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ABSTRACT
Microlensing is one of the most promising methods of reconstructing the stellar mass function down

to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the pres-
ence of unresolved binaries, which can, in principle, signiÐcantly alter the inferred mass function. Here
we quantify the fraction of binaries that can be detected using microlensing, considering speciÐcally the
mass ratio and separation of the binary. We Ðnd that almost all binary systems with separations greater
than b D 0.4 of their combined Einstein ring radius are detectable assuming a detection threshold of 3%.
For two M dwarfs, this corresponds to a limiting separation of AU. Since very few observed MZ1
dwarfs have companions at separations AU, we conclude that close binaries will probably not[1
corrupt the measurements of the mass function. We Ðnd that the detectability depends only weakly on
the mass ratio. For those events for which individual masses can be determined, we Ðnd that binaries
can be detected down to b D 0.2.
Subject headings : binaries : visual È gravitational lensing È stars : luminosity function, mass function

1. INTRODUCTION

Four surveys are currently discovering microlensing
events toward the Large Magellanic Cloud and the Galactic
bulge et al. et al. et al.(Alcock 1997 ; Aubourg 1995 ; Udalski

While the initial goal of these surveys1994 ; Alard 1996).
was to determine the fraction of the halo that is composed
of massive compact halo objects, the possible returns from
these surveys are much broader. In particular, it may soon
be possible to measure the mass function of the lenses.

Traditional methods of measuring the stellar mass func-
tion are restricted to luminous objects. Thus, these methods
can be applied only to stars above the hydrogen-burning
limit and are restricted to sparse samples near this limit.
Microlensing overcomes this limitation because the e†ect is
due to the mass of the lens, not its intrinsic luminosity.
Thus, microlensing samples can extend mass function
measurements beyond the hydrogen-burning limit.

In general, it is not possible to measure the masses of
individual microlenses. This is because the only parameter
that yields any information about the lens is the timescale,
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where v is the transverse velocity of the lens relative to the
observer-source line of sight and is the Einstein ringr

eradius,
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Here and are the distances between the ob-DOL, DOS, DLSserver, lens, and source and M is the mass of the lens. Thus,
is a complicated function of the quantities of interest : thet

emass, velocity, and distance of the lens. There are two basic
methods of acquiring additional information. The Ðrst is
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using parallax to measure the projected Einstein radius of
the lens, either by considering the parallaxr8

e
\ (DOS/DLS)re,caused by the motion of the Earth et(Gould 1992 ; Alcock

al. & Kamionkowski or by employ-1995 ; Buchalter 1997)
ing a parallax satellite (Refsdal 1966 ; Gould 1995a ;

& Gould & Gould TheBoutreux 1996 ; Gaudi 1997).
second method is using proper motion information to
measure the angular Einstein radius, h

e
\ 4GM/c2r8

e
(Gould

& Wickramasinghe & Mao1994 ; Nemiro† 1994 ; Witt
& Welch Combining these two pieces of1994 ; Gould 1996).

information yields the mass, distance, and velocity of the
lens and references therein).(Gould 1996 Gould (1995b)
estimates that one can expect D100 giant events toward the
Galactic bulge per year. A parallax satellite would be able
to measure parallaxes for D70% of these events &(Gaudi
Gould and D15% of events could yield proper1997),
motions with current technology Thus, one(Gould 1996).
might expect to obtain full information for D15 events per
year.

The fundamental limitation of using microlensing to
reconstruct the mass function comes from the issue of unre-
solved binaries. If one assumes that the individual masses
measured are due to single lenses without considering unre-
solved binaries, the reconstructed mass function will be
biased toward large masses. This issue has been studied for
the stellar mass function as determined from counts of lumi-
nous stars in the solar neighborhood (Reid 1991 ; Kroupa,
Tout, & Gilmore and it has been shown that unre-1991),
solved binaries can signiÐcantly alter the inferred mass
function, in particular, leading to an underestimation of the
number of low-mass stars. Unresolved binaries could pose a
similar problem for microlensing. It is thus important to
quantify the detectability of binaries from microlensing.

Binary events can be divided into three basic classes
according to the separation, b, in units of the Einstein ring
radius : wide binaries (b ? 1), intermediate binaries (b D 1),
and close binaries (b > 1). Although it may be difficult to
determine the frequency of wide binaries from microlensing
experiments, these objects pose no problem for recon-
structing the mass function because the light curve for each
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member is una†ected by the presence of the other. Similarly,
intermediate binaries pose no difficulty because they give
rise to events that deviate dramatically from those of single
lenses and, hence, are easily distinguished. However, close
binaries are problematic in that they can masquerade as
point lenses. In this way, microlensing di†ers from tradi-
tional methods of detecting binaries : the closer a compan-
ion is to a luminous star, the larger the induced orbital
motion and hence the easier it is to detect spectroscopically.

The goal of this paper is to quantify the fraction of binary
microlensing events for which the binarity of the lens is
detectable. We speciÐcally focus on close binaries, for which
b ¹ 1. In particular, we quantify the smallest separation
that can be resolved for a majority of events given speciÐed
observing parameters. We also discuss the e†ects of the
mass ratio of the binary components and e†ects of Ðnite
source size on the detectability.

2. OBSERVED FREQUENCIES OF CLOSE BINARIES

Before calculating detection rates, we Ðrst review what is
known about the frequency of close binaries, speciÐcally for
low-mass stars and brown dwarfs, where microlensing is
most useful. Unfortunately, there is no information about
the binarity of objects with masses below the hydrogen-
burning limit, the regime of greatest interest. The most rele-
vant observed sample is of the stars just above the
hydrogen-burning limit. Various surveys of local, late-type
dwarf stars have been made with the aim of discovering
unseen companions. Precise radial velocity measurements
are the most sensitive to low-mass, close binaries. &Marcy
Benitz obtained radial velocity measurements of M(1989)
dwarfs in the solar neighborhood, with precisions of D200
m s~1, allowing detection of companions with masses

& Marcy examined this sampleZ 0.01 M
_

. Fischer (1992)
and found that out of 62 primaries, only three have a com-
panion with separations of AU. They estimate a detec-[1
tion probability of 86% for this range. For two M dwarfs, 1
AU corresponds to a separation in units of the Einstein ring
radius of b D 0.4. Thus, approximately 3/(0.86 ] 62) D 6%
of M dwarfs in the solar neighborhood have companions
with b \ 0.4. Although the solar neighborhood may not be
a perfectly representative sample, it appears that binaries
with separations b \ 0.4 are not common. As we show
below, with observations of reasonable photometric preci-
sion, almost all binaries with separations of b [ 0.4 are
detectable. Moreover, we show that for events where the
mass can actually be measured, binarity is detectable even
at substantially smaller separations. Thus, close binaries are
unlikely to be a major source of error for reconstructing the
mass function via microlensing.

3. BINARY LENSING FORMALISM

Consider a binary lens system. The Einstein ring radius
for the binary system is given by where Mequation (1b),
now denotes the total mass of the binary. We will normalize
all subsequent lengths in the lens plane to and all lengthsr

ein the source plane to the Einstein ring radiusr
e
(DOS/DOL)projected onto the source plane. All subsequent masses are

normalized to M. Using complex coordinates, we denote
the position of the source with respect to the center of mass
of the binary as f\ m ] ig and the position of the com-
ponent masses and as and The image positionsm1 m2 z1 z2.
with respect to the center of mass, z\ x ] iy, are then given

by (Witt 1990)

f\ z] m1
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The magniÐcation, of each image is given by the Jaco-A
i
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bian of the evaluated at the image posi-transformation (3a),
tion,
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If the images are unresolved, the total magniÐcation is given
by the sum of the individual magniÐcations, TheA\; A

i
.

set of source positions where the magniÐcation is formally
inÐnite, given by the condition det J \ 0, deÐnes closed
curves called caustics. Five images are created if the source
is inside a caustic, three if the source is outside. It is those
regions near the caustics where the magniÐcation from the
binary deviates most dramatically from that of a point lens.

In practice, is solved numerically in order toequation (3a)
determine the image positions, and these positions, together
with are then used to calculate the total mag-equation (3b),
niÐcation.

4. DETECTION RATES

After normalizing to and M, there are two parametersr
ethat determine the lensing structure of a binary : b, the

binary separation, and the mass ratio, Toq \ m1/m2.analyze how the magniÐcation of a binary lens deviates
from that of a point mass lens for a speciÐed q and b, we
deÐne v, the excess magniÐcation over a single lens,

v\ A[ A0
A0

, (4a)

where is the magniÐcation of a point lens with massA0equal to the total mass of the binary, M, and located at the
center of mass of the binary,

A0\ o f o2] 2
o f o ( o f o2] 4)1@2 . (4b)

We then calculate v as a function of the source position,
(m, g) and draw contours of v\ ^3%, ^10%. These excess
magniÐcation contours deÐne regions where the magniÐ-
cation of the binary lens deviates from that of the single lens
by 3% and 10%. shows contours of v for q \ 0.1,Figure 1
0.4, 0.7, 1.0 and b \ 0.2, 0.3, 0.4, 1.0.

Ignoring higher-order e†ects (unresolved light from
unmagniÐed sources, Ðnite source, etc.), there are six param-
eters that characterize a binary lens event. Two of these are
intrinsic to the lens : b and q. Three are purely geometrical
factors that describe the lens trajectory : the time oft0,
closest approach of the source and the center of mass of the
lens ; b, the separation between the source and center of
mass at and h, the angle that the lens trajectory makest0 ;
with the projected binary axis. The Ðnal parameter is the
timescale of the event, given by A lensingequation (1a).
event will be a straight line through the maps of v, speciÐed
by these six parameters. We want to know, given any event
being observed with a speciÐed sampling rate, whatnmeas,the probability is of distinguishing a binary with parameters
q and b from a point-mass lens. This means we must con-
sider all possible b and h. Since has no e†ect on thet0detection probability, we ignore it. For each possible trajec-
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FIG. 1.ÈContours of excess magniÐcation, v, for four values of b, the binary separation in units of the Einstein ring, and q, the ratio of the masses of the
binary components. Contours are v\ 0.10 (heaviest lines), 0.03, [0.10, and [0.03 (lightest lines). The mass positions and are chosen such that the centerz1 z2of mass is at the origin, both masses are on the m-axis, and the smaller mass, is to the left.m1,

tory, we ask whether, at each measurement, o v oº vthres,where is the given detection threshold. If this require-vthresment is met, we consider that the binary has been detected.
The distributions of b and h are Ñat. We therefore integrate
over all trajectories with 0¹ b ¹ 1 and 0¹ h ¹ 2n. The
probability for detecting the binary is simply the ratio of the
number of events for which the binary was detected to the
total number of trial events. Comparing the panels of

it is apparent that the binary detection probabilityFigure 1,
depends much more strongly on b than on q. For b \ 1.0,
nearly all possible event trajectories will cross contours of
3%, and therefore the fraction of events for which the binary
is detected is D1, whereas for b \ 0.2, the fraction of events
for which the binary is detected is >1. For b \ 0.4, a signiÐ-
cant fraction of trajectories will still cross contours of 3%.
This implies that the binary detection probability must
decline rapidly from b \ 0.4 to b \ 0.2.

In order to calculate binary detection probabilities, we
adopt parameter values and 10% andvthres\ 3% nmeas \25 measurements per For kpc and kpc,r

e
. DOSD 8 DOL D 4

r
e
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M

_
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. (4c)

Thus, for a binary consisting of two M stars, M D 0.4 M
_

,
AU. Assuming vD 200 km s~1, then days.r

e
D 3 t

e
D 25

Therefore corresponds to one measurement per day.nmeasCurrent follow-up surveys have temporal resolutions con-

siderably greater than this ; the PLANET collaboration
reports a median sampling of D2 hr in the I band (Albrow
et al. Furthermore, from for b º 0.3, the1996). Figure 1,
regions of v[ 0.1 are all larger than implying thatD0.1r

e
,

deviations of less than 10% will persist for at last D2 days.
Therefore, each point on which we apply our detection cri-
teria can be thought of as a bin of 12 independent PLANET
measurements, and our detection criteria can be thought of
as the requirement that 12 consecutive points have an
average deviation of v [ vthres.shows contours of binary detection probabilityFigure 2
as a function of b and q for As expected, P isvthres \ 10%.
much more sensitive to b than to q and declines rapidly for

Excess magniÐcation contours of v\ 0.10 followb [ 0.5.
closely the structure of the caustics. Thus, we can examine
the structure of the caustics to understand InFigure 2.

we show the caustics for three binary separations.Figure 3,
For separations of there is only one caustic,0.7[ b ¹ 1.0,
and the binary detection probability is roughly given by the
cross section of this caustic integrated over all angles h. At a
binary separation of b \ 2~1@2^ 0.7, the caustics splits into
three parts. The main, diamond-shaped caustic is located
near the center of mass, and the two smaller triangle-shaped
caustics are on the g axis symmetrically above and below
the main caustic. As b decreases from b \ 0.7, the secondary
caustics become smaller and move farther from the center of
mass, but the v\ 0.1 contour still extends between the
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FIG. 2.ÈContours of detection probability as a function of binary
separation and mass ratio for Contours have equal spacingsvthres \ 0.10.
of 10%. A binary is considered detected if o v o[ 0.10 at any point during
the event.

primary and secondary caustics. At b D 0.5, the v\ 0.1
contour breaks and no longer extends between the primary
and secondary caustics. Thus, the binary detection prob-
ability shown in exhibits a sharp break at b D 0.5Figure 2
and declines rapidly for b \ 0.5, as the primary caustic
shrinks.

shows contours of binary detection probabilityFigure 4
as a function of b and q for Again, P is muchvthres \ 3%.
more sensitive to b than to q and declines rapidly for

FIG. 4.ÈContours of detection probability as a function of binary
separation and mass ratio for Contours have equal spacingsvthres \ 0.03.
of 10%. A binary is considered detected if o v o[ 0.03 at any point during
the event.

b \ 0.4. The reasons for the structure of are similarFigure 4
to those for but note that the v\ 0.03 contoursvthres \ 3%,
follow the structure of the caustics less closely, and thus the
break in the detection probability occurs at a smaller value
of b.

5. ORBITAL MOTIONS

To understand the e†ect of the orbital motion of the
binary on the detection probability, we deÐne a parameter

FIG. 3.ÈCaustic curves, deÐned as the locus of points in the source plane where the magniÐcation is formally inÐnite, for binary separations of b \ 1.0
(left), 2~1@2 (middle), 0.6 (right).
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FIG. 5.ÈContours of excess magniÐcation, v\ ^0.03, ^0.10, for a
source of radius o \ 0.03 for events with o f o¹ 0.06 for binary separations
of b \ 0.25, 0.20, 0.15, 0.10. Positive contours are bold curves.

t, which describes the amount the binary rotates during the
event,

t\ 2n
t
e

P
, (5a)

where P is the period of the binary. Using KeplerÏs laws,
and assuming face-on circular orbits and kpc, tDOS\ 8

FIG. 6.ÈDetection probability as a function of binary separation for
(solid line), 0.10 (dotted line). The source size is o \ 0.03. Avthres \ 0.03

binary is considered detected if at any point during the event.o v o[ vthres

can be written as

t\
A15 km s~1

v
BA M

M
_

B1@4
[4z(1[ z)]1@4b~3@2. (5b)

For vD 200 km s~1, and M D 0.4 this becomesz\ 12, M
_

,
tD 0.06b3@2. Therefore, for b [ 0.3, the binary will rotate
by Thus, the rotation of the binary during an eventt[ 20¡.
is small for most events and will not change signiÐcantly the
binary detection probabilities. This result is borne out
quantitatively in numerical simulations that we have per-
formed but which we do not report in detail.

6. FINITE SOURCE EFFECTS

In order to utilize microlensing as a method to recon-
struct a mass function, one must be able to gather addi-
tional information for each individual event. One of the two
necessary pieces of information is the proper motion of the
lens, For events with relatively small Einsteink \ v/DOL.
rings (which are typically associated with the low-mass
lenses considered here), k can be measured primarily when
the source passes very close to the lens. The light curve then
deviates from that of a point source, and this deviation can
then be used to determine k.

It is therefore interesting to restrict consideration to those
events for which Ðnite source e†ects must be taken into
account and to ask what the probability is of detecting a
binary if these e†ects are present. Since the majority of
source stars for these events will be giants, we consider a
source of average giant radius R\ 22 R

_
(Gould 1995b).

For kpc, kpc, and M D 0.4 this corre-DOS \ 8 DOL\ 4 M
_

,
sponds to a projected distance on the source plane, normal-
ized to of o \ 0.03. & Welch estimate that,r

e
, Gould (1996)

using optical/infrared photometry, proper motions could be
measured when We therefore restrict our attentionb [ 2o.
to those trajectories for which b ¹ 0.06. In general, when a
source crosses a caustic, the magniÐcation will deviate dra-
matically from that of a point-mass lens, and the binary will
be easily detectable. However, if the size of the caustic,
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which we will denote as w, is smaller than that of the source,

w[ o , (6a)

then Ðnite source e†ects will mask the binary magniÐcation
signature. If the caustic is very much smaller than the
source, w> o, then the light curves for the binary and
point-mass lenses will appear nearly identical when Ðnite
source e†ects are included. For b ¹ 0.3, the primary caustic
is diamond-shaped, and it can be shown analytically that

w^ b2/2. . (6b)

Combining equations and we Ðnd that Ðnite(6a) (6b),
source e†ects will partially mask the binary for b [ 0.25.

To be more quantitative, we again calculate the excess
magniÐcation, v, over a point lens (cf. where noweq. [4.1]),
A and are the magniÐcations of a Ðnite source of radiusA0o \ 0.03. In order to calculate this magniÐcation, we must
integrate over the source. This could, in principle, be done
directly in the source plane but would prove difficult
because the magniÐcation diverges as the source position
approaches the caustic. We therefore employ the method
suggested by & Rhie of integrating in theBennett (1996),
image plane, where the magniÐcation is well behaved. In
this case, the magniÐcation is simply given by

A\;
i/1n )

i
)

s
, (6c)

where is the area of image i and is the area of)
i

)
s
\no2

the source. The difficulty, therefore, lies in Ðnding the
images, which in general are scattered throughout the image
plane. Fortunately, for b ¹ 0.3 and o f o¹ 0.06, the images
are all conÐned to a thin annulus of radius o z o\ 1 for both
the binary and single lens. Using this method, we now con-
struct contours of v as a function of position in the source
plane, f, for a range of binary separations. In weFigure 5
show contours of v\ ^0.03 and ^0.10 for b \ 0.10, 0.15,
0.20, 0.25. Since the binary detection probability depends
more strongly on b than on q, we have included the results
only for q \ 1.0. The results for other mass ratios are qualit-
atively similar.

As in we calculate the binary detection probability by° 3,
integrating over lens trajectories in the intervals 0¹ h ¹ 2n
and 0 ¹ b ¹ 1. In we show the binary detectionFigure 6
probability as a function of b for the range 0.10¹ b ¹ 0.25.

shows that Ðnite source e†ects decrease the detec-Figure 6
tion probability for b \ 0.25 and render the binary virtually
undetectable for conÐrming the analytic estimateb [ 0.1,
below Thus, although one could measure theequation (6a).
proper motion of binary lenses with (if theb [ 0.1 b [ 0.6),

binary nature of the lens would be unresolved, and one
would attribute the event to a single lens. Therefore, when
one attempted to reconstruct the mass function of the lenses
using the proper motion information combined with paral-
lax information (see those binaries that were unre-° 1),
solved, namely, those with would bias theb [ 0.1,
reconstructed mass function toward larger masses. Fortu-
nately, as discussed in few luminous binaries are known° 2,
with b \ 0.4. We therefore conclude that unresolved
binaries are unlikely to be problematic in reconstructing the
lens mass function for those events where proper motion
information can be extracted.

7. EXTREME MICROLENSING AND BINARY DETECTION

There exists a small subclass of events in which it is pos-
sible to measure both the proper motion, k, and the project-
ed Einstein radius, from ground-based measurementr8

e
,

alone and thus determine the mass of the lens. These
extreme microlensing events (EMEs) have been discussed
by and are characterized by a very highGould (1997)
maximum magniÐcation The basic requirement to beA'.
able to measure k and is andr8

e
A'Z 200

b [ o . (7a)

We now determine whether it is possible to detect the pres-
ence of a binary of a given separation for these types of
events. found that the typical source stars forGould (1996b)
EMEs are solar-type stars. For a source of physical radius

the dimensionless radius is o ^ 0.001 for M \ 0.4RDR
_

,
kpc, and kpc. From weM

_
, DOL\ 4 DOS \ 8 equation (6a),

estimate that the binary will still be detectable as long as
wº 0.001. Using the it is apparent thatrelation (6b),
binaries of separation will be detectable in allb Z 0.05
EMEs. In fact, binaries of somewhat smaller separations
will still be detectable, since as mentioned in the require-° 6,
ment that wº o is only approximate. Furthermore, to
measure the sampling rate for EMEs must be very high,r

e
,

typically one observation per minute. These events typically
have I\ 17 ; photon statistics predict photometric preci-
sions of ¹1% for such an event with a 1 minute exposure
assuming 1A seeing, a 1 m telescope, and a sky brightness of
I\ 19.6 mag arcsec~2. With such high sampling rates and
photometric precisions, one would be able to detect binaries
of much smaller separations, perhaps down to b D 0.01.
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94-20746 from the NSF.
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