Detecting Planets

Single Lens Parameters
• Impact Parameter
• Time of Maximum
• Timescale
Planet Parameters
• Angle wrt Binary Axis
• Projected Separation
• Mass Ratio
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Detection Probability

Detection Probability

High-Magnification →
High Efficiency

Maximized when

P ≈ A
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a ≈ RE = DOLθE ≈ 3AU



High Magnification Events

Why high-mag events rule:

Nearly 100% efficiency.
(Griest & Safizadeh 1998)

Localized perturbations.

Predictable.

Multiple planets! (Gaudi et al. 1998)

(planets in binaries including
circumbinary planets)
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Microlensing is directly
sensitive to planet mass

• Works by perturbing
images

• Does not require light
from the lens or planet.

• Sensitive to planets in
the disk and bulge with
DOL=1-8 kpc

• Sensitive to wide or
free-floating planets

• Not sensitive to very
close planets

Yes

Yes!

No



Very Low Mass Planets

• Magnitude depends on
separation of planet
from image.

• Duration depends on
mass.

• Signals get rarer and
briefer.

• Detection Probability
      ~ few %

Signal magnitude is independent of planet mass.
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How Low Can We Go?

• Limited by Source Size
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θ* ≈ µas
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ρ* =
θ*
θE

≈ 1

Mars-mass planets detectable
if solar-type sources can be

monitored!
(Bennett & Rhie 1996)



Sensitivity Depends Weakly on
Host Mass

Sensitive to planets
around:

• Main-sequence stars
with M < M

• Brown dwarfs

• Remnants



Four
Detections

Two Jovian-mass planets
Two Neptune-mass planets

OGLE-2005-BLG-390
(Beaulieu et al 2006)

 
Mp ~ 5.5M⊕,   r ~ 2.6AU

OGLE-2005-BLG-169
(Gould et al 2006)

 
Mp ~ 13M⊕,   r ~ 3.5AU

OGLE-2004-BLG-235
MOA-2004-BLG-53

(Bond et al 2004)

 Mp ≈ 2.5M J,   r ≈ 4.3AU

OGLE-2005-BLG-071
(Udalski et al 2005)

 Mp ~ 2.2M J,   r ~ 3.7AU



Cool Neptunes Are Common

Two high-mass detections imply:

Jupiter-mass planets are uncommon but not rare.

Two low-mass detections imply:

~37% of stars have Neptunes between 1.6-4.3 AU

Also:

Cool Neptunes are more common than cool Jupiters



A Confession:

We’ve been lying to you.

Lie #1: Only measure mass ratio
and timescale.

Lie #2: No information about host.



Constraints on Host
Information from lightcurves:
• Measure q, b, tE from lightcuve
• Detect influence of the source size
• Can determine ρ* and so θE

• Lens light yields lens mass
• Lens light can be detected by:

– Resolving unrelated blended light
– Waiting until lens and source separate
– Measuring PSF elongation or centroid

shift
• Measurement of host star mass
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Constraints on Host
Information from lightcurves:
• Measure q, b, tE from lightcuve
• Detect influence of the source size
• Can determine ρ* and so θE

• Lens light yields lens mass
• Lens light can be detected by:

– Resolving unrelated blended light
– Waiting until lens and source separate
– Measuring PSF elongation or centroid

shift
• Measurement of host star mass
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How It Is Done : Alerts

“Survey Collaborations”
• Monitor the bulge
• Insufficient sampling
• Real-time Alerts

MACHO, EROS, OGLE, MOA

“Follow-Up Collaborations”
• Monitor microlensing events
• High cadence and optimized photometry

GMAN, MPS, EXPORT, PLANET, µFUN

Alert



How It Is Done : Follow-Up

“Survey Collaborations”
• Monitor the bulge
• Insufficient sampling
• Real-time Alerts

MACHO, EROS, OGLE, MOA

“Follow-Up Collaborations”
• Monitor microlensing events
• High cadence and optimized photometry

GMAN, MPS, EXPORT, PLANET, µFUN
Median Sampling ~ 1 hour
RMS scatter over peak ~1.5%
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PLANET: Follow
Everything you can

Distributed network:
• Cover as many events as possible
• Dense coverage of many events

Led to detection of the lowest
mass exoplanet

• Individual probability very low
• Only possible because of the

PLANET approach
• Took 10 years!



PLANET: Follow
Everything you can

Distributed network:
• Cover as many events as possible
• Dense coverage of many events

Led to detection of the lowest mass
exoplanet

• Individual probability very low
• Only possible because of the PLANET

approach
• Took 10 years!

OGLE-2005-BLG-390
(Beaulieu et al 2006)

 
Mp ~ 5.5M⊕,   r ~ 2.6AU



Current Shoe-String,
Slipshod µFUN Approach

• Focus on high-magnification events

• Struggle to identify events real time

• Save money by employing enthusiastic amateurs

• Wait…. wait… wait…. PANIC!



The Elusive High-
magnification Event

 …and the one that didn’tThe one that got away…

(would have had sensitivity to Earth-mass planets)



Amazing Amateurs

•Auckland Observatory (0.4-meter)
•Bronberg Observatory (0.4-meter )
•Catino Austral Observatory (0.4-meter)
•CTIO (1.3-meter)
•Farm Cove Observatory (0.4-meter)
•Hunters Hill Observatory (0.4-meter)
•MDM Observatory, (2.4-meter)
•Mt Lemmon Observatory (1.0-meter)
•Palomar Observatory (60-inch)
•Perth  (0.3-meter)
•Southern Stars Observatory (0.3-meter)
•Vintage Lane Observatory (0.4-meter)
•Wise Observatory (1.0-meter)



•12” Meade LX200R



0.35m!!

0.4m!!



“It just shows that you can be a mother, you can work full-time,
and you can still go out there and find planets.”

            -Jenny McCormick
   Farm Cove Observatory



What’s Next?

• Current setup (alert/follow-up) saturated

– Nearly all of the useable bulge monitored
– Many events cannot be monitored
– Monitoring one event at a time too inefficient

• A new strategy

– Dispense with alert/follow-up
– Simultaneously detect and monitor microlensing events



What is Required?

Detecting the Perturbations from Earth-mass Planets
• Sampling rate ~ 10 minutes

• Photometric Accuracy ~ 1% at I~21
– Signal Magnitude

– Photometric Uncertainty
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What is Required?

• Event Rate
– Primary Event Rate

– Detection Probability

– Detections Per Year

Γ ≈ 10−5 yr-1

P ≈ A0θ p ≈ 1%
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NextGen µLensing Survey

• Requirements to detect ~10 Earth-mass planets per year
– Monitor ~10 square degrees of the Galactic bulge continuously

with ~10 minute sampling using 1-2m class telescopes

• Monte Carlo simulation
– Survey specifications

• Four 2m telescopes in Hawaii, Chile, South Africa and Australia
• 4 square degree cameras
• 4 fields in the bulge (16 square degrees, 7000 events per year)



Simulation Ingredients

Monte Carlo Simulation

• µLensing Event Model

• Blending Model

• Moon + Sky

• Weather

• Seeing

(Gaudi, Han, & Gould, in prep)

seeing weather
moon



Detecting planets…

13σ!!



With or Without Us…

• MOA-II
– 1.8m telescope, 2.18 sq. degree camera, NZ

• OGLE -IV
– 1.3m telescope, funding for upgrade to camera, Chile

• Proposed Initiatives
– Korean, German, Chinese

• Pan-STARSS?
• Other Initiatives?

– Camera for $2 million
– Telescope for $5 million

• Pilot campaign this summer
– OGLE, MOA, Wise



Why Ground Isn’t Good enough

Cannot yield the true
potential

• MS sources severely blended

• Getting constraints on hosts is
expensive

• Perturbations can be poorly
sampled

SpaceGround

The field of microlensing event
MACHO 96-BLG-5
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What can we expect
from Space?

A worked example: Microlensing Planet Finder (Bennett PI)
• Simulations from Bennett & Rhie (2002) ApJ 574, 985
• Basic results confirmed by independent simulations by me
• Continuous observations of 4 × 0.66 sq. deg. central
Galactic bulge fields: ~2 × 108 stars

• Observations in near IR to increase sensitivity
• Simulated images based on HST luminosity function from
Holtzman et al (1998)

• ~15,000 events in 4 seasons



MPF Fields
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the Galactic plane to maximize
the microlensing rate.



Simulated Planetary Light Curves

• Planetary signals can
be very strong

• Light curve features
unambiguously yield
planetary mass ratio
and separation

• Exposures every 10-15
minutes

• The small deviation at
day –42.75 is due to a
moon of 1.6 lunar
masses.



Simulated MPF Light Curves

The light curves of simulated planetary microlensing events.

The lens star is brighter for each of these events.



Planet Detection Sensitivity

• Sensitivity to all Solar
System-analogs except
Mercury

• most sensitive technique
for a ≥ 0.5 AU

• Good sensitivity to “outer”
habitable zone (Mars-like
orbits) where detection by
TPF is easiest

• Assumes Δχ2 ≥ 80
detection threshold

• Can find moons and free
floating planets

Updated from  Bennett & Rhie (2002) ApJ 574, 985



MPF Discoveries



Free Floating Planets

Planet formation theories generically predict many free-floating planets
(Goldreich et al. 2004, Juric & Tremaine 2007, Ford & Rasio 2007)



Lens Detection Provides
Accurate Mass Estimate

• Lens will be detected for the majority of main-sequence lenses.

• Host star masses will be measured to 10% for half of the event.

• Projected separations will be measured to 5% for half of the events.

N5134_010

100

All Detections (Main Sequence)
Planet Mass to 20%

Projected Separation
Median Uncertainty = 5.2%

Planet and Stellar Masses
Median Uncertainty = 10.2%

50

0
0.1 1 0.1 1 10 100

M/M Percent Uncertainty Percent Uncertainty
0.1 1 10 100

100

50

0

100

50

0

 



MPF will tell us..

•Frequency of planets as a function of
–mass down to Mmars = 0.1M⊕

–separation from ~0.5 AU to ∞
–host star mass from 0.1Msun to 1 Msun
–Galactocentric distance from ~1-8 kpc (disk & bulge)

•Frequency of free-floating planets down to Mmars

• In other words,

MPF will tell us the frequency of almost every kind
of planet that has been detected or predicted.



Domestic µLensing Events
• First event detected accidentally
• Should be 8/year within 4kpc
• Could be found with a fly’s eye

setup ~$5M

Extragalactic Planets?
• Could be detected in M31
• Relatively minor modifications to

current strategy

Future Directions

(Gaudi et al 2007)
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Cost to the Community

•Next generation ground-based survey
–One telescope in South Africa would get things started
–Cost ~$4 M (hardware, site costs, labor)

•MPF fits comfortably under the Discovery
cost cap ~$400M



A Census of Planetary Systems

Understand planet formation and habitability
requires a census of planets of all masses and

Separations, orbiting stars of all masses.

•Kepler will provide such
a census for a <0.5AU

•Microlensing is the only
method that can do this for
larger separations.


