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ABSTRACT

The light curve of an exoplanetary transit can be used to estimate the planetary radius and other parameters of interest.
Because accurate parameter estimation is a nonanalytic and computationally intensive problem, it is often useful to have
analytic approximations for the parameters as well as their uncertainties and covariances. Here, we give such formulae,
for the case of an exoplanet transiting a star with a uniform brightness distribution. We also assess the advantages of
some relatively uncorrelated parameter sets for fitting actual data. When limb darkening is significant, our parameter
sets are still useful, although our analytic formulae underpredict the covariances and uncertainties.

Subject headings: binaries: eclipsing — methods: analytical — planets and satellites: general

1. INTRODUCTION

The transit of an exoplanet across the face of its parent star is
an opportunity to learn a great deal about the planetary system.
Photometric and spectroscopic observations reveal details about
the planetary radius, mass, atmosphere, and orbit, as reviewed re-
cently by Charbonneau et al. (2007). Transit light curves, in par-
ticular, bear information about the planetary and stellar radii,
the orbital inclination, and the mean density of the star (Mandel
& Agol 2002; Seager & Mallén-Ornelas 2003; Giménez 2007).
Additional planets in the system may be detected through gradual
changes in the orbital parameters of the transiting planet (Miralda-
Escudé 2002; Heyl & Gladman 2007) or from a pattern of anom-
alies in a collection of midtransit times (Holman & Murray 2005;
Agol et al. 2005; Ford & Holman 2007).

In general, the parameters of a transiting system and their un-
certainties must be estimated from the photometric data using
numerical methods. For example, many investigators have used
x2-minimization schemes such as AMOEBA or the Levenberg-
Marquardt method, along with confidence levels determined by
examining the appropriate surface of constant Ay? (see, e.g.,
Brown et al. 2001; Alonso et al. 2004) or by bootstrap methods
(e.g., Sato et al. 2005; Winn et al. 2005). More recently, it has
become common to use Markov chain Monte Carlo (MCMC)
methods (e.g., Holman et al. 2006; Winn et al. 2007; Burke et al.
2007). However, even when numerical algorithms are required
for precise answers, it is often useful to have analytic approx-
imations for the parameters as well as their uncertainties and
covariances.

Analytic approximations can be useful for planning observa-
tions. For example, one may obtain quick answers to questions
such as, for which systems can I expect to obtain the most precise
measurement of the orbital inclination? Or, how many transit light
curves will I need to gather with a particular telescope before the
statistical error in the planetary radius is smaller than the sys-
tematic error? Now that nearly 50 transiting planets are known,
we enjoy a situation in which a given night frequently offers more
than one observable transit event. Analytic calculations can help
one decide which target is more fruitfully observed, and are much
simpler and quicker than the alternative of full numerical sim-
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ulations. Analytic approximations are also useful for understand-
ing the parameter degeneracies inherent in the model and for
constructing relatively uncorrelated parameter sets that will speed
the convergence of optimization algorithms. Finally, analytic ap-
proximations are useful in order-of-magnitude estimates of the
observability of subtle transit effects, such as transit timing var-
iations, precession-induced changes in the transit duration, or the
asymmetry in the ingress and egress durations due to a nonzero
orbital eccentricity.

Mandel & Agol (2002) and Giménez (2007) have previously
given analytic formulae for the received flux as a function of the
relative separation of the planet and the star, but their aim was to
provide highly accurate formulae, which are too complex for useful
analytic estimates of uncertainties and covariances. Protopapas
etal. (2005) provided an analytic and differentiable approximation
to the transit light curve, but they were concerned with speeding
up the process of searching for transits in large databases, rather
than parameter estimation. Seager & Mallén-Omelas (2003) pre-
sented an approximate model of a transit light curve with the
desired level of simplicity, but did not provide analytic estimates
of uncertainties and covariances.

This paper is organized as follows. In § 2 we present a simple
analytic model for a transit light curve, using a convenient and
intuitive parameterization similar to that of Seager & Mallén-
Ornelas (2003). In § 3 we derive analytic approximations for the
uncertainties and covariances of the basic parameters, and in § 4
we verify the accuracy of those approximations through numeri-
cal tests. Our model assumes that the flux measurements are made
continuously throughout the transit and that stellar limb darkening
is negligible; in §§ 4.1 and 4.3 we check on the effects of relaxing
these assumptions. In § 5 we derive some useful expressions for
the uncertainties in some especially interesting or useful “derived”
parameters, i.¢., functions of the basic model parameters. In § 6
we present alternative parameter sets that are better suited to
numerical algorithms for parameter estimation utilizing the an-
alytic formalism given in § 3. We compare the correlations among
parameters for various parameter sets that have been used in the
transit literature. Finally, § 7 gives a summary of the key results.

2. LINEAR APPROXIMATION
TO THE TRANSIT LIGHT CURVE

Imagine a spherical star of radius R, with a uniform bright-
ness and an unocculted flux fy. When a dark, opaque, spherical
planet of radius R, is in front of the star, at a center-to-center
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sky-projected distance of zR,, the received stellar flux is
Fe(r,z, fo) = fo[l — 2°(r,z)], where

A5(r,2)

0, 14+r<z,

1 422 — (1422 —r?y
={— rzﬁo—l—m—\/z d+z—r) , l—r<z<1l+r,

0 4

r2, z<1—r,

(1)

with 1 = cos™![(1 —r? +2%)/2z] and k¢ = cos™'[(r> + 2% —

1)/2rz] (Mandel & Agol 2002). Geometrically, A° is the overlap
area between two circles with radii 1 and » whose centers are
z units apart. The approximation of uniform brightness (no limb
darkening) is valid for mid-infrared bandpasses, which are in-
creasingly being used for transit observations (see, e.g., Richardson
et al. 2006; Knutson et al. 2007; Deming et al. 2007), and is a good
approximation even for near-infrared and far-red bandpasses. We
make this approximation throughout this paper, except in § 4.3
where we consider the effect of limb darkening.

For a planet on a circular orbit, the relation between z and the
time ¢ is

z(t) = aR;" \/[sin n(t — 1.))* +[cosicosn(t — t.)*, (2)

where a is the semimajor axis, 7 is the inclination angle, n = 27/P
is the angular frequency with period P, and . is the transit mid-
point (when z is smallest).

The four “contact times” of the transit are the moments when
the planetary disk and stellar disk are tangent. First contact (¢1)
occurs at the beginning of the transit, when the disks are exter-
nally tangent. Second contact (¢;) occurs next, when the disks
are internally tangent. Third and fourth contacts (#; and #1y) are
the moments of internal and external tangency, respectively, as
the planetary disk leaves the stellar disk. The total transit duration
is trv — t1. The ingress phase is defined as the interval between #;
and 71, and likewise, the egress phase is defined as the interval be-
tween #y; and t1y. We also find it useful to define the ingress mid-
point tine = (1 + #11)/2 and the egress midpoint feor = (tm + t1v)/2.

Although equations (1) and (2) give an exact solution, they
are too complicated for an analytic error analysis. We make a few
approximations to enable such an analysis. First, we assume the
orbital period is large compared to the transit duration, in which
case equation (2) is well approximated by

20 = /[t~ t)/n] + b2, 3)

where for a circular orbit, 7p = R,P/2wa = R,/na and b =
acos i/R, is the normalized impact parameter. In this limit, the
planet moves uniformly in a straight line across the stellar disk.
Simple expressions may be derived for two characteristic time-
scales of the transit,

tegr — ting =T0 [\/(1 +r? — b2+ \/(1 —r)? —bz}
=2mV1 = b% 4 O(r?), (4)
th — 4 _T0|:\/(1 +I")2 — b2 — \/(1 —I”)Z —b2:|

ﬁ‘f‘O(l’j). (5)
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Fic. | —Comparison of the exact and piecewise linear transit models, for the
parameter choice » = 0.2 and b = 0.5. The dashed line shows the exact uniform-
source model F¢, given by eq. (1). The solid line shows the linear model F/, given

by eq. (11).

It is easy to enlarge the discussion to include eccentric orbits, by
replacing a by the planet-star distance at midtransit and » by the
angular frequency at midtransit,

a(l —e?)
l+esinw’
n(1 + e sin w)?

a —

)

where e is the eccentricity, and w is the argument of pericenter.
Here, too, we approximate the planet’s actual motion by uniform
motion across the stellar disk, with a velocity equal to the actual
velocity at midtransit. Methods for computing these quantities at
midtransit are discussed by Murray & Dermott (2000) as well as in
recent transit-specific studies by Barnes (2007), Burke (2008),
Ford et al. (2008), and Gillon et al. (2007). We redefine the pa-
rameters 7y and b in this expanded scope as

acosi 1 —é?
b= 6
R, (1+esinw>’ (6)

R. [ V1—e?
= —|——. (7)

an \ 1 +esinw

We do not restrict our discussion to circular orbits (e = 0) un-
less otherwise stated.

Next, we replace the actual light curve with a model that is
piecewise linear in time, as illustrated in Figure 1. Specifically,
we define the parameters

0= ﬁ)rz :ﬂ)(Rp/R*)zv (8)
T =2nV1 - b2, 9)
r=2m (10)

1 -5

and then we define our model light curve as

F'(1)
Jo—6, lt—t|<T/2—-7/2,
JfH=6+(8/7)
x(t—t|-T/247/2), T/2—1/2<|t —1t.|<T/2+T1/2,
fo, |t —t|>T/2+7/2,

(11)
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We use the symbol F' to distinguish this piecewise linear model
(! for linear) from the exact uniform-source expression F° given
by equations (1) and (2). The deviations between F' and F¢
occur near and during the ingress and egress phases. The ap-
proximation is most accurate in the limit of small » and b and is
least accurate for grazing transits. As shown in equation (5), when
ris small, 7 & #;; — ¢ (the ingress or egress duration) and 7 ~
fegr — ting (the total transit duration). Neither this piecewise linear
model nor the choice of parameters is new. Seager & Mallén-
Ornelas (2003) also used a piecewise linear model, with different
linear combinations of these parameters, and both Burke et al.
(2007) and Bakos et al. (2007) have employed parameterizations
that are closely related to the parameters given above. What is
specifically new to this paper is an analytic error and covariance
analysis of this linear model, along with useful analytic expres-
sions for errors in the physical parameters of the system. The
“inverse” mapping from our parameterization to a more physical
parameterization is

(Rp/R )’ = 5/fo, (12)

acos i T
=1—-r— 1
( ) <1+esmw> " (13)

(%) (E)ZT_ )

an 1+ esinw 4r

3. FISHER INFORMATION ANALYSIS

Given a model F(¢; { p;}) with independent variable 7 and a
set of parameters {p;}, it is possible to estimate the covariance
between parameters, Cov(p;, p;), that would be obtained by mea-
suring F'(¢) with some specified cadence and precision. (Gould
[2003] gives a pedagogical introduction to this technique.) Sup-
pose we have N data points taken at times #; spanning the entire
transit event. The error in each data point is assumed to be a
Gaussian random variable, with zero mean and standard devi-
ation oy. Then the covariance between parameters { p;} is

B”%, (15)

where B is the zero-mean Gaussian noise Fisher information
matrix, which is calculated as

Cov(pi,py) = (

ZZ{ F(tk>{1’m})]8kz[ ijF(fl;{Pm})]- (16)

Here, B,, is the inverse covariance matrix of the flux measure-
ments. We assume the measurement errors are uncorrelated (i.e.,
we neglect “red noise™), in which case B;; = 61(10;2. We further
assume that the measurement errors are uniform in time with
oy = o, giving B;; = dpyo 2.

In Table 1 we compute the needed partial derivatives® of
the piecewise linear light curve F/, which has five parameters
{pl} = {tc, T, Ta 67ﬁ)}

Figure 2 shows the time dependence of the parameter deriv-
atives, for a particular case. The time dependence of the pa-
rameter derivatives for the exact uniform-source model F* is
also shown, for comparison, as are the numerical derivatives for
limb-darkened light curves. This comparison shows that the linear

3 In computing these derivatives we have ignored the dependence of the
piecewise boundaries in Table 1 on the parameter values. The derivatives associated
with those boundary changes are finite and have a domain of measure zero in the
limit of continuous sampling. Thus, they do not affect our covariance calculation.
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TABLE 1

PARTIAL DERIVATIVES OF THE PIECEWISE LiNEAR Ligut CURVE F/,
IN THE FIvE Paramerers p; = {t., 7, T, 6, fo}

Partial Derivative = Totality Ingress/ Egress Out of Transit
OIOLYF'(t; ) oo 0 —(6/T)(t — 1))t — 1| 0
OIOTYF! (t; P woreven 0 —(1m)|t — t.| — (T/2)] 0
(DIOTYF (t; ) wvveoe-. 0 —5/(27) 0
(OIOS)F'(t; piy) vevovene L (D)t =t —(T2)] - 1/2 0
(OIOf)F (t; p) coveen. 1 1 1

Note—The intervals |t — t.| < T/2 —7/2, T2 — 72 <|t — t.| < T/2 + 7/2,
and |t — .| > T/2 + 7/2 correspond to totality, ingress/egress, and out of transit,
respectively.

model captures the essential features of more realistic models and,
in particular, the symmetries. The most obvious problem with the
linear model is that it gives a poor description of the 7-derivative
and the ¢-derivative for the case of appreciable limb darkening,
as discussed further in § 4.3. From Figure 2 and Table 1 we see
that for the parameters 7', 7, and 8, the derivatives are symmetric
about ¢t = ¢, while the derivative for the parameter ¢, is anti-
symmetric about #.. This implies that #, is uncorrelated with the
other parameters. (This is also the case for the exact model, with
or without limb darkening.)

We suppose that the data points are sampled uniformly in time
at arate ' = N/Ty, where the observations range from ¢ = ¢, to
t = ty + Tyt and encompass the entire transit event. In the limit
of large I'r we may approximate the sums of equation (16) with
time integrals,

5= | M"[am {pm})H e {pm}>] (17)

o2

Using the derivatives from Table 1 we find

262
~— 0 o 0 0
-
52 B
0 — 0 — 0
6T 6
B=— 6 (18)
a2l 0 0 — = =6
2T 2
o 20 T g
6 2 3

0 0 -6 —-T T

In what follows, it is useful to define some dimensionless
variables,

0= VIT?,
(2

=71/T,
nET/(Ttot_T_T)- (19)

The first of these variables, Q, is equal to the total signal-to-
noise ratio of the transit in the limit » — 0. The second variable,
0, is approximately the ratio of ingress (or egress) duration to
the total transit duration. The third variable, 7, is approximately
the ratio of the number of data points obtained during the transit
to the number of data points obtained before or after the transit.
Oftentimes,  and 6 are much smaller than unity, which will later
enable us to derive simple expressions for the variances and co-
variances, but for the moment we consider the general case.
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Fic. 2.—Parameter derivatives, as a function of time, for the piecewise linear model light curve F’ (top row), the exact light curve for the case of zero limb darkening
F¢ (second row), and for numerical limb-darkened light curves with a linear limb-darkening coefficient u = 0.2 (third row) and u = 0.5 (bottom row). See § 4.3 for the
definition of u. Typical scales are shown in the first row and are consistent in the following rows.

Inverting B, we find the covariance matrix for the piecewise
linear model,

COV({IC7 T’ T? 67f6}7 {tC7 T? T7 67f(‘)}) =

0
2 0 0 0 0
2
1 alT?>  bO’T? cOST nH6T
o 1> dor>  boor et |0 (20)

0
0
0 cST  bOST 6> né?
0 noST  ndST — nd*  nd?

where a =10+ (6 —-50)/(1 —0), b=n—1/1-0), c=n+
1/(1 — 0), and d = nd + (2 — 0)/(1 — 6). The elements along
the diagonal of the covariance matrix are variances, or squares
of standard errors, 0, = [Cov(p;, p;)] 12,

This result can be simplified for the case when many out-of-
transit observations are obtained and 1 — 0. In this limit, f; is
known with negligible error, and we may assume fy = 1 without
loss of generality. In this case, 6 is the fractional transit depth,
and the covariance matrix becomes

COV({IC7 T7 T7 5}7 {tc7 T? T7 6}) =
0

ET2 0 0 0
66 —50) _, 0, 0
0o — 2717 — T 6T
s 1-6 1-6 1-6
0? > , 02-0) , 0
- 7 - T
0 1—-6 1—-6 1—96
0 9 1,
0 —1_96T 71_06T 1_95

from which it is obvious that 6 is the key controlling parameter
that deserves special attention. Using equations (9) and (10) we
may write

- r
T 1=k

Unless the transit is grazing, we have b <1 —r, and 6 is
restricted to the range [r, 1/(2 — r)]. Figure 3 shows the depen-
dence of 6 on the impact parameter, for various choices of the
transit depth. It is important to keep in mind that for » < 0.5, fis
nearly equal to » and depends weakly on b. This implies that 0
is expected to be quite small for most transiting systems. For
planetary orbits that are randomly oriented in space, the expected
distribution of 4 is uniform, and hence, we expect 6 < 0.3 for

0 (22)

0.5
0.4

0.3}
S
0.2}

0.1

000002 04 06 08

Fic. 3.—Dependence of # = 7/T on depth § = ? and normalized impact pa-
rameter b, for the cases r = 0.05 (solid line), 0.1 (dashed line), and 0.15 (dotted
line).
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FiG. 4 —Standard errors and covariances, as a function of # = 7/T, for different choices of 7. The analytic expressions are given in eq. (20). The definitions of 7, 6,
and Q are given in eq. (19). We show results for n = 0 (solid lines), n = 0.5 (dashed lines), and n = 1 (dotted lines).

90% of a random sample of transiting planets with R, < Ry*
For this reason, in the following figures we use a logarithmic
scale for 6, to emphasize the small values. Figure 4 shows the
(suitably normalized) elements of the covariance matrix as a
function of 6.

In the limits 7 — 0 (errorless knowledge of f;) and 0 — r
(small impact parameter), the expressions for the standard errors
are especially simple,

o, =07'T\/0)2,
o R Q_IT\/@,

4 In fact, the fraction of discovered systems with 6 < 0.3 may be even larger
than 90%, because selection effects make it harder to detect grazing transits.

or ~ 0 'TV?26,
o5 ~ Q6. (23)
In this regime, we have a clear hierarchy in the precision with
which the time parameters are known, with 0, < o7 < 0.

To further quantify the degree of correlation among the pa-
rameters, we compute the correlation matrix,

Corr({tca T, Ta 67f0}7 {tw T, T> 67ﬁ)})

1 0 0 0 O

Cov(i.)) 01 a b c
:m:Oalde,(ZM

0 b d 1 f

0 c e f 1
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Fig. 5.—Correlations of the piecewise linear model parameters, as a function of § = 7/T for different choices of 7. We show results for 7 = 0 (solid lines), n = 0.5

(dashed lines), and n = 1 (dotted lines).

where a = (8 — 1)0/([6 — 05 — B)][2—0(1 - A", b = (B+
1)0/[6 — 05 — B2, ¢ = (B0/[6 — 65 — B2, d = (B —
DO2A(5+ D2 — 01— B2, e = (B0/[2 — 6(1— B)) %, and
f =[B/(5+ 1)]'2, and we have defined 5 = n(1 — 0) to sim-
plify the resulting expression. For # — 0, all correlations with
fo vanish except for the correlation with . Because of the fact
the correlation between 6 and fj is oc3'/2, it remains large even
for fairly small 3. In the limit of n — 0 (8 — 0), we remove all
correlations with f; and have the remaining correlations de-
pending only on the ratio 6,

limCorr(-,-) =
n—0

1 0 0 0 0
0
0 1 a 630 0
0 a - 2%0 o |, 9
\/6—959 _\/239 ! 0
0 0 0 0 1

where a = —0/[(6 — 50)(2 — 6)]'"". Correlations with f; decline
with 7 as /7.

In Figure 5 we have plotted the nonzero correlations as a
function of 6 for a few choices of 7. The special case of n — 0 is
plotted in Figure 6. In the 7 — 0 limit, all correlations are small
(=<0.3) over a large region of the parameter space. Thus, our
choice of parameters provides a weakly correlated set for all
but grazing transits (6 ~ 1/2), as noted during the numerical
analysis of particular systems by Burke et al. (2007) and Bakos
et al. (2007). One naturally wonders whether a different choice of
parameters would give even smaller (or even zero) correlations.
In § 6 we present parameter sets that are essentially uncorrelated
and have other desirable properties for numerical parameter es-
timation algorithms.

The analytic formalism given in this section and, more spe-
cifically, the simple analytic covariance matrices in equations (20)
and (21) provide a toolbox with which to evaluate the statistical
merits of any parameter set that can be written in terms of our pa-
rameters. In § 5 this technique is defined and applied to produce
analytic formulae for variances, covariances, and uncertainties in
several interesting parameters.

4. ACCURACY OF THE COVARIANCE EXPRESSIONS

Before investigating other parameter sets, it is necessary to ex-
amine the validity of equations (20), (21), (24), and (25) when
compared to similar quantities derived from more realistic transit
light-curve models. The utility of the covariance matrix in equa-
tion (20) depends on the accuracy of the integral approximation
of equation (17) and on the fidelity with which the parameter de-
pendences of the piecewise linear model mimic the dependences

1.0,
0.5¢ 7,0 .
1Y) il 7, T 1
~05}
T,o ™
_1.()7\ Il Il Il Il Il \7
0.05 01 015 02 03 0405

0

Fic. 6.—Correlations of the piecewise linear model parameters, as a function
of § = 7/T, for the case n — 0 (errorless knowledge of the out-of-transit flux).
The solid line denotes Corr(r, T'), the dashed line denotes Corr(7, §), and the
dotted line denotes Corr(7, 6).
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of the exact uniform-source model. In this section we investigate
these two issues.

4.1. Finite Cadence Correction

The case of a finite observing cadence, rather than continuous
sampling, can be analyzed by evaluating the exact sums of equa-
tion (16). Generally, given a sampling rate I', we expect the in-
tegral approximation in equation (17) to be valid to order (I'r) L.
In the n — 0 limit we may evaluate the exact sums, under the
assumption of a uniform sampling rate, with data points occurring
exactly at the start and end of the ingress (and egress) phases as
well as at some intermediate times. This directly summed co-
variance, Covgn, is related to the integral approximation co-
variance equation (21) as

2
COVsum('v ) = COV('a ) +6 <z>

0
0O 0 0 O
0 0 & € 0
26
“T—& | o 2ol @9
0O 0 o0 O

where ¢ = (I'1) .

The quantity I'7 is approximately the number of data points
obtained during ingress or egress. It is evident from equation (26)
that for this sampling scheme only the variances of T'and 7 along
with their covariance are corrected. The corrections to the var-
iances and covariance are O(¢?) and O(e), respectively.

4.2. Comparison with Covariances
of the Exact Uniform-Source Model

We tested the accuracy of the covariance matrix based on the
piecewise linear model by (1) performing a numerical Fisher anal-
ysis of the exact uniform-source model and also (2) applying a
Markov chain Monte Carlo (MCMC) analysis of simulated data
based on the exact uniform-source model. In both analyses, orbits
are assumed to be circular. For the first task, we evaluated the
analytic parameter derivatives of equation (1), which are too cum-
bersome to be worth reproducing here, and numerically integrated
equation (17) to generate covariance matrices over a wide range
of parameter choices. Figure 2, in § 2, shows the parameter de-
rivatives for the exact model, as well as the piecewise linear model
and some limb-darkened light curves. For the second task, idea-
lized data was generated by adding Gaussian noise with standard
deviation o/fy = 5 x 10~4 to equation (1) sampled at I" =100
(in units of the characteristic timescale 79, eq. [7]). With this
sampling rate, approximately 50 samples occur during the ingress
and egress phases. Approximately 10* links per parameter were
generated with a Gibbs sampler and a Metropolis-Hasting jump
acceptance criterion. The jump success fraction (the fraction of
jumps in parameter space that are actually executed) was approx-
imately 25% for all parameters. The effective length, defined as
the ratio of the number of links to the correlation length (see the
end of § 6 for the exact definition), was roughly 1000—2000 for
the piecewise linear model parameter set. More details on the
MCMC algorithm are given by Tegmark et al. (2004) and Ford
(2005). Standard errors were determined by computing the stan-
dard deviation of the resulting distribution for each parameter. The
Fisher information analysis should mirror the MCMC results, as
long as the log-likelihood function is well approximated as qua-
dratic near the mean (Gould 2003).

The numerical Fisher analysis was performed for n = 0 and
0.05 < 0 < 1/2. In practice this was done by choosing » = 0.05
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Fic. 7.— Comparison of the nonzero correlation matrix elements for the exact
light-curve model and the piecewise linear model, as a function of § = 7/7, for
n — 0. Black lines show correlations for the piecewise linear model. Gray lines
show correlations for the exact uniform-source model. Filled circles show correla-
tions based on an MCMC analysis of simulated data with Gaussian noise (» = 0.1).

and varying b across the full range of impact parameters. (The
numerical analysis confirmed that the suitably normalized co-
variances vary only as a function of § = 7/T, with the exception
of aslight 6-dependent positive offset in o that goes to zero as ¢
goes to zero.) The MCMC analysis for n = 0 was accomplished
by fixing the out-of-transit flux, fy = 1, and varying the remaining
parameters. We chose » = 0.1 for the MCMC analysis. Figure 7
shows all of the nonzero numerical correlation matrix elements,
as a function of 6. The MCMC results, plotted as filled circles,
closely follow the curves resulting from the numerical Fisher
analysis. Figure 8 shows the nonzero numerical covariance matrix
elements, also for the case = 0.

The correlations of the piecewise linear model match the cor-
relations of the exact model reasonably well, with the most sig-
nificant deviations occurring only in the grazing limit, 8 ~ 1/2.
We have also confirmed that a similar level of agreement is ob-
tained for nonzero n, although for brevity those results are not
shown here. We concluded from these tests that the errors in the
analytic estimates of the uncertainties are generally small enough
for the analytic error estimates derived from the piecewise linear
model to be useful.

4.3. The Effects of Limb Darkening

The piecewise linear function of equation (11) was constructed
as a model of a transit across a stellar disk of uniform brightness,
with applications to far-red and infrared photometry in mind. At
shorter wavelengths, the limb darkening of the star is important.
How useful are the previously derived results for this case, if at
all? We used the limb-darkened light-curve models given by
Mandel & Agol (2002) to answer this question.

To simplify the analysis we adopted a ““linear” limb-darkening
law, in which the surface brightness profile of the star is

@:1—u(l—\/r:_z—2'>, (27)

)

where u is the linear limb-darkening parameter. Claret (2000)
finds values of u ranging from 0.5 to 1.2 in UBVR for a range of
main-sequence stars. Longer wavelength bands correspond to a
smaller « for the same surface gravity and effective temperature.
Solar values are u ~ 0.5 in the Johnson R band and 0.2 in the
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Fig. 8.—Comparison of the covariance matrix elements for the exact uniform-source model, linear limb-darkened model, and the piecewise linear model, as a function
of 8 = 7/T, for n — 0. Black lines show covariances for the piecewise linear model. Gray lines show covariances for the exact model with linear limb-darkening
coefficientu = 0 (solid lines) and 0.5 (dashed lines). Filled circles show covariances as determined by a MCMC analysis of simulated data with Gaussian noise (u = 0 and
7= 0.1). The dimensionless number Q = (I'T)"?6/c (see eq. [19]) is approximately the signal-to-noise ratio of the transit.

K band. Figure 2 of § 2 shows the time dependence of the pa-
rameter derivatives of a linear limb-darkened light curve, for the
two cases u = 0.2 and 0.5, to allow for comparison with the cor-
responding dependences of the piecewise linear model and the
exact model with no limb darkening.

From the differences apparent in this plot, one would expect
increased correlations (larger than our analytic formulae would
predict) between the transit depth and the two timescales 7 and 7.
This is borne out by our numerical calculations of the covariance
matrix elements, which are plotted in Figures 8 and 9. The analytic
formulae underpredict the variances in § and 7 by a factor of a few,
and they also severely underpredict the correlation between those
parameters.

It is possible to improve the agreement with the analytic for-
mulae by associating ¢ with the minimum of the transit light curve,
rather than the square of the radius ratio. Specifically, one replaces
the definition of equation (12) with the new definition

94(@4)”

5= for?
Jor 9— 8u

(28)

For the previously derived formulae to be valid, we must adopt a
value for u based on other information about the parent star (its
spectral energy distribution and spectral lines, luminosity, etc.)
rather than determining u from the photometric data. Figure 10
shows the correlations resulting from this new association, for the
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Fic. 9.—Comparison of the analytic correlations (black lines; eq. [24]) and numerically calculated correlation matrix elements for a linear limb-darkened light curve
(gray lines), as a function of @ = 7/T, for n — 0. Line styles follow the conventions of Fig. 7.

case u = 0.5. Figure 11 shows the improvement with this new
association for the variance in ¢ and the covariance between 6 and
T, for the case u = 0.5. While this new association improves on
the agreement with the analytic covariances (particularly at low
normalized impact parameters), a disadvantage is that we no
longer have a closed-form mapping from {8, T, 7} back to the
more physical parameters {r, b, 79}

It should be noted that there is evidence that linear limb dark-
ening may not adequately fit high-quality transit light curves
relative to higher order models (Brown et al. 2001; Southworth
2008). A more complete analysis with arbitrary source surface
brightness would minimally include quadratic limb darkening,
but is outside the scope of this discussion. Pal (2008) completes
a complementary analysis to this one of uncertainties in the
quadratic limb-darkening parameters themselves.

5. ERRORS IN DERIVED QUANTITIES OF INTEREST
IN THE ABSENCE OF LIMB DARKENING

The parameters {z., 7, T, 6, fo} are preferred mainly because
they lead to simple analytic formulae for their uncertainties and
covariances. The values of these parameters are also occasionally
of direct interest. In particular, when planning observations, it is
useful to know the transit duration, depth, and the predicted mid-

1.0, :
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O'O,- -------- T7 T 7
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0

Fi6. 10.— Comparison of correlation matrix elements for the piecewise linear
model (black lines) and a linear limb-darkened light curve (u = 0.5; gray lines), as
a function of § = 7/T. Here, the 6-parameter has been redefined as the minimum of
the limb-darkened light curve, as approximated by eq. (28). Line styles follow the
conventions of Fig. 7.

transit time. Of more direct scientific interest are the values of the
“physical” parameters, such as the planetary and stellar radii, the
orbital inclination, and the mean density of the star. Those latter
parameters also offer clearer a priori expectations, such as a uni-
form distribution in cos i.

For affine parameter transformations p — p’, we may transform
the covariance matrix C via the Jacobian J = 9p’/0p as

c’' =J'cl. (29)
Using equations (12)—(14) we may calculate the Jacobian

0tcvb27 T()z,l”,ﬁ) _

Ote,7,T,8,fg
1 0 0 0 0
rT T
0 — — 0 0
T2 4y
o = - 0 0
T 4r (30)
T Tt 1
2fort 8for>  2for
pT TT r |

27 Bor 2%

between the parameters of the piecewise linear model and the
more physical parameter set when limb darkening is negligible.
Using this Jacobian, the transformed covariance matrix is

COV/({bz’ 7—025 rafO}a {b27 T()z,r,ﬁ)})
ar* bT* dr* 0
1 bT? cOT* efT* 0
@ drr eT* fr2 0
0 0 0 o0

2 3

) L 5 g 2 rg

2 — T 2 _J

2" 16 49" 2970

1 0*h? 1 1

—iT? T*  —0hT* —rOhfyT?

_|_£ 16l 64r2 16 Sr f() (31)
2 1 1 1 ’

Q %I"z E@hTZ Z}’2 §r3f(‘)

g 1 1

E 0 grehbez §F3f£) 1’4 02
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Fic. 11.—Comparison of select covariance matrix elements for the piecewise linear model (black lines) and a linear limb-darkened light curve (1 = 0.5; gray lines),
as a function of § = 7/7T. The é-parameter has been redefined as the minimum of the limb-darkened light curve, as approximated by eq. (28), in the solid gray line. The
dashed gray line uses the initial 6-association, as defined in eq. (8). Line styles follow the conventions of Fig. 8.

where a = (24 — 0[4(0 — 3)0 + 23])/[4(1 — 0)¢*], b= (24 —
0123 — 4(6 — 2)0)/[16(1 — 6)0], ¢ = (24 — 6[4(0 — 1)0 + 23])/
[64r2(1 — 0)], d = (20 + 1)/[40(1 — )], e = (1 — 20)/[16(1 —
), f=1/[41—-0),9g=1-20,h=1+20,andi =1 — 46,
and where we have ignored the unmodified covariance elements
involving 7. and have kept only the leading-order terms in 7 in the
n-dependent matrix.

The standard errors for other functions of the parameters,
S{ p:}), can be found via error propagation, just as in equation (29),

ar[ f({p:i})] = ZZCOV(pl,pJ 8f 8f (32)

The results for several interesting and useful functions, such as
the mean densities of the star and planet, are given in Table 2.
For brevity, the results are given in terms of the matrix elements
of equation (31). Simplified expressions for covariance matrix

elements in the limit of 1 — 0, small 8 (plentiful out-of-transit
data), and negligible limb darkening are given in Table 3.

6. OPTIMIZING PARAMETER SETS FOR FITTING
DATA WITH SMALL LIMB DARKENING

The parameter set {¢., 7, T, 6, fo } has the virtues of simplicity
and weak correlation over most of the physical parameter space.
However, when performing numerical analyses of actual data,
the virtue of simplicity may not be as important as the virtue of
low correlation, which usually leads to faster and more robust
convergence. To take one example, lower correlations among
the parameters result in reduced correlation lengths for MCMCs
and faster convergence to the desired a posteriori probability
distributions and can obviate the need for numerical principal
component analysis (Tegmark et al. 2004). In Figure 12 we com-
pare the degree of correlations for various parameter sets that
have been used in the literature on transit photometry. Of note is

TABLE 2
TRANSIT QUANTITIES AND ASSOCIATED VARIANCES IN TERMS OF THE MATRIX ELEMENTS FROM EqQuaTION (31)

Quantity

Variance (Standard Error Squared) Notes

R./a = (y1/7)2n19/P
Ryla = (V1/2)2TT0F [P

Rf,[Var(r)/r? + (logM /M ) Var*(x)] )
(1/4)(R, /a)zVar(r0 ¥ers
(Rp/a)z[(l/4)Var(r0 i 4 Var(r)/r?]

B] = (Y2 /)|ACOS I/Ry] ceveoveeereeeieeeieeeseeseeeiseeonee
|cos i| = (y2/3)2mro|b|/P..
Pe = /NP BIBGTIPITY oo
Op = N (Kap 3 YPRTGMY s

(72/71) R P/(27r7' ) ...........................................
= (B/DKPIQTIITE SIND) oo,

(1/4)Var(h?)/b?
(1/4) cos?i[Var(b?)/b* + COV(TO D)TEB? + Var(rd)/)
(9/4)p Var(ro )i
o, [(9/4)\/a1r(7'02)/7'0 +9Var(r)/r? + (9/2)Cov(r 75 )/}’7’0 + 2

(1/4)(cos i/bY*Var(b*) — (3/4)(cos i/b)*Cov(b?, 7¢)/7¢ —

(3/2)( cos i/b)>Cov(b?, r)/r + Var*(K,)/K?]

g2((9/4)Var(r@)/3 + (log M, /M, Y Var*(v)] 1
gy [Var(3)/rg + 4Var(r)/r® + 2Cov(r, 7)/r7g + 2

(1/4)(cos i/b)*Var(h?) — (1/2)(cos i/by*Cov(b?, 73)/7¢ —

(cos i/b)*Cov(b?, r)/r + Var* (K, )/K?]

Notes.—We have assumed that both the orbital period, P, and stellar mass, M,, are known exactly. We have defined the noncircular

orbit parameters y; = 1 + esinwand 1, = (1 — e

2)1/’2

, where e is the eccentricity and w is the argument of pericenter (see § 2 for a

discussion of eccentric orbits). Quantities with asterisks are not determined by the transit model and must be provided from additional

information. The term K, is the semiamplitude of the

source radial velocity. Terms have been arranged in order of relative importance

with the largest in absolute magnitude coming first. Refer to Table 3 for matrix elements of eq. (31) for the case in which the planet is
small, the out-of-transit flux is known precisely, and limb darkening is negligible. Notes from the last column: (1) A mass-radius
relation R, o< (M,/My)" is assumed. (2) We have assumed i 2 80° in simplifying the inclination dependence in the variance.
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TABLE 3

CovARIANCE MATRIX ELEMENTS FROM EqQuaTioN (31)
IN THE LiMiT 7 — 0 AND SMALL 6 FOrR USE IN TABLE 2

Element Approximate Value
OMVAL ()12 oo 14
OPVAr(B?)/b* oo 6r2/6°b*
O>Var(13)/7g covveeeees 3/20
Q2Cov(b?, 13)/b*7¢ . 6r/6>b*
Q*Cov(b?,r)/b*r...... r/40b*
Q2 COV(TE, YTET e 1/16

Note.—These approximations are valid in the case in which the
planet is small, the out-of-transit flux is known precisely, and limb
darkening is negligible.

the high degree of correlations among the “physical” parameter
set {R,/a,R,/a, b}, which is a poor choice from the point of view
of computational speed.

Nevertheless, one advantage of casting the model in terms
of physical parameters is that the a priori expectations for those
parameters are more easily expressed, such as a uniform dis-
tribution in b. The determinant of the Jacobian given by equa-
tion (29), |J], is also useful in translating a priori probability
distributions from one parameter set to the other (see Burke et al.
[2007] or Ford [2006] for an example of how this is done in

L bz, T02
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i b r e
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practice). For the case of the parameter set {¢., 7, T, 8,/ }, we
may use the Jacobian, equation (30), to convert a priori prob-
ability distributions via

plte, 7, T, 6, fo)dt. dr dT db dfy

1
= p(t. bZ 2
p( s ’To’r’f())4r9f0

1 1
_P(taby TOﬂ",ﬁ))T%mdlc dde() drdﬁ)

12
= caba sy T L.0_ 1
Plie; b, 10,7 ﬁ))<16br27-0f0

dt.db* dr¢ dr df;

>dtc dbdrodrdfy, (33)

where we have remeasured the phase-space volume via the
determinant,

= (34)

8{tcab2a Tozarafb}
o 4rdfy

a{tcﬂ T’ T? 6’f6}

‘ 1

One may use this expression to enforce a uniform prior in b,
for example, by weighting the likelihood function as shown in
equation (33). However, there is a practical difficulty due to the
singularity at b = 0. One way to understand the singularity is

1.0

[ R./a, Rpy/a
0.5}

0.0

—0.5}

~1.0L
P 0.15 0.2 0.3

-1.0L
0.05 0.1

FiG. 12.—Comparison of correlations for various parameter sets that have been used in the literature. The correlations were derived from the piecewise linear model
(eq. [21]) assuming 1 = 0. (a) Parameters {b?, 77, r}. (b) Parameters {R,/a = n7y, R,/a = n7or, b*}. (c) Parameters {2/T, b%,r} (e.g., Bakos et al. 2007). (d) Parameters

{T,T,6}, the set introduced in this paper.
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Fic. 13.—Correlations for the parameter set {b, T, r}. The correlations were
derived from the piecewise linear model (eq. [21]) assuming 1 = 0.

to note that uniform distributions in 7 and 7 lead to a nearly
uniform distribution in § = 7/T, which highly disfavors b = 0;
in order to enforce a uniform distribution in b, the prior must
diverge at low b. Figure 3 graphically captures the steep var-
iation for small b with 6. Consider, instead, the parameter set
{t.,b,T,r = (6/fy)""*, fo}, where from equation (13), b*> = 1—
rT/T. We may calculate the determinant of the Jacobian (not re-
produced here) as

1-p2)
‘: (4br2f0])" ' (35)

8{tcvb7 Taraf(‘)}
6{t677—7 Taévf(‘)}

Combining this result with equation (33),

plte, b, T, . fo)dt. dbdT dr dfy

1 T
:p(t07b>7—07r7ﬁ))1—_

dt.dbdrydrd,
71)2 4T() Todr ﬁ)

1
= p(t., b, 19,7, fo) ———=dlt. db dry dr dfy. 36
P 0 fo)zm odrdfy.  (36)

The singularity at » = 0 has been removed with this parameter
choice. There is a singularity at » = 1 instead, which is only rel-
evant for near-grazing transits, and is not as strong of a singularity
because of the square root. We confirm that this parameter set also
enjoys weak correlations, as shown in Figure 13, and therefore,
this set is a reasonable choice for numerical parameter estimation
algorithms. The merits of other parameter sets, from the stand-
point of correlation and a priori likelihoods, may be weighed in
a similar fashion, using the simple analytic covariance matrix of
equation (20) and the appropriate transformation Jacobian, in
combination with equation (29).

If the issues associated with the transformation of priors are
ignored (i.e., if the data are of such quality that the results will
depend negligibly on the priors), we can give essentially un-
correlated parameter sets. Consider, for example, the parameter
set {¢.,S. = 6/7,T,A = 6T}. The new parameter S, is the mag-
nitude of the slope of the light curve during the ingress and egress
phases, and the new parameter A4 is the area of the trapezoid
defined by the transit portion of the light curve (i.e., the time
integral of the flux decrement). For simplicity we assume 1 = 0

Fic. 14.—Comparison of the correlations among the parameters, for the set
{6,T, 7} (black lines), the set {S., T, A = T6} (dash-dotted gray line), and the
set {S,,IT = T¢’, 6} (solid gray line) for the case § = 0.1. For the latter set, the
only nonzero correlation is between 11 and S,, which vanishes at § = 0.1.

and fix fy = 1. The transformed correlation (eq. [25]) is found via
the transformation Jacobian, equation (29), as

COH({[Cv Se; TvA}v {tca S67 TaA})
1 0 0 0
0 1 0 0

o1 —0)
Ve-6@+1 | (37)
o1 —0)
00 Ve =-60+1) !

The determinant of the transformation Jacobian (for use with
eq. [33]) is given as

H@{tc,Se, T,A}H _a —Tb2>2 . (38)

o{t., n,T,6}

With this new parameter set, the only nonzero correlation is be-
tween 7'and A4, and this correlation is <0.3 even for grazing tran-
sits (see Fig. 14). We have found that these parameters provide a
nearly optimal set for data fitting when little is known at the out-
set about the impact parameter of the transit.

It is possible to do even better when the impact parameter is
known at least roughly. Consider the parameter set {z., S,, I =
76,6}, where S, is the slope of ingress and 6 is a constant (whose
chosen value will be discussed momentarily). The new param-
eter IT has no simple physical interpretation. We again assume
n = 0 and fy = 1. The correlation matrix in this case is

Corr({tc’ Se, 11, 6}7 {tw Se, 11, 6}) =
1 0 0 0

0 1 0 0
(0-9)

V(0 0) +2001 - 0)

0 0 1

(0-9)

0 0
V(0—0) +2001 - 0)

1

(39)
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The determinant of the transformation Jacobian is given as

Ha{tc,Se,H,é}H _ (= bz)zrzg. (40)

}t., 7, T,6} T?

With this choice, the only nonzero correlation is between II and
6. If the constant 6 is chosen to be approximately equal to 6, then
this sole correlation may be nullified. Thus, if 8 is known even
approximately at the outset of data fitting—from visual inspec-
tion of a light curve or from the approximation 6 ~ r valid for
small planets on nongrazing trajectories—a parameter set with
essentially zero correlation is immediately available. As an ex-
ample, Figure 14 shows the correlation between Il and ¢ as a
function of 6, for the choice § = 0.1, whichhasanullatf = 0.1
as expected. _

The utility of this parameter set is not lost if § cannot be con-
fidently specified when used with MCMC parameter estimation
codes. At each chain step 7, the next candidate state can be drawn
from the candidate transition probability distribution function
generated by the above parameter set with 6 = 6,_;. Thus, the
Markov chain will explore the parameter space moving along
principal axes at each chain step. In addition, allowing the can-
didate transition function to vary as the Markov chain explores
parameter space may prove useful for low signal-to-noise ratio
data sets.

As a concrete example of the effectiveness of uncorrelated pa-
rameters, we apply the MCMC algorithm to simulated data. For a
given choice of the parameter set, we generate chains with a fixed
jump success fraction and calculate the resulting autocorrelations
of the Markov chain. For a particular parameter p (with value p;
at chain step i), the autocorrelation a at a given chain step j is
defined as

o <pipi+j>_<pi>2 41
L) “

where the averages refer to the averages over the whole chain
(Tegmark et al. 2004). The correlation length of the chain is the
number of steps N that are required before the autocorrelation
drops below 0.5. The total chain length divided by the corre-
lation length is referred to as the effective length of a chain. The
effective chain length is approximately the number of indepen-
dent samples, which quantifies the degree of convergence of the
algorithm. A lower correlation length, for the same total chain
length, gives a more accurate final distribution. This autocorre-
lation analysis was performed for both the “physical” parameter
set {t.,b*,73,r*} as well as the parameter sets {z.,7, 7,6} and
{t.,b,T,r}, with n = 0 in all cases (i.e., plentiful out-of-transit
data). The MCMC was executed as detailed in § 4.2 with a fixed
jump rate ~50% for all parameter chains. (In practice, this was
achieved by adjusting the size of the Gaussian random pertur-
bation that was added to each parameter at each trial step.) By
choosing either the parameter set {¢., 7, T, 6} or {¢., b, T, r}, the
correlation lengths are reduced by a factor of approximately 150.
By using the minimally correlated parameter set {¢., S,, T, A}, the
correlation lengths are reduced by an additional factor of ~2.

To completely eliminate the correlations between parameters,
one can diagonalize the symmetric covariance matrix (eq. [37])
and find the linear combinations of parameters that eliminates
correlations. This was done by Burke et al. (2007) for the par-
ticular case of the transiting planet XO-2b. Analytic expressions
for the eigenvectors are available because there are only two
entangled parameters. However, these eigenvectors are linear
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combinations of local parameter values; they do not constitute a
global transformation rendering the covariance diagonal. Thus,
this procedure is useful for numerical analysis of a particular
system, although not for analytic insights.

7. SUMMARY

We have presented formulae for uncertainties and covariances
for a collection of parameters describing the light curve of an
exoplanet transiting a star with uniform brightness. These co-
variances, given in equations (20) and (31), are derived using a
Fisher information analysis of a linear representation of the transit
light curve. The key inputs are the uncertainty in each measure-
ment of the relative flux, and the sampling rate. We have verified
the accuracy of the variance and covariance estimates derived
from the piecewise linear light curve with a numerical Fisher anal-
ysis of a more realistic (nonlinear) light-curve model and with a
Markov chain Monte Carlo analysis of idealized data.

We focused on a particular parameterization of this piecewise
linear light curve that we believe to be most useful. The param-
eters are the midtransit time (#.), the out-of-transit flux (fp), the
flux decrement during the full phase of the transit (6), the duration
of'ingress or egress (7), and the duration between the midpoint of
ingress and the midpoint of egress (7). This set is observationally
intuitive and gives simple analytic formulae for variances and
covariances. The exact parameter definitions are provided in
equations (8), (9), and (10) in terms of the normalized impact
parameter, stellar and planetary radii, the semimajor axis, and
the orbital period. Inverse mappings to more physical parameters
are provided in equations (12), (13), and (14). The analytic co-
variance matrix is given in equation (20), and the analytic cor-
relation matrix is given in equation (24). Some quick-and-dirty
(but still rather accurate) expressions for the parameter un-
certainties, for the case in which the planet is small, the out-of-
transit flux is known precisely, and limb darkening is negligible,
are given as

0. =07'T\b)2,
or R QilT\/@,
or & Q’IT\/2—9,

o5~ 00,

where @ = 7/T is the ratio of the ingress or egress duration to the
total duration, and Q = (I'T)" 2(6/0) is the total signal-to-noise
ratio of the transit in the small-planet limit (see eq. [19]).

We investigated the applicability of these results to a limb-
darkened brightness profile, in which the true light curve is not
as well described by a piecewise linear function. We found that
the analytic formulae underestimate some of the variances and
covariances by a factor of a few, for a typical degree of limb dark-
ening at optical wavelengths. Significant improvements to co-
variance estimates in the limb-darkened case may be made by
redefining the depth parameter as a function of the darkening
coefficient and impact parameter as in equation (28). Unfortu-
nately, no closed-form mapping to more physical parameters
exists with this choice, and therefore, most of the appeal of the
analytic treatment is lost.

Quantities that are derived in part or in whole from the transit
light curve (such as the stellar mean density or exoplanet surface
gravity) are provided in terms of the suggested parameter set. In
Table 2, uncertainties propagated from the covariance estimates
for these quantities are provided with simple analytic formulae.
In Table 3, covariance elements relevant to the uncertainties in
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Table 2 are given for the case in which the planet is small and
the out-of-transit flux is known precisely. This allows the un-
certainty in a given physical parameter to be predicted in advance
of any data, bypassing the need for time-consuming simulations.
For transit surveys, these formulae may also be useful in giving
closed-form expressions for the expected distributions for some of
the key properties of a sample of transiting planets.

In § 6, with the tools provided, we approach the question of
what parameter sets are best suited to numerical parameter esti-
mation codes. This question depends both on the level of pa-
rameter correlation and the behavior of any a priori likelihood
functions. We advocated a parameter set that has the virtue of both
weak correlation and essentially uniform a priori expectations;
specifically, the parameters are the midtransit time, the out-of-
transit flux, the ratio of planetary to stellar radii (R,/R,), the nor-
malized impact parameter, and the duration between the midpoint
of ingress and the midpoint of egress. Figure 13 graphically de-
scribes the parameter correlations, while equation (36) gives the
a priori probability distribution. Finally, two parameter choices
are given that are less intuitive than the suggested set but that
provide smaller correlations, depending on information that may

be inferred or guessed prior to analysis. Correlations may be tuned
to zero with the second parameter choice for a nongrazing transit
and an estimate of R,/R,. The resulting correlation matrices for
both parameter choices are given in equations (37) and (39).
Lower correlations relate directly to more efficient data fitting,
as demonstrated by reduced correlation lengths with a Markov
chain Monte Carlo method.
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