Occultation Studies of the Outer Solar System

B. Scott Gaudi
(Harvard-Smithsonian Center for Astrophysics)
Collaborators

• Cheongho Han (Chungbuk National University)

• Charles Alcock (CfA)

• Matt Lehner (University of Pennsylvania)

Publications

• Han & Gaudi 2005, in preparation

• Gaudi & Han 2005, in preparation
Star Formation 101

- Molecular Cloud
- Cores
- Collapse
- Ignition/Outflow
- Protoplanetary Disk
- Planetary System

Hogerheijde 1998
Planet Formation 101

- Core-accretion Model
- Dust \rightarrow Planetesimals (non G)
- Planetesimals \rightarrow Protoplanets
- Protoplanets \rightarrow Terrestrial Planets
 - Inner Solar System (<3AU)
- Protoplanets \rightarrow Gas Giants
 - Outer Solar System (3AU-40AU)
- Protoplanets \rightarrow Planetoids
 - Distant Solar System (>40AU)
The Kuiper Belt – General Properties

- 1st member discovered in 1992 (1992 QB1; Jewitt & Luu 1993)
- ~850 known. Total mass ~1% Earth
- Radial Extent (30-50)AU, peak near 45 AU.

(Trujillo & Brown 2001)
The Kuiper Belt – Dynamical Classes

- Classical
- Resonant
- Scattered
- Extended Scattered??

(Gladman et al. 2001)
The Kuiper Belt – Dynamical Classes

- Classical
- Resonant
- Scattered
- Extended Scattered??

(Elliot et al. 2005) (Gladman et al. 2001)
The Kuiper Belt – Size Distribution

- Power Law
 \[\Sigma \propto 10^{\alpha m} \]
 \[\propto r^{-q} \]
 \[(q = 5\alpha + 1) \]
 - Assumes albedo
- Break
 - age \sim \text{collision time}
 - HST/ACS
 - r \sim 100 \text{ km}

\(\alpha \approx 0.6 \)

(Bernstein et al. 2004)
The Kuiper Belt – Binaries

- At least 5%-10% of KBOs in binaries
- Size ratios ~ unity
- Separations ~ 100 x radius
- Formation mechanisms
 - Weidenschilling (2002)
 - Goldreich et al. (2002)
 - Funato et al. (2003)
 - Astakhov et al. (2005)
The Kuiper Belt – Open Questions

- Extended Scattered Disk?
- Faint-end distribution?
 - Slope?
 - Number?
 - Dynamical classes?
- Albedos/Sizes?
- Close binaries?
- The rest of the solar system?
 - Three orders of magnitude in distance
 - Nine orders of magnitude in volume!
The Kuiper Belt – Open Questions

- Extended Scattered Disk?
- Faint-end distribution?
 - Slope?
 - Number?
 - Dynamical classes?
- Albedos/Sizes?
- Close binaries?
- The rest of the solar system?
 - Three orders of magnitude in distance
 - Nine orders of magnitude in volume!

(Bernstein et al. 2004)
The Kuiper Belt – Open Questions

- Extended Scattered Disk?
- Faint-end distribution?
 - Slope?
 - Number?
 - Dynamical classes?
- Albedos/Sizes?
- Close binaries?
- The rest of the solar system?
 - Three orders of magnitude in distance
 - Nine orders of magnitude in volume!

(Bernstein et al. 2004)
The Kuiper Belt – Open Questions

• Extended Scattered Disk?
• Faint-end distribution?
 – Slope?
 – Number?
 – Dynamical classes?
• Albedos/Sizes?
• Close binaries?
• The rest of the solar system?
 – Three orders of magnitude in distance
 – Nine orders of magnitude in volume!

(Grundy et al. 2005)

canonical ~ 4%
The Kuiper Belt – Open Questions

• Extended Scattered Disk?
• Faint-end distribution?
 – Slope?
 – Number?
 – Dynamical classes?
• Albedos/Sizes?
• Close binaries?
• The rest of the solar system?
 – Three orders of magnitude in distance
 – Nine orders of magnitude in volume!
The Kuiper Belt – Open Questions

• Extended Scattered Disk?
• Faint-end distribution?
 – Slope?
 – Number?
 – Dynamical classes?
• Albedos/Sizes?
• Close binaries?
• The rest of the solar system?
 – Three orders of magnitude in distance
 – Nine orders of magnitude in volume!

(Sheppard & Jewitt 2004)
The Kuiper Belt – Open Questions

• Extended Scattered Disk?
• Faint-end distribution?
 – Slope?
 – Number?
 – Dynamical classes?
• Albedos/Sizes?
• Close binaries?
• The rest of the solar system?
 – Three orders of magnitude in distance
 – Nine orders of magnitude in volume!
Limitations of Direct Measurements

- Strong scaling with size and distance

\[\text{Flux} \propto R^2 d^{-4} \]

- Occultations
 - Bailey (1976)
 - Dyson (1992)
 - Brown & Webster (1997)
 - Roques & Moncuquet (2000)
Principles of Occultations

- Physical Parameters

\[R, d, \nu \]

- Scales
 - angular size
 \[\theta = \frac{R}{d} \approx 140 \mu \text{as} \left(\frac{R}{10 \text{km}} \right) \left(\frac{d}{100 \text{AU}} \right)^{-1} \]
 - velocity
 \[\nu = \nu_\oplus \left(\cos \varphi - \sqrt{\frac{\text{AU}}{d}} \right) \approx 27 \text{km s}^{-1} \text{ at opp.} \]
 - proper motion
 \[\mu = \frac{\nu}{d} \approx 1'' \text{hr}^{-1} \left(\frac{d}{100 \text{AU}} \right)^{-1} \left(\frac{\nu}{30 \text{ km}} \right) \]
Principles of Occultations

- Observables
 - Duration \(\Delta t \)

\[
\Delta t = 2t_K \sqrt{1 - b^2}
\]

- Crossing Time

\[
t_K = \frac{\theta}{\mu} \approx 0.3s \left(\frac{R}{10\text{km}} \right) \left(\frac{v}{30\text{ km s}^{-1}} \right)^{-1}
\]

Statistical information only
Principles of Occultations

- **Observables**
 - Ingress/Egress time
 - Impact parameter b
 - Dimensionless source size

\[
\theta_* \approx 20\mu as \left(\frac{R_*}{R_{\text{Sun}}} \right) \left(\frac{d_*}{250\text{pc}} \right)^{-1}
\]

\[
\rho_* = \frac{\theta_*}{\theta}
\]

\[
\approx 0.1 \left(\frac{R}{10\text{km}} \right)^{-1} \left(\frac{d}{100\text{AU}} \right) \left(\frac{R_*}{R_{\text{Sun}}} \right) \left(\frac{d_*}{250\text{pc}} \right)^{-1}
\]
Principles of Occultations

- **Observables**
 - Fringe Spacing
 - Dimensionless Fresnel angle

\[\theta_F = \sqrt{\frac{\lambda}{d}} \]
\[\approx 4 \mu \text{as} \left(\frac{\lambda}{545 \text{nm}} \right)^{1/2} \left(\frac{d}{100 \text{AU}} \right)^{-1/2} \]

\[\rho_F = \frac{\theta_F}{\theta} \]
\[\approx 0.03 \left(\frac{\lambda}{545 \text{nm}} \right)^{1/2} \left(\frac{d}{100 \text{AU}} \right)^{1/2} \left(\frac{R}{10 \text{km}} \right)^{-1} \]
Principles of Occultations

- Observables
 \[\Delta t, \rho_*, \rho_F \]

- Parameters
 \[
 d = \frac{\lambda}{2\theta_*^2} \left(\frac{\rho_*}{\rho_F} \right)^2 \\
 R = \frac{\lambda}{2\theta_*} \frac{\rho_*}{\rho_F^2} \\
 v = \frac{\lambda}{2\theta_*} \frac{\rho_*}{\rho_F^2} \frac{1}{t_K}
 \]

\[\rightarrow R, d, v \]
Parameter Uncertainties

- Light curves
 - 10% errors (V=14)
 - 5 Hz sampling
- Parameters p_i
 - N measurements F_k

$$c = b^{-1}$$

$$b_{ij} = \sum_{k=1}^{N} \frac{\partial F_k}{\partial p_i} \frac{\partial F_k}{\partial p_j} \frac{1}{\sigma_k^2}$$

- Uncertainties

$$\sigma_i = \sqrt{c_{ii}}$$
Parameter Uncertainties

- Uncertainties
 - Well-constrained
 \(t_K, t_0, b \)
 - Poorly constrained
 \(\rho_*, \rho_K \)
Parameter Uncertainties

- Weak constraints for faint sources
Parameter Uncertainties

- “Next Generation”
- Experiment
 - 3% (V=14)
 - 30 Hz sampling
- Good constraints
Occultations by Binaries

• Detection Rate?
• Binary properties
 – Primary size
 – Size ratio
 – Separation
• Photometric properties
 – Sampling rate
 – Photometric errors
Occultations by Binaries

- Conditional prob.
 - 10 Hz
 - S/N > 10
Occultations by Binaries

- Can detect:
 - 50% of equal-sized binaries with $d/R < \text{few}$
 - 10% of equal-sized binaries with $d/R < 10$
Occutations by Binaries

- Improved precision can dramatically increase rate
 - Especially for small objects

![Graph showing precision rates of 10%, 3%, and 1% for various s/R_i values.](image)
Occultation Surveys

- Challenges
 - Short event duration
 \[\Delta t \approx 0.6 \left(\frac{R}{10 \text{ km}} \right) \left(\frac{v}{30 \text{ km s}^{-1}} \right)^{-1} \]
 - Low event rate
 \[\Gamma = \int dr 2\theta \mu \Sigma \]
Occultation Surveys

- Challenges
 - Short event duration
 \[\Delta t \approx 0.6s \left(\frac{R}{10\text{km}} \right) \left(\frac{v}{30 \text{ km s}^{-1}} \right)^{-1} \]
 - Low event rate
 \[\Gamma = \int dr 2\theta \mu \Sigma \approx 10^{-5} - 10^{-3} \text{ yr}^{-1} \text{ (R<10km)} \]
 - Monitor >1000 stars
Occultation Surveys

- **Kepler**
 - 100,000 stars
 - μmag precision
 - Long exposure times
 - High ecliptic latitude

![Graph depicting inclination distribution and standard deviation](image-url)
Occultation Surveys

Taiwanese-American Occultation Survey (TAOS)

- Telescopes & Hardware
 - Four 50 cm robotic telescopes
 - f/1.9
 - 2 square degree 2Kx2K cameras
 - Jade Mountain, Taiwan

- Data
 - 2000 stars
 - 5Hz
 - 10% precision
 - Short exposure times
Occulation Surveys

- Shutterless “Zipper” mode
Occultation Surveys

Next Generation Survey
• Requirements
 – Higher cadence
 – Improved photometry
 (reduced sky background)
 – Color information
• Space based
 – Modeled after Kepler
 – Prism
Occultation Surveys

Next Generation Survey

600m at 45 AU 600m at 100 AU
Occultation Surveys

Next Generation
Summary

• Many unanswered questions about the Kuiper belt.
• Outer solar system largely unexplored.
• Reflected light detections limited
• Occultation light curves subject to degeneracies
 – Additional parameters enable parameter measurement
 – High cadence and accurate photometry needed
• Binaries detected via occultations
• Occultation surveys are challenging
 – Short duration
 – Low event rate