Microlensing Searches for Extrasolar Planets

I. The Search for Planets.
II. Microlensing and Planets
III. Alerts and Follow-up.
IV. Detection and Efficiency.
V. 5 Years of PLANET Data.
VI. Future Prospects
VII. Conclusions.

Microlensing Searches for Extrasolar Planets, B. Scott Gaudi, IAS
The Search for Extrasolar Planets

Why Search for Extrasolar Planets?
- Frequency of Life
- Clues to Star Formation
- Low End of the Compact Object Mass Function

Microlensing Searches for Extrasolar Planets
The Search for Extrasolar Planets

Why Search for Extrasolar Planets?

- Frequency of Life
- Clues to Star Formation
- Low End of the Compact Object Mass Function

“Classical” Detection Methods:

- Radial Velocities
- Astrometry
- Transits
- Direct Detection

Microlensing Searches for Extrasolar Planets
“Classical” Detection Methods
Radial Velocities
Astrometry
Transits
Direct Imaging
The Search for Extrasolar Planets

Why Search for Extrasolar Planets?
- Frequency of Life
- Clues to Star Formation
- Low End of the Compact Object Mass Function

“Classical” Detection Methods:
- Radial Velocities
- Astrometry
- Transits
- Direct Detection

Various Methods are Complimentary:
- Parameters Measured
- Separations Probed

Charbonneau et al. 2000

Microlensing Searches for Extrasolar Planets
The Search for Extrasolar Planets

Why Search for Extrasolar Planets?
 Frequency of Life
 Clues to Star Formation
 Low End of the Compact Object Mass Function

“Classical” Detection Methods:
 Radial Velocities
 Astrometry
 Transits
 Direct Detection

Various Methods are Complementary:
 ParametersMeasured
 Separations Probed

Drawbacks:
 Not sensitive to small mass planets.
 Limited to nearby systems.
 Period must be less than duration of observations.

Microlensing Searches for Extrasolar Planets
Microlensing and Planets

Time Delay

\[\tau = \frac{1}{2} (\theta - \beta)^2 - \psi(\theta) \]

\[\psi(\theta) = \frac{1}{\pi} \int \kappa(\theta') \ln |\theta - \theta'| \, d^2\theta' \]

\[= \theta^2 E \ln \theta \]

Lens Equation

\[\beta = \theta - \theta^2 E / \theta \]

Angular Einstein Ring Radius

\[\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{LS}}{D_{OL}D_{OS}}} \approx 300 \mu as \left(\frac{M}{0.3M_\odot} \right)^{1/2} \]

Microlensing Searches for Extrasolar Planets
Microlensing and Planets

Single Lens Parameters:
- Impact parameter
- Time of Maximum Mag.
- Timescale

\[t_E = \frac{\theta_E}{\mu} \approx 20\text{days} \left(\frac{M}{0.3M_\odot}\right)^{1/2} \]
Microlensing and Planets

Single Lens Parameters:
- Impact parameter
- Time of Maximum Mag.
- Timescale

$$t_E = \frac{\theta_E}{\mu} \simeq 20 \text{days} \left(\frac{M}{0.3M_\odot}\right)^{1/2}$$

Planet Parameters:
- Angle wrt Binary Axis
- Projected Separation
- Mass Ratio - q

$$t_p \simeq \sqrt{q} t_E \simeq 1 \text{day} \left(\frac{M_p}{M_J}\right)^{1/2}$$

Microlensing Searches for Extrasolar Planets
Microlensing and Planets

Detection Efficiency:

Naïve Estimate:
\[\sim \frac{\theta_p}{\theta_E} \approx 3\% \left(\frac{q}{10^{-3}} \right)^{1/2} \]

Enhanced Probability:
\[\sim A \frac{\theta_p}{\theta_E} \approx 15\% \left(\frac{q}{10^{-3}} \right)^{1/2} \]

High-Magnification Events

Higher Efficiencies

Maximized at \[a \sim \theta_E \]

Mao & Paczynski 1991,
Gould & Loeb 1992,
Griest & Safizadeh 1998
Microlensing and Planets

Advantages:

Sensitive to Jupiters at 1-10 AU.
No Flux Needed.
Extend Sensitivity to Lower Masses.

Disadvantages:

Follow-up Difficult.
Non-repeatable.
Short Timescale Perturbations.

Basic Requirements:

Nearly Continuous Sampling.
Good Photometry for Detection.

Microlensing Searches for Extrasolar Planets
Microlensing Searches for Extrasolar Planets

Alerts and Follow-up

- "Survey" Collaborations
 - Insufficient Sampling
 - Real-time Alerts

Current and Past Alerts

- EROS
 - (5 per year)
- MACHO*
 - (50 per year)
- MOA
 - (50 per year)
- OGLE II*
 - (75 per year)

Future Alerts

- OGLE III
 - (500 per year?)

![Graph showing magnification and residuals over time](image)
Microlensing Searches for Extrasolar Planets

Follow-up Collaborations
- High Temporal Sampling
- Good Photometry

Current Collaborations
- EXPORT (12 events) (Tsapras et al. 2001)
- MOA (30 events) (Bond et al. 2002)
- MPS (50 events) (Rhie et al. 2000)
- PLANET (100+ events) (Albrow et al. 1998)
Microlensing Searches for Extrasolar Planets

OGLE-1998-BUL-14

Total # of Points
- 461 I-band
- 139 V-band

Median Sampling:
- 1 hour

I-band Scatter
- Entire event ~ 4%
- Over the peak ~ 1.5%

Albrow et al. 2000
Alerts and Follow-up

Extremely Crowded Fields

Microlensing Searches for Extrasolar Planets
Detection and Efficiency

Microlensing Searches for Extrasolar Planets

Gaudi & Sackett 2000

Fix Parameters: \((q, d, \theta)\)

\[\Delta \chi^2 > \Delta \chi^2_{th} \]

Excluded

\[\Delta \chi^2 < -\Delta \chi^2_{th} \]

Detection

OGLE-1998-BUL-14:
\[\epsilon(q = 10^{-3}, d = 1.67) = 41\% \]

\[\epsilon(d, q) = \frac{1}{2\pi} \int_0^{2\pi} d\theta \Theta(\Delta \chi^2 - \Delta \chi^2_{th}) \]

Gaudi & Sackett 2000

Microlensing Searches for Extrasolar Planets
Detection and Efficiency

Microlensing Searches for Extrasolar Planets

Albrow et al. 2000
Gaudi et al. 2002

Lensed out at 95% c.l.

Projected Separation (R_\text{E})

Mass Ratio

Lensing Zone Detection Efficiency (%)
Five Years of PLANET Data

95-99 PLANET Dataset
• 126 Events Monitored

Exclude
• Equal-Mass Binaries
• Poorly Sampled Events
• Poorly-Constrained Parameters

Final Sample
• 43 Events

Albrow et al. 2001
Gaudi et al. 2002

Microlensing Searches for Extrasolar Planets
Five Years of PLANET Data

43 Event Sample
- Most Events Sensitive to $q > 0.001$ Companions
- Thirteen $A > 10$ Events
- Not Sensitive to “Earths”

Microlensing Searches for Extrasolar Planets
Five Years of PLANET Data

Detection Threshold of $\Delta \chi^2_{th} = -60$

- Two Candidate “Detections”
- Better Explained by Other Models
- No Viable Detections out of 43 Events

Microlensing Searches for Extrasolar Planets
Microlensing Searches for Extrasolar Planets

Search for Planets
- $-4 < \log(q) < -2$
- $-1 < \log(d) < 1$

No Viable Detections

What does this mean?

- >95
- $75-95$
- $50-75$
- $25-50$
- $5-25$
Five Years of PLANET Data

Expected # of Events
\[N_{\text{exp}}(d, q) = f(d, q) \sum \epsilon_i(d, q) \]

Probability of a Detection
\[P(d, q) = 1 - \exp[-N_{\text{exp}}(d, q)] \]

95% c.l. Upper Limit
\[f(d, q) \text{ for which } P(d, q) = 5\% \]

Microlensing Searches for Extrasolar Planets
<33% Have Jupiter-mass companions between 1.5-4 AU
<45% Have 3 x Jupiter-mass companions between 1-7 AU

Microlensing Searches for Extrasolar Planets
Microlensing Searches for Extrasolar Planets
Future Prospects - Ground

Pushing to Lower Fractions

- More Efficient Monitoring
- Image Subtraction Processing
Future Prospects - Ground

Pushing to Lower Fractions

• More Efficient Monitoring
• Image Subtraction Processing \[\{ \text{Factor of 3 improvement} \]
Future Prospects - Ground

Pushing to Lower Fractions
- More Efficient Monitoring
- Image Subtraction Processing
- Increasing the Number of Alerts (OGLE III)

\[R_{\text{exp}} \sim 0.1 f R_{\text{alert}} \]
\[\sim 1 \text{yr}^{-1} \left(\frac{f}{5\%} \right) \left(\frac{R_{\text{alert}}}{200 \text{yr}^{-1}} \right) \]

OGLE-III Camera
- 8 2045x4096 CCDs
- 35’ x 35’ field-of-view
- > 300 alerts per year

Microlensing Searches for Extrasolar Planets
Future Prospects - Ground

Pushing to Lower Fractions
• More Efficient Monitoring
• Image Subtraction Processing
• Increasing the Number of Alerts (OGLE III)

Pushing to Lower Masses
• More Alerts
• Main Sequence Alerts
• Larger Apertures?
Future Prospects - Ground

Earth-mass Planets

\[q \approx 10^{-5} \left(\frac{M_p}{M_{\oplus}} \right) \]

Bennett & Rhie 1996

Detection Probability \sim \text{few \%}

Microlensing Searches for Extrasolar Planets
Future Prospects - Ground

Pushing to Lower Fractions
- Increasing the Number of Alerts (OGLE III)
- More Efficient Monitoring
- Image Subtraction Processing

Pushing to Lower Masses
- More Alerts
- Main Sequence Alerts
- Larger Apertures?

Require Main Sequence Sources

Microlensing Searches for Extrasolar Planets

Bennett & Rhie 1996
Future Prospects - Ground

Pushing to Lower Fractions
- Increasing the Number of Alerts (OGLE III)
- More Efficient Monitoring
- Image Subtraction Processing

Pushing to Lower Masses
- More Alerts
- Main Sequence Alerts
- Larger Apertures?

Pushing to Larger Separations
- Longer Duration Monitoring
- Free Floating Planets?
Future Prospects - Space

Galactic Exoplanet Survey Telescope (GEST)

- 1.5m aperture
- 2.1 square degree field-of-view
- Monitor 0.1 billion main sequence stars
- 100f Earth-mass planets at 1 AU

Bennett & Rhie 2002

Microlensing Searches for Extrasolar Planets
Galactic Exoplanet Survey Telescope (GEST)
• 1.5m aperture
• 2.1 square degree field-of-view
• Monitor 0.1 billion main sequence stars
• 100f Earth-mass planets at 1 AU

Space Interferometry Mission (SIM)
• Measure Masses of Planets to 5% accuracy
Conclusions

Microlensing offers a complementary way of searching for extrasolar planets.

Four collaborations obtaining useful data
- EXPORT, PLANET, MOA, MPS

Analysis of 95-99 PLANET database:
- No viable detections.
- <33% of M-dwafs in the Bulge have Jupiter-Mass Companions between 1.5-4 AU
- <45% have 3-Jupiter mass Companions between 1-7AU

Future Prospects
- Probe fractions of 1% in 5 Years with OGLE-III Alerts.
- Possible to push sensitivity to Earth-mass planets, but requires
 - Monitoring of many events.
 - Main-sequence sources.
- A space-based survey might be optimal for detecting Earths.