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ABSTRACT

We present a rigorous, detailed study of the generic, quantitative properties of gravitational lensing near
cusp catastrophes. Concentrating on the case in which the individual images are unresolved, we derive
explicit formulas for the total magnification and centroid of the images created for sources outside, on, and
inside the cusped caustic. We obtain new results on how the image magnifications scale with respect to
separation from the cusped caustic for arbitrary source positions. Along the axis of symmetry of the cusp, the
total magnification l scales as l / u�1, where u is the distance of the source from the cusp, whereas perpen-
dicular to this axis, l / u�2=3. When the source passes through a point u0 on a fold arc abutting the cusp, the
image centroid has a jump discontinuity; we present a formula for the size of the jump in terms of the local
derivatives of the lens potential and show that the magnitude of the jump scales as ju01j

1=2 for ju01j5 1, where
ju01j is the horizontal distance between u0 and the cusp. The total magnifications for a small extended source
located both on and perpendicular to the axis of symmetry are also derived, for both uniform and limb-
darkened surface brightness profiles. We find that the difference in magnification between a finite and point
source isd5% for separations ofe2.5 source radii from the cusp point, while the effect of limb darkening is
d1% in the same range. Our predictions for the astrometric and photometric behavior of both pointlike and
finite sources passing near a cusp are illustrated and verified using numerical simulations of the cusp-crossing
Galactic binary lens event MACHO-1997-BUL-28. Our results can be applied to any microlensing system
with cusp caustics, including Galactic binary lenses and quasar microlensing; we discuss several possible
applications of our results to these topics.

Subject headings: astrometry — binaries: general — gravitational lensing —
stars: fundamental parameters

1. INTRODUCTION

Over the past 20 years, gravitational lensing has grown
from a mere curiosity to an important component of a large
and diverse set of fields in astronomy. Its ubiquity is due at
least in part to the fact that its effects are observable over a
wide range of scales. This has enabled astronomers to use
lensing to study everything from the smallest compact
objects to the largest structures in the universe and almost
everything in between. Despite the diversity of applications
of gravitational lensing, the mathematical description of the
phenomenon itself is both relatively tractable and universal.
In almost all cases, gravitational lensing can be described by
a two-dimensional mapping from a lens plane to the light
source plane. Once this mapping is specified, all of the prop-
erties of a gravitational lens can be derived in principle. The
observable properties of lensing, however, depend on the
phenomenon to which it is applied. Therefore, lensing is tra-
ditionally divided into a number of different regimes, which
are delimited by the observables. For example, the term
microlensing is typically applied to the case in which multi-
ple images occur but are not resolved. When multiple
images are created by a gravitational lens, the separation

between these images is typically of order of the Einstein
ring radius,

�E ¼
ffiffiffiffiffiffiffiffiffiffiffi
4GM

c2D

r
; ð1Þ

where M is the mass of the lens, D � DosDol=Dls, and Dos,
Dol, and Dls are the distances from observer to source,
observer to lens, and lens to source, respectively. Thus, the
term microlensing is applied when hE is less than the
resolution. In this case, all one can measure is the collective
behavior of all the images created by the lens, i.e., the total
magnification, and the position of the center of light
(centroid) of the image. In fact, if the observer, source, and
lens were not in relative motion, then the individual image
magnifications and positions would be fixed, and even these
properties would not be measurable. The relative positions
of the observer, lens, and source, and thus the magnification
and centroid, are expected to vary on timescales of order of
the Einstein ring crossing time,

tE ¼ �EDol

v?
; ð2Þ

where v? is the transverse speed of the lens relative to the
observer-source line of sight. Fortunately, in the two
regimes where microlensing has been discussed, the typical
values of hE, Dol, and v? result in reasonable timescales.
Typical values for the lens mass M, relative source-lens
distance D, transverse velocity v?, and the resulting typical
values for hE and tE for both Local Group and cosmological
microlensing are given in Table 1. Also shown are typical
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values for the radius h* of the source’s emission region, this
radius in units of hE, �� � ��=�E, and the time it takes the
lens to cross the source, t� � ��tE. These latter parameters
will be relevant to the discussion of finite-source effects in
x 2.4. For the Local Group, a typical Einstein radius cross-
ing time is tE ¼ Oð100 daysÞ, whereas for cosmological
microlensing, tE ¼ Oð10 yrÞ.

Of exceptional importance inmicrolensing is the existence
of caustics: positions in the light source plane corresponding
to the critical values of the lens mapping.

On caustics, at least one image is formed that has
formally infinite magnification (for a point source). When a
source crosses a caustic, both the total magnification and
centroid of all the images exhibit instantaneous, discontinu-
ous jumps. These jumps are averaged out over the finite-
source size; however, it is generically true that large gra-
dients in the magnification and centroid exist near caustics.
Furthermore, microlensing caustics have several important
and useful properties. First, the large magnification results
in a large photon flux from the source. Second, the large
gradient in the magnification and centroid with respect to
source position effectively implies high angular resolution.
Finally, the highly localized nature of the high-
magnification and large centroid shift regions created by
caustics results in characteristic and easily recognizable fea-
tures in both astrometric and photometric microlensing
curves. Many authors have suggested exploiting these prop-
erties of caustics to study a number of astrophysical
applications, i.e., stellar multiplicity (Mao & Paczyński
1991), stellar atmospheres (Gould 2001), individual micro-
lens mass measurements (Graff & Gould 2002), microlens
mass functions (Wyithe, Webster, & Turner 2000a), proper-
ties of the emission regions of quasars (Wambsganss, Pac-
zynski, & Schneider 1990; Agol & Krolik 1999; Fluke &
Webster 1999; Wyithe et al. 2000b), and lens transverse
velocities (Wyithe, Webster, & Turner 1999). See Gaudi &
Petters (2002, hereafter Paper I) for a more thorough discus-
sion of the uses of astrometric and photometric microlens-
ing observations in the presence of caustics in both Local
Group and cosmological contexts.

Although the caustic curves of gravitational lenses exhibit
an enormously rich and diverse range of properties, it can
be shown rigorously that each stable lensing map has only
two types of caustic singularities: folds and cusps (Petters,
Levine, & Wambsganss 2001, p. 294). Each of these two
types of singularities have generic and universal properties,
and in particular, each can be described by a polynomial
mapping from the lens plane to light source plane. The coef-
ficients of these mappings depend on local derivatives of the
dimensionless surface potential of the lens. In Paper I, we
used the mapping for a fold singularity to derive the observ-
able properties of gravitational lensing near folds, paying
particular attention to the case of microlensing, in which the
images are unresolved. We derived analytic expressions for
the total magnification and centroid shift near a generic,

parabolic, fold caustic. We then showed how these expres-
sions reduce to those for the more familiar linear fold, which
lenses a nearby source into two equal-magnification,
opposite-parity images whose total magnification is propor-
tional to u�1=2, where u is the distance of the source to the
fold caustic. We then generalized these results to finite-
source sizes. Finally, we compared our analytic results to
numerical simulations of the Galactic binary lens event
OGLE-1999-BUL-23, in which the source was observed to
cross a fold caustic. We found excellent qualitative agree-
ment between our analytic and semianalytic expressions for
the photometric and astrometric behavior near a fold caus-
tic and our detailed numerical simulations of the second
fold caustic crossing of OGLE-1998-BUL-23.

In this paper, we present a similarly detailed study of the
generic, quantitative properties of microlensing near cusps.
Although fold caustic crossings are expected and observed
to dominate the sample of caustic crossings in Galactic
binary events (Gaudi & Gould 1999; Gaudi, Graff, & Han
2002; Alcock et al. 2000), cusp crossings will nevertheless
represent a nonnegligible fraction of all caustic-crossing
events. In fact, at least two cusp crossing events have
already been observed, the Galactic bulge events MACHO
97-BLG-28 (Albrow et al. 1999a) andMACHO-1997-BLG-
41 (Alcock et al. 2000; Albrow et al. 2000). It is interesting
to note that the analyses and modeling of these events were
performed using entirely numerical methods. As we discuss
in some detail (see x 5), we believe that the analytic results
derived here are particularly amenable to the analysis of
MACHO 97-BLG-28 and similar events. In the cosmo-
logical context, the role of cusps versus folds is less clear,
primarily because of the more complicated structure of the
caustics themselves. However, it has been shown that, in the
limit of high magnifications, the inclusion of cusps alters the
form of the total microimage magnification cross section
because of the lobe of high magnification close to and out-
side the cusped caustic (Schneider & Weiss 1992). Lensing
near cusps has been substantially less well studied than lens-
ing near folds, and as a result, useful analytic expressions
for the observable properties are few. Previous studies have
focused almost exclusively on the magnification of the
images created by a cusp singularity (Schneider & Weiss
1992; Mao 1992; Zakharov 1995, 1999). Here we study all
the observable properties of gravitational microlensing near
cusps, including the photometric (total magnification) and
astrometric (light centroid) behavior, for both point sources
and extended sources with arbitrary surface brightness
profiles.

The layout of this paper is as follows: In x 2, we derive
analytic expressions for the image positions, magnification,
and light centroid for sources near a generic cusp. In x 2.1,
we define the observable microlensing properties. In x 2.2,
we start with the generic expression for the mapping near a
cusp and derive all the properties for the local images for
sources exterior to (x 2.2.2), on (x 2.2.3), and interior to

TABLE 1

Typical Microlensing Parameters

Regime

M

(M�) D hE

v?
(km s�1) tE

h*
(las) �*

t*
(days)

Local Group ....... 1 10 kpc 1mas 100 100 days 1 10�3 0.1

Cosmological ...... 1 1 Gpc 3 las 500 10 yr 0.1 0.03 100
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(x 2.2.4) the caustic. We generalize the discussion to include
images not associated with the cusp in x 2.3 and study
extended sources in x 2.4. In x 3, we illustrate the observable
behavior near a cusp by numerically simulating the Galactic
binary lens cusp-crossing event MACHO 97-BLG-28 and
directly compare these numerical results with our analytic
expressions in x 4. In x 5, we suggest several possible applica-
tions in both Local Group and cosmological contexts. We
summarize and conclude in x 6.We note that, for the sake of
completeness, we include some results that have been pre-
sented elsewhere. Combined with the results from Paper I,
the results presented here describe the observable properties
of gravitational microlensing near all stable singularities.

2. ANALYTICAL TREATMENT

2.1. General Equations forMagnification
and Image Centroid

The lens equation due to a gravitational lens with poten-
tial  is given in dimensionless form as follows:

u ¼ h � aðhÞ : ð3Þ

Here h ¼ r=ð�EDolÞ and u ¼ s=ð�EDosÞ, where r and s denote
the proper vector positions in the lens and light source
planes, respectively, and aðhÞ �

D

 ðhÞ: Note that if � is the
surface mass density of the lens in units of the critical den-
sity �cr � ðc2DosÞ=ð4�GDolDlsÞ, then the gravitational lens
potential  is related to � by

 ðhÞ ¼ 1

�

Z
R2

dh0�ðh0Þ ln h � h0j j : ð4Þ

The lens equation induces a lensing map g from the lens
plane L into the light source plane S defined by
gðhÞ ¼ h � aðhÞ. The critical curves of g are defined to be
the locus of all critical points of g, i.e., the set of solutions hc
of the equation

det½Ag�ðhcÞ ¼ 0 ; ð5Þ

whereAg is the Jacobian matrix of g. The caustics of g are its
critical values, i.e., the set of all points uc ¼ gðhcÞ.

For a fixed source position u, the solutions in L of the lens
equation determine the lensed images of u. Suppose that a
source at u has N(u) images. The magnification of the ith
image hi ¼ hiðuÞ is given by

lðhiÞ ¼
1

det½Ag�ðhiÞ
�� �� : ð6Þ

Then the total magnification is

ltotðuÞ ¼
XNðuÞ

i¼1

lðhiÞ : ð7Þ

For a source at u, the image centroid or center of light,
denoted by hcl(u), and the shifted image centroid, which is
denoted by �hcl, are defined as follows:

hclðuÞ ¼
1

ltotðuÞ
XNðuÞ

i¼1

lðhiÞhi ; �hclðuÞ ¼ hclðuÞ � u : ð8Þ

The image centroid is defined analogously to a center of
mass. However, the image centroid is much more compli-

cated since images can suddenly be created or annihilated as
the source moves over caustics. For the case of gravitational
microlensing, the total magnification and shifted centroid
are observables, with the latter expected to be accessible to,
e.g., the Space InterferometryMission.

2.2. Local Case: Point Sources near a Cusp

A rigorous analytical study of the total magnification
(photometry) and image centroids (astrometry) for most
physically reasonable lens models (e.g., binary point mass
lenses) is very difficult. Our goal here, as in Paper I, is to
study the local, generic behavior of these observables near
an arbitrary, but fixed, critical point of a given type. In Paper
I, we studied the behavior near a fold singularity; here we
study the behavior near a cusp. In order to study the local
behavior near singularities, we Taylor expand the scalar
potential  in the neighborhood of the singularity, keeping
terms to a specified order in the image position h. We note
that the order at which one chooses to truncate the expan-
sion is somewhat arbitrary; higher accuracy can always be
achieved by keeping terms of higher order (at the expense of
higher complexity, of course). However, it is generically true
that fold critical points are characterized by partial deriva-
tives of the lensing map up to second order, while cusps are
classified by partials up to third order (Petters et al. 2001,
pp. 370–371). As a result, the Taylor expansion of the poten-
tial is usually taken up to second order for the fold and third
order for the cusp. See Schneider, Ehlers, & Falco (1992, pp.
187–188) and particularly Petters et al. (2001, pp. 341–353)
for more discussion on truncation of Taylor expansions of
the potential. After introducing an orthogonal change in
coordinates, one can thus obtain a simpler equation that
approximates the quantitative, generic behavior of the total
magnification and image centroid of sources near a critical
point. Consider a generic lensing map g whose caustics have
cusps. In such a case, there are at least two cusps since the
total number of cusps is always even (see Petters 1995,
p. 4282, for a cusp-counting formula). In this section we will
fix one of the cusps and study the behavior of g in the vicin-
ity of that cusp.

2.2.1. Local Case:Magnification and Centroid of Images
Associated with the Cusp

Without loss of generality, we can assume that the coordi-
nates h on the lens plane L and u on the light source plane S
are translated so that the cusp lies at the origin 0 of S and
gð0Þ ¼ 0. There is an orthogonal change of the coordinates
h and u, which is the same in the lens and light source planes
such that the lensing map g can be approximated by the fol-
lowing simpler mapping in a neighborhood of the origin
(Petters et al. 2001, pp. 341–353; Schneider et al. 1992,
p. 193):

u1 ¼ c�1 þ
b

2
�22 ; u2 ¼ b�1�2 þ a�32 ; ð9Þ

where

a ¼ �1
6 2222ð0Þ ; b ¼ � 122ð0Þ 6¼ 0 ;

c ¼ 1�  11ð0Þ 6¼ 0 ; 2ac� b2 6¼ 0 : ð10Þ

Note that in equation (9) we are abusing notation somewhat
by using the notation h ¼ ð�1; �2Þ and u ¼ ðu1; u2Þ for the
global lens equation (3) to express the local lens equation.
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For the explicit relationship between the local coordinates
in equation (9) and the global ones in equation (3), see
Petters et al. (2001, pp. 344–345). It is also important to add
that the partials in equation (10) are with respect to the
original global coordinates of the lens equation. Figure 1
illustrates the coordinate systems and basic properties of
lensing near a cusp. For this figure, we have adopted the
coefficients a ¼ 1:69, b ¼ 2:45, and c ¼ 2:0. These are the
appropriate values for the cusp in the observed event
MACHO 97-BLG-28. See x 4.

We shall now use the lens mapping determined by
equation (9) to study the approximate behavior of the mag-
nification and image centroid near a cusped caustic curve.
The magnification matrix A for the cusp is the Jacobian
matrix of equation (9),

A ¼
c b�2

b�2 b�1 þ 3a�22

� �
; ð11Þ

which has the determinant

detA ¼ bc�1 þ ð3ac� b2Þ�22 : ð12Þ

The cusp critical point of the mapping in equation (9) is at
the origin of the lens plane and mapped to a cusp caustic
point at the origin of the light source plane. By equation
(12), the critical curve is a parabola,

�1 ¼
b2 � 3ac

bc
�22 : ð13Þ

Equations (9) and (13) yield that points uc ¼ ðuc; 1; uc; 2Þ on
the caustic are given by

uc; 1 ¼
3ðb2 � 2acÞ

2b
�22 ; uc; 2 ¼

b2 � 2ac

c
�32 ; ð14Þ

where h2 acts as a parameter along the caustic. The magni-
tude of the curvature of the caustic is

jkj ¼
ju0c; 1u00c; 2 � u0c; 2u

00
c; 1j

½ðu0c; 1Þ
2 þ ðu0c; 2Þ

2�3=2
¼ bcj j

3 b2 þ c2ð Þ b2 � 2acj j
1

�2j j ;

where the primes indicate differentiation with respect to h2.
The curvature diverges as the cusp is approached (�2 ! 0).

By equation (14), the caustic can also be described as the
level curve

CðuÞ � 8b3

27c2ð2ac� b2Þ u
3
1 þ u22 ¼ 0 : ð15Þ

The origin is a positive cusp if 2ac > b2 and a negative cusp if
2ac < b2. Without loss of generality, we shall assume that
the cusp is positive. For this case, both a and c have the same
sign. The conditions CðuÞ > 0, CðuÞ ¼ 0, and CðuÞ < 0
determine points u outside, on, and inside the cusped caustic
curve, respectively.

Let us determine the local lensed images and their magni-
fications for sources near the cusped caustic. The expression
for u1 in equation (9) yields

�1 ¼
u1
c
� b

2c
�22 : ð16Þ

Plugging equation (16) into the expression for u2 in equation
(9), we obtain a cubic equation for h2 in terms of the source
position (u1, u2):

f ð�2Þ � �32 þ p�2 þ q ¼ 0 ; ð17Þ

where

p ¼ pðu1Þ ¼
2b

2ac� b2
u1; q ¼ qðu2Þ ¼ � 2c

2ac� b2
u2 : ð18Þ

In other words, the lensed images are points h ¼ ð�1; �2Þ
with h1 given by equation (16) and h2 a real root of equation
(17). The magnification of each lensed image h of u is then

lðhÞ ¼ 1

detAj j ; ð19Þ

where

detA ¼ bu1 þ 3
2 2ac� b2
� �

�22 ; ð20Þ

with h2 a real zero of f.

Fig. 1.—Illustration of the basic properties of photometric and astro-
metric microlensing near a cusp, for a source trajectory that passes near,
but exterior to, the cusp point. (a) The heavy solid line is the caustic, and
the shaded area indicates the region interior to the caustic, where three
images are formed; one image occurs for sources outside the bounded
shaded region. The dotted line is the source trajectory. Each sloped line
connects a source position u to the point u�c on the caustic. The u1 difference
between u�c and u is the horizontal distance Duout1;‘ � ju1 � u�c; 1j. The magni-
fication of an image is /ðDuout1;‘Þ

�1. See text. (b) The solid line is the
parabolic critical curve, whereas the dotted line denotes the image’s trajec-
tory. (c) The magnification of the image is shown in (b) as a function of
time. The solid line is the total magnification. (d ) The hcl, 1 component of
the centroid of all the images as a function of time. (e) The hcl, 2 component
of the centroid as a function of time. ( f ) The solid line is the critical curve,
whereas the dotted line shows the path of the centroid of all the images.
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For a source at angular vector position u, let
h�ðuÞ ¼ ½��1 ðuÞ; ��2 ðuÞ� be any lensed image of u associated
with the cusp, i.e.,

h�ðuÞ ¼
u1
c
� b

2c
½��2 ðuÞ�

2; ��2 ðuÞ
� �

; ð21Þ

where ��2 ðuÞ is a solution of cubic equation (17). Then
equation (14) yields that

u�c; 1 ¼
3ðb2 � 2acÞ

2b
ð��2 Þ

2 ; u�c; 2 ¼
b2 � 2ac

c
ð��2 Þ

3 ð22Þ

is a point on the caustic. It is important to note that even for
a source position u ¼ uc at a caustic point, there is no
guarantee that the caustic point u�c ¼ ðu�c; 1; u�c; 2Þ equals uc
(see eq. [53]). Now, consider the tangent line to the cusp,
which happens to coincide with the u1-axis (because of our
coordinate choice). We shall also refer to this tangent line as
the axis of the cusp since it coincides with the axis of
symmetry of the cusp. Note that by equation (11) the magni-
fication matrix A(0) at the origin maps the entire lens plane
into the previous tangent line. Define the horizontal distance
between u ¼ ðu1; u2Þ and u�c ¼ ðu�c; 1; u�c; 2Þ to be the distance
between u and u�c along the direction parallel to the tangent
line to the cusp. Denoting the horizontal distance by Du�1;‘,
we obtain

Du�1;‘ � u1 � u�c; 1
�� �� ¼ u1 �

3 b2 � 2acð Þ
2b

ð��2 Þ
2

����
���� : ð23Þ

By equation (20), we see that the magnification of h* is inver-
sely proportional to the horizontal distance between u and u�c :

lðh�Þ ¼
1

bj jDu�1;‘
: ð24Þ

We shall see that if the source is on the u1-axis, then the mag-
nification of the image h* (only one image occurs locally for
sources outside the caustic) is proportional to u�1, where u
is the distance between the source and cusp (see eqs. [36] and
[70]). If the source is on the u2-axis, then the magnification
of h* (again, only one image occurs locally) is proportional
to u�2=3 (see eq. [33]). In both cases, the horizontal distance
coincides with the ordinary distance.

We note that in Paper I, we showed that the magnification
of an image h* associated with the fold caustic is inversely
proportional to the square root of the perpendicular distance
of the source from the fold. For a generic local fold lensing
map that maps a fold critical point at the origin to a fold
caustic point at the origin, the perpendicular distance is
defined relative to the direction perpendicular to the tangent
line to the fold caustic at the origin. Note that the magnifica-
tion matrix A(0) for the fold also maps the entire lens plane
into the tangent line.

Now, the real zeros of the polynomial f in equation (17)
are characterized using the discriminant of f, i.e.,

DðuÞ �
�
p

3

�3

þ
�
q

2

�2

¼ c2

ð2ac� b2Þ2
CðuÞ : ð25Þ

By equation (25), the conditions DðuÞ > 0, DðuÞ ¼ 0, and
DðuÞ < 0 also determine, respectively, points u outside, on,
and inside the cusped caustic curve. It will be seen that for a
source outside, on, or inside the cusped caustic, there are
locally one, two, or three images, respectively. These images

lie in the neighborhood of the origin, which is a point on the
critical curve. The magnification and centroid of the images
associated with the cusp will be denoted by lloc and hloc,
respectively, and called the local magnification and local
image centroid. We shall now determine lloc and hloc for
source positions near the cusp that are outside, on, and
inside the caustic; see equations (80) and (81) for a
summary.

2.2.2. Local Case: Source outside the Cusp

For a source position u outside and near the cusp [i.e.,
DðuÞ > 0], equation (17) has one real root, namely,

�out2 ðuÞ ¼ � q

2
þ

ffiffiffiffiffiffiffiffiffiffi
DðuÞ

ph i1=3
þ � q

2
�

ffiffiffiffiffiffiffiffiffiffi
DðuÞ

ph i1=3
;

¼
�

c

2ac� b2

�1=3	

u2 þ

ffiffiffiffiffiffiffiffiffiffi
CðuÞ

p �1=3 ð26Þ

þ


u2 �

ffiffiffiffiffiffiffiffiffiffi
CðuÞ

p �1=3�
: ð27Þ

Consequently, there is one lensed image (locally):

houtðuÞ ¼ u1
c
� b

2c
�out2 ðuÞ

 �2

; �out2 ðuÞ
� �

: ð28Þ

To determine the parity of hout(u), it suffices to find the
sign of detA houtðuÞ


 �
for a single source position out-

side the caustic. A source lying on the u2-axis either
above or below the origin is outside the caustic curve
[since Cð0; u2Þ ¼ u22 > 0 for u2 6¼ 0]. Furthermore,
�out2 ð0; u2Þ ¼ ð�qÞ1=3, which is nonzero for u2 6¼ 0. It follows
that

detA houtð0; u2Þ

 �

¼ 3
2 2ac� b2
� �

ð�qÞ2=3 > 0 ; ð29Þ

where we used the fact that the cusp is positive (i.e.,
2ac� b2 > 0). Hence, the image hout has positive parity. In
the case of lensing by n-point masses, there are no maximum
images (Petters 1992), and so hout is a minimum image.

The magnification of the image hout(u) is

loutloc ðuÞ � l houtðuÞ

 �

¼ 1

bj jDuout1;‘
; ð30Þ

where

Duout1;‘ � u1 �
3

2b
b2 � 2ac
� �

�out2 ðuÞ

 �2����

���� : ð31Þ

As u approaches the cusp at 0 from outside the caustic [i.e.,
the constraint DðuÞ > 0 holds for u 6¼ 0], we have
�out2 ðuÞ ! 0. Consequently, the magnification loutloc continu-
ously increases without bound as the cusp is approached
from outside. This is unlike the case for a source crossing a
fold caustic since then a sudden, infinite, discontinuous
jump occurs in the magnification (for point sources). The
continuous increase in loutloc is due to a lobe of high magnifi-
cation outside the cusp (see Fig. 4 and also Petters et al.
2001, pp. 334–335, 480–485).

We now consider the magnification of sources on the
axes, exterior to the cusp. For sources on the u2-axis and
outside the cusp, we have p ¼ 0 and (thus) CðuÞ ¼ u22. The
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resulting image position is therefore

houtð0; u2Þ ¼ � b

2c

2c

2ac� b2
u2

� �2=3

;
2c

2ac� b2
u2

� �1=3
" #

;

ð32Þ

and the magnification is given by

loutloc ð0; u2Þ � l houtð0; u2Þ

 �

¼ ur2
u2

� �2=3

; ð33Þ

where we have defined the characteristic rise scale ur2 for
trajectories along the u2-axis,

ur2 �
27

2
c2 2ac� b2
� � ��1=2

: ð34Þ

Thus, the magnification diverges as u
�2=3
2 for u2 ! 0.

If the source is on the u1-axis and outside the cusp (i.e.,
u1 > 0), then q ¼ 0. Equation (26) yields �out2 ðu1; 0Þ ¼ 0, so
the image position is simply

houtðu1; 0Þ ¼
u1
c
; 0

� �
; ð35Þ

and the magnification is given by

loutloc ð0; u2Þ � l houtðu1; 0Þ

 �

¼ ur1j j
u1

; ð36Þ

where we have defined the rise scale ur1:

ur1 � b�1 : ð37Þ

Hence, the magnification diverges as u�1
1 for u1 ! 0.

For a source moving along a path u(t) (not necessarily
rectilinear) lying outside the cusp, the local image centroid
follows the motion of the lensed image hout uðtÞ½ � (see the
path of hout in Fig. 1), i.e.,

houtloc uðtÞ½ � ¼ hout uðtÞ½ � : ð38Þ

Observe that houtloc ð0Þ ¼ 0. Figures 1b and 1f illustrate the
trajectories of the image and centroid, respectively, for a
source in rectilinear motion.

Let us now consider the behavior of the lensed image hout

when the source at u approaches the caustic. First, as u
approaches the cusp 0 from outside, we obtain houtðuÞ ! 0.
Second, at a point u0 ¼ ðu01; u02Þ on one of the fold arcs
meeting the cusp, equation (26) shows that
�out2 ðu0Þ ¼ 2ð�q0=2Þ1=3: Since Dðu0Þ ¼ 0, it follows from
equation (25) that

�4p0
3

¼ 4

�
q0
2

�2=3

¼ �out2 ðu0Þ

 �2

; ð39Þ

where p0 ¼ pðu01Þ and q0 ¼ qðu02Þ. Note that equation (39)
implies�p0 > 0, which yields

bu01 < 0 ð40Þ

(since 2ac� b2 > 0). Hence, the limiting position of hout(u)
as u ! u0 from outside the caustic is

houtðu0Þ ¼
u01
c
þ 2b

3c
p0; 2

�
�q0
2

�1=3
" #

: ð41Þ

2.2.3. Local Case: Source on the Caustic

Assume that the source is on the caustic [i.e.,DðuÞ ¼ 0]. If
the source is at the cusp point u ¼ 0, then

p ¼ q ¼ 0 ; ð42Þ

and equation (17) has a real triple root, h2ð0Þ ¼ 0. This
yields an infinitely magnified lensed image at the origin of
the lens plane. Consequently, for a source on the cusp, the
local image centroid is at the origin (as can be seen from
eq. [38]):

0 ¼ houtð0Þ ¼ honlocð0Þ : ð43Þ

If the source is at a point u0 ¼ ðu01; u02Þ on one of the fold
arcs abutting the cusp [i.e.,Dðu0Þ ¼ 0 and u0 6¼ 0], then

p0q0 6¼ 0 ; ð44Þ

so equation (17) has two real roots, one a simple zero and
the other a double zero:

�fold; s2 ðu0Þ ¼ 2

�
�q0
2

�1=3

; �fold; d2 ðu0Þ ¼ �
�
�q0
2

�1=3

:

ð45Þ

The corresponding lensed images are as follows [since
Dðu0Þ ¼ 0]:

hfold; dðu0Þ � u01
c
þ b

6c
p0;�

�
�q0
2

�1=3
" #

; ð46Þ

hfold; sðu0Þ �
u01
c
þ 2b

3c
p0; 2

�
�q0
2

�1=3
" #

¼ houtðu0Þ : ð47Þ

Note that hfold; dð0Þ ¼ 0 ¼ hfold; sð0Þ and the rightmost
equality in equation (47) is a consequence of equation (41).

Using equation (20), equation (45), andDðu0Þ ¼ 0, we get

detA hfold; sðu0Þ

 �

¼bu01 � 2 2ac� b2
� �

p0 ¼ �3bu01 > 0 ;

ð48Þ
detA hfold; dðu0Þ


 �
¼bu01 � 1

2 2ac� b2
� �

p0 ¼ 0 ; ð49Þ

where the positive condition follows from equation (40). In
other words, the image hfold; dðu0Þ has infinite magnification
and so is located on the critical curve. On the other hand,
the image hfold; sðu0Þ is finitely magnified and has positive
parity:

lfold; sloc ðu0Þ � lloc hfold; sðu0Þ

 �

¼ 1

3 bu01
�� �� ¼ �1

3bu01
; ð50Þ

where the rightmost equality follows from equation
(40). Now, the root �fold; s2 ðu0Þ determines the caustic point
ufold; sc ¼ ðufold; sc; 1 ; ufold; sc; 2 Þ, where

ufold; sc; 1 ¼ 3 b2 � 2acð Þ
2b

�fold; s2 ðu0Þ
h i2

;

ufold; sc; 2 ¼ b2 � 2ac

c
�fold; s2 ðu0Þ
h i3

: ð51Þ

By equation (45), we have

ufold; sc; 1 ¼ 4u01 : ð52Þ

Consequently, the horizontal distance from the source at
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the fold point u0 to the caustic point ufold; sc is nonzero:

Dufold; s1;‘ � ju01 � ufold; sc; 1 j >¼ 3ju01j 6¼ 0 : ð53Þ

By equations (24) or (48), the magnification of hfold; sðu0Þ
can be expressed as

lfold; sloc ðu0Þ ¼
1

bj jDufold; s1;‘
: ð54Þ

In other words, the magnification of hfold; sðu0Þ is not inver-
sely proportional to the horizontal (or ordinary) distance
from u0 to the caustic (which is zero since the source
sits on the caustic), rather from u0 to the caustic point
ufold; sc . Analogous to �fold; s2 ðu0Þ, the root �fold; d2 ðu0Þ
in equation (45) yields a caustic point
ufold; dc ¼ ðufold; dc; 1 ; ufold; dc; 2 Þ. Since

ufold; dc; 1 ¼ 3 b2 � 2acð Þ
2b



�fold; d2 ðu0Þ

�2 ¼ u01 ; ð55Þ

the horizontal distance from u0 to ufold; dc is zero,

Dufold; d1;‘ ¼ ju01 � ufold; dc; 1 j ¼ 0 : ð56Þ

Since lfold; dloc ðu0Þ ¼ 1=ð bj jDufold; d1;‘ Þ, the vanishing of the
horizontal distance gives the earlier result that hfold; dðu0Þ is
infinitely magnified.

As u approaches a fold point u0 from outside the caustic,
we have DðuÞ ! 0 and �out2 ðuÞ ! �fold; s2 ðu0Þ (using eq. [27]).
This implies that the outside local image centroid obeys

houtloc ðuÞ ! hfold; sðu0Þ : ð57Þ

However, when u reaches u0, the centroid houtloc ðu0Þ not only
meets hfold; sðu0Þ but also the infinitely magnified image
hfold; dðu0Þ. The latter image suddenly appears when u ¼ u0
and dominates hfold; sðu0Þ in magnification. This causes the
image centroid to have a double value (see eq. [79]) and cre-
ates a discontinuous jump from hfold; sðu0Þ to hfold; dðu0Þ.
Further discussion of this jump discontinuity will be given
below (see x 2.3.2 and Fig. 2).

2.2.4. Local Case: Source inside the Cusp

For sources inside and near the cusp [i.e., DðuÞ < 0],
equation (17) has three real simple roots:

�in; 12 ðuÞ ¼ 2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ
3

 �
;

�in; 22 ðuÞ ¼ �2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ � �

3

 �
;

�in; 32 ðuÞ ¼ �2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ þ �

3

 �
; ð58Þ

where

#ðuÞ ¼ cos�1

"
ð�q=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p=3Þ3

q
#
: ð59Þ

Since DðuÞ < 0, it follows that ðp=3Þ3 < �ðq=2Þ2 � 0,
which yields p < 0 and bu1 < 0 (since 2ac� b2 > 0).
In addition, we have jq=2j=½ð�p=3Þ3�1=2 < 1, or

�1 < ð�q=2Þ=½ð�p=3Þ3�1=2 < 1. Consequently,

0 < #ðuÞ < � ð60Þ

for u inside the caustic. The values #ðuÞ ¼ 0 and #ðuÞ ¼ �
occur when u is on the top and bottom fold arcs, respec-
tively, that abut the cusp (see discussion below). The value
#ðuÞ ¼ �=2 is for u on the u1-axis inside the caustic.

A source inside and near the cusp has three local images
determined by equation (58):

hin; 1ðuÞ ¼ u1
c
þ 2b

3c
p cos2

#ðuÞ
3

 �
; 2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ
3

 �� �
;

hin; 2ðuÞ ¼
�
u1
c
þ 2b

3c
p cos2

#ðuÞ � �

3

 �
;

� 2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ � �

3

 ��
;

hin;3ðuÞ ¼
�
u1
c
þ 2b

3c
p cos2

#ðuÞ þ �

3

 �
;

� 2

ffiffiffiffiffiffiffi
�p

3

r
cos

#ðuÞ þ �

3

 ��
: ð61Þ

We saw that the condition DðuÞ < 0 yields bu1 < 0 and
0 < #ðuÞ < � for sources inside the caustic. The latter

Fig. 2.—Local gravitational lensing for source passing near a cusp; same
as Fig. 1, except for a trajectory that crosses one fold caustic. The dotted
lines in (b) show the image path for the portion of the source trajectory in
(a) outside the caustic, while the dashed and dot-dashed lines are the paths
for the other two local images. Panel (c) depicts the magnifications of the
three local images in (b); the solid line is the total magnification of the three
images. The dotted path in ( f ) is the centroid trajectory for the images.
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implies

detA hin; 1ðuÞ

 �

¼ bu1 1� 4 cos2
#ðuÞ
3

 �� �
> 0 ;

detA hin; 2ðuÞ

 �

¼ bu1 1� 4 cos2
#ðuÞ � �

3

 �� �
> 0 ;

detA hin; 3ðuÞ

 �

¼ bu1 1� 4 cos2
#ðuÞ þ �

3

 �� �
< 0 : ð62Þ

In other words, the lensed images hin, 1 and hin, 2 have posi-
tive parity, while hin, 3 has negative parity. It is useful to note
that

detA hin; 1ðuÞ

 �

¼ 0 ; for � ¼ � ;

detA hin; 2ðuÞ

 �

¼ 0 ; for � ¼ 0 ;

detA hin; 3ðuÞ

 �

¼ 0 ; for � ¼ 0; � : ð63Þ

Let us now consider the behavior of three images in equa-
tion (61) near the caustic; see Figures 2 and 3. Equation (61)
shows that as u ! 0 (source approaches the cusp) from
inside the caustic, we obtain

hin; lðuÞ ! 0 ; l ¼ 1; 2; 3 ; ð64Þ

i.e., all three images merge at the point on the critical curve
that maps to the cusp. We now investigate the image behav-
ior as the source approaches a fold caustic. There are two
fold arcs abutting the cusp, one lying above the u1-axis and
the other below. If the source is on one of these fold arcs,

then DðuÞ ¼ 0 and pq 6¼ 0. At a point u0 on the fold arc
above the u1-axis, we have ð�q0=2Þ ¼ ½ð�p0=3Þ3�1=2, which
yields #ðu0Þ ¼ 0. By equation (61), as the source position u
approaches u0 from the interior of the cusped caustic, we
have

hin; 1ðuÞ �!hfold; sðu0Þ ; hin; 2ðuÞ�!hfold; dðu0Þ ;
hin; 3ðuÞ �!hfold; dðu0Þ : ð65Þ

If the source crosses the fold transversely through the point
u0 and continues on to outside the fold, then the lensed
image moving along hin, 1(u) passes through hfold, s(u0) and
continues along hout(u). In addition, the other two images
moving along hin, 2(u) and hin, 3(u) merge into a single lensed
image at hfold, d(u0) and then disappear as the source moves
outside the caustic. These results are depicted in Figure 2b.
Similar results occur if the source travels from outside
the caustic approaching a point u0 lying on the fold arc
below the u1-axis; see Figure 3b. In this case,
ð�q0=2Þ ¼ �½ð�p0=3Þ3�1=2, which yields #ðu0Þ ¼ �. As the
source approaches u0 from outside, there is one image
locally, and the image moves along hout. Equation (61)
shows that as u ! u0 from outside the caustic, we have

houtðuÞ�!hfold; sðu0Þ ¼ hin; 2ðu0Þ : ð66Þ

When the source reaches u0, an infinitely magnified lensed
image hfold, d(u0) suddenly appears. As the source moves
transversely through u0 and enters inside the caustic, equa-
tion (61) yields that hfold, d(u0) splits into two images that
move along hin, 1(u) and hin, 3(u). Equivalently, if a source at
umoves from inside the caustic to a point u0 on the fold arc
below the u1-axis, we have that h

in, 1(u) and hin, 3(u) merge at
hfold, d(u0):

hin; 2ðuÞ �!hfold; sðu0Þ ; hin; 1ðuÞ�!hfold; dðu0Þ ;
hin; 3ðuÞ �!hfold; dðu0Þ : ð67Þ

Themagnifications of the images hin, l(u) are

linl ðuÞ � l hin; lðuÞ

 �

¼ 1

bj jDuin; l1;‘
; l ¼ 1; 2; 3; ð68Þ

where the horizontal distances are given by

Duin; 11;‘ ¼ u1 1� 4 cos2
#ðuÞ
3

 �� �����
���� ;

Duin; 21; ‘ ¼ u1 1� 4 cos2
#ðuÞ � �½ �

3

� �� �����
���� ;

Duin; 31;‘ ¼ u1 1� 4 cos2
#ðuÞ þ �½ �

3

� �� �����
���� : ð69Þ

Observe that if the source is inside the caustic, but on the
u1-axis, then #ðu1; 0Þ ¼ �=2, which yields

lin1 ðu1; 0Þ ¼ 1

2 bu1j j ¼
�1

2bu1
; lin2 ðu1; 0Þ ¼

1

2 bu1j j ¼
�1

2bu1
;

lin3 ðu1; 0Þ ¼ 1

bu1j j ¼
�1

bu1
: ð70Þ

In other words, the magnification is inversely proportional
to the distance of the source (on the u1-axis) from the cusp.
The magnification of the images are shown in Figures 2b
and 3b for a source in rectilinear motion. It follows from

Fig. 3.—Same as Figs. 1 and 2, except for a trajectory that crosses both
upper and lower fold caustics.

No. 1, 2002 GRAVITATIONAL MICROLENSING NEAR CAUSTICS. II. 475



equation (70) that

lin3 ðu1; 0Þ ¼ lin1 ðu1; 0Þ þ lin2 ðu1; 0Þ : ð71Þ

In fact, this relationship holds for any position u inside and
near the cusp (see, e.g., Schneider & Weiss 1992; Zakharov
1995, 1999):

lin3 ðuÞ ¼ lin1 ðuÞ þ lin2 ðuÞ ; ð72Þ

where DðuÞ < 0. Hence, the total magnification of the three
local images is

linlocðuÞ ¼ lin1 ðuÞ þ lin2 ðuÞ þ lin3 ðuÞ ¼ 2 lin1 ðuÞ þ lin2 ðuÞ

 �

:

ð73Þ

The image centroid of the three images for source posi-
tions inside and near the cusp is given by

hinloc ¼
lin1 h

in; 1 þ lin2 h
in; 2 þ lin3 h

in; 3

lin1 þ lin2 þ lin3
¼ 1

2
h
inð1; 2Þ
loc þ hin;3

� �
;

ð74Þ

where h
inð1; 2Þ
loc is the centroid of the images hin, 1 and hin, 2, i.e.,

h
inð1; 2Þ
loc ¼ lin; 1hin; 1 þ lin; 2hin; 2

lin; 1 þ lin; 2
: ð75Þ

The image centroid for a source in rectilinear motion is
shown in Figures 2f and 3f.

Equation (65) shows that as u ! u0 from inside the
caustic, where u0 lies on the fold arc above the u1-axis, we
obtain lin; 1ðuÞ ! lfold; sloc ðu0Þ, where 0 < lfold; sloc ðu0Þ <1 and
lin; 2ðuÞ ! 1. This yields

lin; 1ðuÞ
lin; 1ðuÞ þ lin; 2ðuÞ ! 0 ;

lin; 2ðuÞ
lin; 1ðuÞ þ lin; 2ðuÞ ! 1 as u ! u0 : ð76Þ

Similarly, equation (67) shows that if u0 is on the fold arc
below the u1-axis, then lin; 2ðuÞ ! lfold; sloc ðu0Þ and
lin; 1ðuÞ ! 1. Consequently,

lin; 1ðuÞ
lin; 1ðuÞ þ lin; 2ðuÞ ! 1 ;

lin; 2ðuÞ
lin; 1ðuÞ þ lin; 2ðuÞ ! 0 as u ! u0 : ð77Þ

It follows that as u ! u0 from inside the caustic, we have
h
inð1; 2Þ
loc ðuÞ ! hfold; d and hin; 3ðuÞ ! hfold; d . Hence,

hinlocðuÞ ! hfold; dðu0Þ ð78Þ

as u ! u0 from inside the caustic. Equations (57) and (78)
then show that for u ¼ u0, the local image centroid is double
valued and so has a jump discontinuity (Figs. 2f and 3f ):

hlocðu0Þ ¼ hfold; sðu0Þ; hfold; dðu0Þ
	 �

: ð79Þ

2.2.5. Local Case: Summary of Local Results

The magnification of the local images associated with a
source at angular vector position u near the cusp can now be

summarized as follows:

llocðuÞ ¼
loutloc ðuÞ ; u outside caustic ;

1 ; u on caustic ;

2 lin1 ðuÞ þ lin2 ðuÞ

 �

; u inside caustic ;

8><
>: ð80Þ

where the magnifications loutloc and linl , l ¼ 1, 2, are given by
equations (30) and (68), respectively. These magnifications
are shown as a function of source position in Figures 1–4.
The image centroid is given by

hlocðuÞ

¼

houtðuÞ ; u outside caustic ;	
h
fold; d
loc ðu0Þ; hfold; sloc ðu0Þ

�
; u ¼ u0 on fold arc ;

0 ; u ¼ 0 on cusp ;

1
2



h
inð1; 2Þ
loc ðuÞ þ hin; 3ðuÞ

�
; u inside caustic ;

8>>>><
>>>>:

ð81Þ

where the angular vector hout is given by equation (28),
h
fold; d
loc by equation (46), h

fold; s
loc by equation (47), hin, 3

by equation (61), and h
inð1; 2Þ
loc by equation (75). Note that the

above equations can be applied to a general (not necessarily
rectilinear) source trajectory u ¼ uðtÞ. The local centroid is
illustrated in Figures 1f, 2f, and 3f for rectilinear source
motion.

2.3. Global Case: Point Sources near a Cusp

2.3.1. Magnification and Centroid of All Images

Suppose that the source moves rectilinearly; i.e., its trajec-
tory is given by

uðtÞ ¼ uc þ ðt� tcÞ _uu ; ð82Þ

where uc is the position at which the source intersects at time
t ¼ tc the tangent line to the cusp, which coincides with the
u1-axis, and _uu is the constant angular velocity vector of the
source,

_uu ¼ cos�

tE
;
sin�

tE

� �
: ð83Þ

Recall that tE ¼ Dol�E=v?, where hE is the angular Einstein
radius and v? is the proper transverse speed of the lens rela-
tive to the observer-source line of sight. Here � is the angle
of the source’s trajectory with respect to the u1-axis (i.e.,
tangent line to the cusp).

As the source moves along the rectilinear path in equation
(82), the angular positions of the images unaffiliated with
the cusp follow continuous trajectories, and their magnifica-
tions are positive, finite, and continuous. Moreover, we
assume that for source trajectories near the cusp, the image
magnifications and positions of the unaffiliated images are
slowly varying functions of the source position u. Denote
the centroid and total magnification of the unaffiliated
images by h0 and l0, respectively. Then the magnification
ltot and image centroid hcl of all the images are given by

ltotðuÞ ¼ llocðuÞ þ l0ðuÞ ð84Þ

and

hclðuÞ ¼
1

ltotðuÞ
llocðuÞhlocðuÞ þ l0ðuÞh0ðuÞ½ � : ð85Þ
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The photometric and astrometric observables ltot and hloc,
respectively, can be expressed as functions of time by
replacing u in equations (84) and (85) by the rectilinear
source trajectory u(t) in equation (82) and Taylor expanding
h0 and l0 to first order about the crossing time t ¼ tc of the
tangent line to the cusp. This yields

ltotðtÞ ¼ llocðtÞ þ l0ðtÞ ; ð86Þ

where llocðtÞ ¼ lloc uðtÞ½ � and l0ðtÞ ¼ l0; c þ ðt� tcÞ _llð0; cÞ
with _llð0; cÞ ¼ dl0=dtjt¼tc

and

hclðtÞ ¼
1

ltotðtÞ
llocðtÞhlocðtÞ þ l0ðtÞh0ðtÞ½ � ; ð87Þ

where hlocðtÞ ¼ hloc uðtÞ½ � and h0 ¼ h0; c þ ðt� tcÞ _hhð0; cÞ with
_hhð0; cÞ ¼ dh0=dtjt¼tc

.

2.3.2. Image Centroid Jump Discontinuity at Fold Crossing

Assume that a source in rectilinear motion u(t) trans-
versely crosses the point u0 on one of the fold arcs abutting
the cusp. As uðtÞ ! u0 from inside (outside) the cusp, denote
the limiting value of the image centroid hcl uðtÞ½ � by hþclðu0Þ

[h�clðu0Þ]. The jump discontinuity vector at u0 for the image
centroid and shifted image centroid are the same:

h
jump
cl ðu0Þ ¼ hþclðu0Þ � h�clðu0Þ ¼ �hjump

cl ðu0Þ : ð88Þ

As u ! u0 from inside the cusp, we have

l0ðuÞ
ltotðuÞ

! 1

1þ llocðu0Þ=l0ðu0Þ
¼ 0 ð89Þ

(since llocðuÞ ! 1 and l0(u) is generally nondivergent).
Therefore, from equation (85), it follows that hþclðu0Þ ¼
hfold; dðu0Þ, i.e., the contribution from the images not
associated with the cusp is negligible. In contrast, as u ! u0
from outside the cusp, we have

l0ðuÞ
ltotðuÞ

! 1

1þ loutloc ðu0Þ=l0ðu0Þ
6¼ 0 ; ð90Þ

where the last inequality holds provided that u0 6¼ 0. Thus,
we generally have that h�clðu0Þ 6¼ hfold; sðu0Þ, and the contri-
bution from images not associated with the cusp can be sub-
stantial. However, because of the fact that the magnification

Fig. 4.—Contour plots of the magnification of the various images as a function of source position, u. In each panel, contours are in the interval log l ¼ �1,
1, in logarithmic steps of 0.1, and the dashed line is the caustic. (a) Contours of magnification of the nondivergent, positive-parity image, as a function of u.
Outside the caustic, this corresponds to loutloc ðuÞ. Inside the caustic, this corresponds to lin1 ðuÞ for u2 > 0 and lin2 ðuÞ for u2 < 0. (b) Contours of the divergent,
positive-parity image, which corresponds to lin1 ðuÞ for u2 < 0 and lin2 ðuÞ for u2 > 0. (c) Contours of the divergent, negative-parity image, which corresponds to
lin3 ðuÞ. (d ) Contours of the total magnification. See text for the definitions of loutloc , l

in
1 , l

in
2 , and l

in
3 .
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of the image exterior to the cusp is 41 for positions close
to the cusp, it likely a fair approximation to ignore the
contribution from the other images. We will therefore
assume that loutloc ðu0Þ=l0ðu0Þ41 and thus h�clðu0Þ ’
hfold; sðu0Þ. Consequently,

h
jump
cl ðu0Þ ¼ hfold; dðu0Þ � hfold; sðu0Þ : ð91Þ

Since hfold; dðu0Þ 6¼ hfold; sðu0Þ, we obtain a discontinuous
jump in the image centroid as the source passes through the
fold point u0. There is no discontinuous jump if the source
passes through the cusp [since hjump

cl ð0Þ ¼ 0]. Since by equa-
tion (25) we have ð�q0=2Þ1=3 ¼ �ð�p0=3Þ1=2, where the
minus (plus) corresponds to u0 on the fold arc below (above)
the u1-axis, equations (46) and (47) yield

h
jump
cl ðu0Þ ¼ � b

2c
p0; �3

ffiffiffiffiffiffiffiffiffi
�p0
3

r� �

¼
b2u01

cð2ac� b2Þ ; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6bu01
2ac� b2

s2
4

3
5 ; ð92Þ

where as before the plus/minus signs are for u0 on the
respective fold arcs above and below the tangent line to the
cusp (i.e., the u1-axis). Note that bu01 < 0 by equation (40).

For u0 sufficiently close to the cusp at 0, the variable u01
dominates ðu01Þ

2. We can then approximate the magnitude
of the jump as follows:

h
jump
cl ðu0Þ

��� ��� ¼ b2u01
cð2ac� b2Þ

 �2
þ

�6bu01
2ac� b2

( )1=2

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6bu01
2ac� b2

s
: ð93Þ

Therefore, the magnitude of the centroid jump increases as
ju01j

1=2 for ju01j5 1, where ju01j is the horizontal distance of
the caustic point u0 from the cusp. Note that no jump dis-
continuity occurs for a source passing through the cusp.

2.4. Extended Sources near a Cusp

2.4.1. Magnification and Image Centroid of Extended Sources

Consider an extended source with surface brightness
S(u). The average surface brightness is �SS � ð��2�Þ

�1

�
R
D
duSðuÞ, where D is the disk-shaped region of the

source and �� � ��=�E is the angular source radius h* in
units of hE. The magnification of the finite source is then

lfs ¼
R
D
duSðuÞlðuÞR
D
duSðuÞ ; ð94Þ

Introduce new coordinates by

u0 ¼ u� ucn
��

; ð95Þ

where ucn is the center of the source. Note that ju0j � 1. Then
equation (94) simplifies to

lfs ¼ 1

�

Z
D

du0SN u0ð Þl u0ð Þ ; ð96Þ

where SNðuÞ ¼ SðuÞ=�SS: In the case of small source sizes
��5 �E, the magnification l0(u) of the images not associated

with the cusp is a slowly varying function of u over the
source, which yields

lfs0 ’ l0ðucnÞ � l0; cn: ð97Þ

The total finite-source magnification becomes

lfstot ¼
1

�

Z
D

du0SNðu0Þltotðu0Þ ¼ lfsloc þ l0; cn; ð98Þ

where

lfsloc ¼
1

�

Z
D

du0SNðu0Þllocðu0Þ: ð99Þ

For an extended source, the image centroid is given by

hfscl �
R
D
duSðuÞltotðuÞhclðuÞR
D
duSðuÞltotðuÞ

¼
R
D
du0SNðu0Þltotðu0Þhclðu0Þ

�lfstot
;

ð100Þ

where the denominator of the middle ratio is ��2��SSlfstot. For
a source with angular radius ��5 �E, the centroid h0(u) of
the images not associated with the cusp varies slowly over
the source. Consequently, since l0(u) also varies slowly over
the source, we get

lfs0; cnh
fs
0; cn ’ l0ðucnÞh0ðucnÞ ¼ l0; cnh0;cn ; ð101Þ

where we have defined h0; cn � h0ðucnÞ. Equation (85) then
yields

hfscl ¼
lfsloc
lfstot

hfsloc þ
l0; cn

lfstot
h0; cn ; ð102Þ

where the contribution from the images affiliated with the
cusp is

hfsloc �
R
D
duSðuÞllocðuÞhlocðuÞR
D
duSðuÞllocðuÞ

¼
R
D
du0SNðu0Þllocðu0Þhlocðu0Þ

�lfsloc
; ð103Þ

and from the images unrelated to the cusp it is h0, cn.

2.4.2. Small Finite Sources on the Axes

We would like to be able to apply the formulae in the pre-
vious section to the analytic expressions derived for the
sources near a cusp (see x 2.2.5) to find analytic (or semiana-
lytic) expressions for the finite-source magnification and
image centroid of arbitrarily large sources with arbitrary
positions with respect to the cusp. Unfortunately, because
of the complicated forms for these quantities for arbitrary
point-source positions, this is effectively impossible, and
numerical methods must be employed. We take this
approach in x 3. However, it is possible to obtain analytic
expressions under certain restrictive assumptions. Specifi-
cally, we now determine the local magnification and local
image centroids for relatively small uniform and limb-
darkened extended sources on the u1- and u2-axes.

The magnification and image centroid of an extended
source are given by equations (98) and (102), respectively,
where the key terms are the local magnification (eq. [99])
and local image centroid (eq. [103]). The quantitative forms
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for the magnification and centroid of a finite-sized source
depend on the specific form of the surface brightness profile
S(u). In this section, we derive simplified expressions that
involve integrals over arbitrary surface brightness profiles.
In the next section, we adopt specific surface brightness pro-
files to derive semianalytic expressions for the centroid and
magnification for small sources on the fold axes.

We first consider sources on the u1-axis, such that D is
entirely exterior to the caustic, i.e., such that CðuÞ > 0 for
all u inD. Express the center of the source as ucn ¼ ðz��; 0Þ,
where z 	 1 with z ¼ 1 corresponding to the boundary of
the source meeting the cusp and z > 1 yielding a source on
the positive u1-axis away from the cusp. We shall assume
that for a sufficiently small source ��5 1, points
u ¼ ðu1; u2Þ inside the source are such that u2 
 0 and so
equation (26) yields �2ðuÞ 
 0. By equations (30) and (31),
the local magnification at points u inside a sufficiently small
uniform source centered at ucn ¼ ðz��; 0Þ can be approxi-
mated by loutloc ðuÞ ¼ jbu1j�1 or, equivalently,

loutloc ðu0Þ ¼
1

�� bj j
1

u01 þ z
�� �� : ð104Þ

Using equation (104), the finite-source local magnification
(eq. [99]) becomes

lfs; outloc ðzÞ ¼ 1

�� bj j
PSN

ðzÞ ; ð105Þ

where

PSN
ðzÞ ¼ 1

�

Z 1

�1

du01
1

u01 þ z
�� ��

Z ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p du02SN u01; u
0
2ð Þ :

ð106Þ

Now, at points u inside the source, equations (28) and
(38) show that the associated local image centroid can be
approximated as follows [since �2ðuÞ 
 0]:

houtloc ðuÞ ¼
u1
c
; 0

� �
¼ houtloc ðucnÞ þ

��u01
c

îi ; ð107Þ

where îi ¼ ð1; 0Þ. Inserting equation (107) into the middle
ratio in equation (103) yields a simple formula for the local
image centroid:

h
fs;out
loc ðzÞ ¼ houtloc ðucnÞ þ

îi

jbjclfs; outloc

QSN
ðzÞ ; ð108Þ

where

QSN
ðzÞ � 1

�

Z 1

�1

du01 u
0
1

1

u01 þ z
�� ��

Z ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p du02 SN u01; u
0
2ð Þ :

ð109Þ

For sources on the u1-axis for which D is entirely interior
to the caustic, i.e., such that CðuÞ < 0 for all u in D, the
resulting expressions are quite similar to those for sources
exterior to the caustic. In particular, the local magnification
at points u inside a sufficiently small uniform source cen-
tered at ucn ¼ ð�z��; 0Þ can be approximated by

linlocðu0Þ ¼
2

�� bj j
1

u01 þ z
�� �� ; ð110Þ

and therefore

lfs; inloc ðzÞ ¼ 2

��jbj
PSN

ðzÞ : ð111Þ

Similarly, the centroid of the three images created when the
source is interior to the cusp can be shown to be

hinlocðuÞ ¼ u1
c

1þ b2

2ð2ac� b2Þ

 �
; 0

� �

¼ hinlocðucnÞ þ
��
c

1þ b2

2ð2ac� b2Þ

 �
u01 îi ; ð112Þ

which is identical to the centroid for sources exterior to the
caustic (eq. [107]) with the exception of the term in square
brackets. The finite-source image centroid is therefore

h
fs; in
loc ðzÞ ¼ hinlocðucnÞ þ

2̂ii

bj jclfs; inloc

1þ b2

2ð2ac� b2Þ

 �
QSN

ðzÞ :

ð113Þ

Finally, we consider the magnification of small sources
on the u2-axis, for whichD is entirely exterior to the caustic,
i.e., such that CðuÞ > 0 for all u in D. For sources on the
u2-axis, the magnification is

l?locðu0Þ ¼
ur2
��

� �2=3 1

ðu02 þ ��Þ2=3
: ð114Þ

The finite-source local magnification becomes

lfs;?loc ðzÞ ¼ ur2
��

� �2=3

RSN
ðzÞ ; ð115Þ

where

RSN
ðzÞ ¼ 1

�

Z 1

�1

du01
1

ðu01 þ zÞ2=3

Z ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

1
Þ2

p du02SN u01; u
0
2ð Þ :

ð116Þ

We have found similar (semi-)analytic expressions for the
centroid of small sources centered on the u2-axis; however,
these expressions are generally unwieldy and thus not very
useful analytically. Therefore, for the sake of brevity, we
will not present them here.

2.4.3. Uniform and Limb-darkened Sources on the Axes

In this section, we will consider two forms for the surface
brightness profile. The first, and simplest, is a uniform
source, where the normalized surface brightness obeys

SNðuÞ � 1 : ð117Þ

Second, we consider the following form for the normalized
surface brightness:

SNðuÞ ¼ 1� � 1� 3

2
1� ju� ucnj2

�2�

 !1=2
2
4

3
5

8<
:

9=
; : ð118Þ

This form, first introduced by Albrow et al. (1999b), is
applicable for microlensing in the Local Group and is
appropriate to a nonuniform stellar source with limb dark-
ening. This profile is parameterized by the limb-darkening

No. 1, 2002 GRAVITATIONAL MICROLENSING NEAR CAUSTICS. II. 479



coefficient C, the value of which is typically dependent on
wavelength. A key feature of equation (118) is that no net
flux is associated with the limb-darkening term. Note that a
uniform source is simply the specific case of equation (118)
with � ¼ 0.

Adopting these forms for SN, we can determine the inte-
gral functions PSN

, QSN
, and RSN

, which dictate the basic
astrometric and photometric behavior of small finite
sources on the axes of the cusp. The following special case
ofPSN

ðzÞ (eq. [106]) is technically handy:

PnðzÞ ¼
1

�

Z 1

�1

dx
1

xþ zj j

Z ffiffiffiffiffiffiffiffi
1�x2

p

�
ffiffiffiffiffiffiffiffi
1�x2

p dyðnþ 1Þ 1� x2
� �

� y

 �n

;

ð119Þ

where n ¼ k=2 with k > �2 an integer. Using the following
identity (see, e.g., Zwillinger 1996, p. 387, eq. [599]),Z a

0

a2 � y2
� �n

dy ¼
ffiffiffi
�

p

2

n!

ðnþ 1=2Þ! a
2ðnþ1=2Þ ; ð120Þ

equation (119) simplifies to

PnðzÞ ¼
1ffiffiffi
�

p ðnþ 1Þ!
ðnþ 1=2Þ!

Z 1

�1

dx
ð1� x2Þnþ1=2

xþ zj j : ð121Þ

Similarly, we can identify the special case of QSN
ðzÞ (eq.

[109]),

QnðzÞ �
1

�

Z 1

�1

dx x
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ zÞ2
q

�
Z ffiffiffiffiffiffiffiffi

1�x2
p

�
ffiffiffiffiffiffiffiffi
1�x2

p dyðnþ 1Þ 1� x2
� �

� y

 �n

;

¼ 1ffiffiffi
�

p ðnþ 1Þ!
ðnþ 1=2Þ!

Z 1

�1

dx x
ð1� x2Þnþ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ zÞ2
q ; ð122Þ

andRSN
ðzÞ (eq. [116]),

RnðzÞ �
1

�

Z 1

�1

dx x
1

ðxþ zÞ2=3

�
Z ffiffiffiffiffiffiffiffi

1�x2
p

�
ffiffiffiffiffiffiffiffi
1�x2

p dyðnþ 1Þ 1� x2
� �

� y

 �n

;

¼ 1ffiffiffi
�

p ðnþ 1Þ!
ðnþ 1=2Þ!

Z 1

�1

dx x
ð1� x2Þnþ1=2

ðxþ zÞ2=3
: ð123Þ

For a small uniform source outside the cusp and on the
axis of the cusp (i.e., tangent line), equation (105) shows that
the local magnification becomes

lus; outloc ðzÞ ¼ 1

�� bj j
P0ðzÞ : ð124Þ

Similarly, from equation (110), the magnification for a small
uniform source inside the cusp and on the axis of the cusp is

lus; inloc ðzÞ ¼ 2

�� bj jP0ðzÞ : ð125Þ

By equations (108) and (124), the uniform source local

image centroid for source exterior to the caustic is

h
us; out
loc ðzÞ ¼ houtloc ðucnÞ þ

��
c

Q0ðzÞ
P0ðzÞ

îi ; ð126Þ

where houtloc ðucnÞ ¼ ðz��=c; 0Þ. For sources interior to the
caustic, the corresponding centroid is

h
us; in
loc ðzÞ ¼ hinlocðucnÞ þ

��
c

1þ b2

2ð2ac� b2Þ

 �
Q0ðzÞ
P0ðzÞ

îi : ð127Þ

For a limb-darkened source, equation (106) becomes

Pld
SN
ðzÞ ¼ P0ðzÞ þ � P1=2ðzÞ �P0ðzÞ


 �
: ð128Þ

Consequently, the finite-source local magnification exterior
to the cusp is

lld; outloc ðzÞ ¼ 1

�� bj j P0ðzÞ þ � P1=2ðzÞ �P0ðzÞ

 �	 �

; ð129Þ

and interior to the cusp

lld; inloc ðzÞ ¼ 2

�� bj j
P0ðzÞ þ � P1=2ðzÞ �P0ðzÞ


 �	 �
: ð130Þ

Now, equations (109) and (122) yield that

Qld
SN
ðzÞ ¼ Q0ðzÞ þ � Q1=2ðzÞ � Q0ðzÞ


 �
: ð131Þ

Thus, using equation (131), we see that the local centroid
exterior to the caustic (eq. [108]) becomes

h
ld; out
loc ðzÞ ¼ houtloc ðucnÞ þ

��
c

Q0ðzÞ þ � Q1=2ðzÞ � Q0ðzÞ

 �

P0ðzÞ þ � P1=2ðzÞ �P0ðzÞ

 � îi ;

ð132Þ

and interior to the caustic (eq. [113]),

h
ld; in
loc ðzÞ ¼ hinlocðucnÞ þ

��
c

1þ b2

2 2ac� b2ð Þ

 �

�
Q0ðzÞ þ � Q1=2ðzÞ � Q0ðzÞ


 �
P0ðzÞ þ � P1=2ðzÞ �P0ðzÞ


 � îi : ð133Þ

Figure 5 shows the characteristic magnification functions
P0(z) andP1=2ðzÞ as well as the centroid functions Q0(z) and
Q1=2ðzÞ. Also shown is the fractional difference
P1=2ðzÞ �P0ðzÞ

 �

=P0ðzÞ and the absolute difference
Q1=2ðzÞ � Q0ðzÞ.

Finally, we can consider the magnification of small
sources on the u2-axis. Using equation (116), for a uniform
source we find that

Rus
SN
ðzÞ ¼ R0ðzÞ ;

so

lus;?loc ðzÞ ¼ ur2
��

� �2=3

R0ðzÞ : ð134Þ

For a limb-darkened source, we obtain

Rld
SN
ðzÞ ¼ R0ðzÞ þ � R1=2ðzÞ �R0ðzÞ


 �
;
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and, thus,

lld;?loc ðzÞ ¼ ur2
��

� �2=3

R0ðzÞ þ � R1=2ðzÞ �R0ðzÞ

 �	 �

: ð135Þ

Figure 6 shows the functions R0(z) and R1=2ðzÞ along with
their fractional difference R1=2ðzÞ �R0ðzÞ


 �
=R0ðzÞ.

3. A WORKED EXAMPLE: BINARY LENSING EVENT
MACHO-1997-BUL-28

In this section we numerically calculate the observable
microlensing properties for a binary lens cusp caustic cross-
ing. We do this in order to illustrate the photometric and
astrometric lensing behavior near a cusp and to provide an
estimate of the magnitudes of the effects of finite sources
and limb darkening for a general source trajectory. In the
next section, we verify and explore the accuracy of the
analytic formulae for the total magnification and centroid
derived in the previous sections by comparing them to the
numerical results obtained here. We calculate the photo
metric and astrometric behavior for the Galactic binary
microlensing event MACHO 97-BLG-28, which was
densely monitored by the PLANET collaboration (Albrow
et al. 1999a). The best-fit model for this event has the source
crossing an isolated cusp of a binary lens; the dense
sampling near the cusp crossing resulted in a determination
of not only the dimensionless source size �* but also limb-
darkening coefficients in both the I and V bands. Combined

with an estimate of the angular size h* of the source from its
color and apparent magnitude, the measurement of �*
yields the angular Einstein ring radius, �E ¼ ��=��. There-
fore, the absolute angular scale of the astrometric centroid
shift is known, and thus, up to an orientation on the sky and
subject to small errors in the inferred parameters, the astro-
metric behavior can be essentially completely determined
from the photometric solution.

3.1. Formalism and Procedures

Consider a lens consisting of two point masses located at
positions hl, 1 and hl, 2, with no smoothly distributed matter
or external shear. In this case, the dimensionless potential
(eq. [4]) is given by

 ðhÞ ¼ m1 ln h � hl; 1
�� ��þm2 ln h � hl; 2

�� �� ; ð136Þ

where m1 and m2 are the masses of the two components of
the lens in units of the total mass. Note that all angles in
equation (136) are in units of the total mass of the system.
Since a ¼

D

 , the lens equation (3) becomes

u ¼ h �m1
h � hl; 1

h � hl; 1
�� ��2 �m2

h � hl; 2

h � hl; 2
�� ��2 : ð137Þ

Equation (137) is equivalent to a fifth-order polynomial in
h, thus yielding a maximum of five images. All of the image
positions for a given point on the source plane can be found
numerically using any standard root-finding algorithm.
Then the individual magnifications can be found using
equation (6), and the total magnification and centroid of
these images are given by equations (7) and (8).

To calculate the total magnification and centroid for a
finite-size source, it is necessary to integrate the correspond-
ing point-source quantities over the area of the source (see
eqs. [94] and [100]). This is generally difficult or time con-
suming to do directly in the source plane because of the
divergent nature of these quantities near the caustic curves;
furthermore, it requires one to solve equation (137) for each
source position. Instead, we use the method of inverse ray

Fig. 5.—Basic functions that describe the photometric and astrometric
properties of finite sources on the u1-axis (the axis of symmetry) as a func-
tion of the distance z in units of the dimensionless source size �*. (a) The
basic functions for the photometric behavior. The solid line shows zP0(z),
whereas the dotted line shows zP1=2ðzÞ. The fractional deviation of a uni-
form source from the point-source magnification is zP0ðzÞ � 1. (b) The
basic functions for the astrometric behavior. The solid line shows Q0(z); the
dotted line shows Q1=2ðzÞ. The astrometric deviation from a point source is
proportional to Q0 for a uniform source. (c) The basic functions describing
the photometric ( P1=2ðzÞ �P0ðzÞ


 �
=P0ðzÞ; solid line) and astrometric

[Q1=2ðzÞ � Q0ðzÞ; dotted line] behavior of limb-darkened sources.

Fig. 6.—Basic functions that describe the photometric properties of
finite sources on the u2-axis (perpendicular to the axis of symmetry of the
cusp), as a function of the distance z in units of the dimensionless source size
�*. (a) The solid line shows z2=3R0ðzÞ, whereas the dotted line shows
z2=3R1=2ðzÞ. The fractional deviation of a uniform source from the point-
source magnification is z2=3R0ðzÞ � 1. (b) The basic function describing the
photometric behavior of limb-darkened sources, R1=2ðzÞ �R0ðzÞ


 �
=R0ðzÞ.
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shooting, which is generally easier, quicker, and more
robust. We sample the image plane uniformly and densely
and use equation (137) to find the source position u(h) corre-
sponding to each trial image position h. The resulting source
positions are binned, with the magnification of each bin
equal to local ratio of the density of rays in h to the density
of rays in u. The result is a map of the magnification l(u),
the magnification as a function of u. Similarly, one can
determine the astrometric deviation by sampling in h, using
equation (137) to determine u(h), and then summing at each
u the values of h(u). The astrometric deviation at u is then
the summed values of h(u), weighted by the local magnifica-
tion. Thus, one creates two astrometric maps, for each
direction. The resolution of the resulting maps is given by
the size of the bins in the source plane. Since inverse ray
shooting conserves flux, the maps can be convolved with
any source profile to produce the finite-source photometric
and astrometric behavior for arbitrary source size and sur-
face brightness profile.

In this method, the accuracy of a resolution element is
limited by Poisson fluctuations in the number of rays per
bin. The fractional accuracy in the magnification lk of
resolution element k is therefore

�l
l

� �
k

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
lk��

p ; ð138Þ

where � is the surface of density of rays in the image plane
and � the area of each resolution element. For a source size
encompassing many resolution elements, the total error is

�l
l

� �
¼

X
k

wk
�l
l

� ��2

k

" #�1=2

; ð139Þ

where the sum is over all the resolution elements and wk is
the weight of each resolution element. For the simulations
of event MACHO 97-BLG-28, we require that the resolu-
tion of the maps be considerably smaller than the
dimensionless source size �*, and we require extremely high
accuracy in order to explore the subtle effects of limb dark-
ening. For MACHO 97-BLG-28, the best-fit model5 has
�� ¼ ��=�E ¼ 0:0287. We use a resolution element of angu-
lar size 2� 10�4�E ’ 0:007�� and, thus, � ¼ 4� 10�8�2E.
There are approximately 6:5� 104 resolution elements per
source size. We sample the image plane with a density of
� ’ 109��2

E and, hence, ð�l=lÞk ¼ 15%l
�1=2
k . Therefore, the

total fractional error for each source position is always
d0.1%, considerably smaller than any of the effects we are
considering.

3.2. Global Astrometric Behavior

We first analyze the global photometric and astrometric
behavior of event MACHO 97-BLG-28, which is summar-
ized in Figure 7. The best-fit model of Albrow et al. (1999a)
has the source being lensed by a close-topology binary lens.
The topology of a binary lens is specified by the mass ratio,
q ¼ m2=m1 ¼ 0:232 and the projected separation in units of

the total hE of the system, d ¼ jhl; 1 � hl; 2j ¼ 0:687. Further-
more, we shall employ a coordinate system such that the
masses are located on the h1-axis, with the origin equal to
the midpoint of the two masses and the heavier mass being
m1, which is located on the right. Thus, we have hl; 1 ¼
ðd=2; 0Þ and hl; 2 ¼ ð�d=2; 0Þ. For these parameters (d, q),
the caustics form three separate curves, with the largest
(primary) caustic located between the two masses, having
four cusps, two of which have axes of symmetry that are
coincident with the h1-axis. Sincem1 6¼ m2, the caustic is not
symmetrical about the h2-axis, and there is a relatively iso-
lated cusp located approximately at the origin. See Figure
7a, where we show the caustics and source trajectory for the
MACHO 97-BLG-28 model.

For source positions that are large in comparison to d,
the lens acts like a single mass located at the center of mass
of the binary. Thus, for such a close binary lens, two of the
images behave similarly to those formed by a single lens.
This can be seen in Figure 7b, where we plot the critical
curves and image trajectories for the event. Similarly, the
total magnification behaves like the magnification of a
single lens well away from closest approach to the origin
(midpoint of the binary). It is only when the source moves
relatively close to the lens that the binary nature of the lens
is noticeable. See Figure 7c, where we plot the magnification
as a function of time for 70 days centered on the maximum
magnification of the event. Inspection of Figure 7c shows
that, at the time of the closest approach to the origin of the
lens, the source passes very close (0.003hE) to the origin. It
thus traverses the isolated cusp of the primary caustic,
resulting in a spike in the magnification (Fig. 7c). This also
results in large excursions in both components of the image
centroid, as can be seen in Figures 7c, 7d, and 7e, where we
plot the two components of hcl as a function of time (Figs.
7c and 7d) and also the trajectory of centroid shift �hcl (Fig.
7e). Note that �E ’ 300 las (Albrow et al. 1999a), which sets
the scale for hcl and �hcl.

3.3. The Cusp Crossing

Dense photometric sampling of the event allowed Albrow
et al. (1999a) to not only determine the global parameters of
the lens but also the source size �* and limb-darkening coef-
ficients C in two different photometric bands, �I ¼ 0:67 (I
band) and �V ¼ 0:87 (V band). See equation (118) for the
definition of C. We can therefore explore not only the pho-
tometric but also the astrometric behavior of the cusp cross-
ing, including both the finite-source size and limb
darkening. Furthermore, since hE is approximately known,
we can determine the absolute scale of these astrometric fea-
tures and assess their detectability by comparing them with
the expected accuracy of upcoming interferometers.

Figure 8 summarizes the astrometric and photometric
properties near the cusp crossing. Figure 8a shows the cusp
and source trajectory; the cusp point is located at
u1; c ¼ �0:009597, and at closest approach, the center of the
lens is separated by �0:0066�E, or �20% of a source radius,
from this point. Figure 8b shows the positions of the images
associated with the cusp at intervals of 15 minutes, along
with the parabolic critical curve. The light curve near the
cusp crossing is shown in Figure 8c, for a point source, uni-
form source, and limb-darkened sources in I and V. The dif-
ference between the point source and uniform source is
considerable, whereas the difference between the uniform

5 We will be focusing on the first ‘‘ LD1 ’’ model of Albrow et al. (1999a),
with parameters given in column 2 of their Table 1. This corresponds to the
best-fit model assuming a one-parameter limb-darkening law and
DoPHOT error bars. Although their model LD2 provides a marginally
better fit, the differences are not important for this study.
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and limb-darkened source is smaller (but still significant). In
Figures 8d and 8e, we show the two components of hcl as a
function of time for the same source profiles, and in Figure
8f, we show the trajectory of �hcl. While the nearly instan-
taneous jumps are smoothed out by the finite-source size,
and also the magnitudes of the deviations are somewhat
suppressed, �200 las excursions due to the cusp are still
present. Such variations should be readily detectable using
upcoming interferometers for sufficiently bright sources.

We show the path of the centroid hcl near the cusp in
detail in Figure 9, for a point source, uniform source, and
limb-darkened sources with �I ¼ 0:67 and �V ¼ 0:87. As
the source crossed the bottom fold, two images appear at

the critical curve on the opposite side of the axis of sym-
metry of the cusp from the source, resulting in a large, dis-
continuous jump in hcl. Interior to the caustic, there are
three images, and the centroid moves in the opposite direc-
tion to the motion of the source, until a pair of images disap-
pear when the source is on the top fold, resulting in another
discontinuous jump in hcl. Again, these images disappear on
the critical curve on the opposite side of the axis as the
source. This motion results in a characteristic ‘‘ swallow
tail ’’ trajectory that can also be seen in Figure 3 and is char-
acteristic of the centroid of a pointlike source crossing both
of the fold arcs associated with a cusp. For a sufficiently
large source size, as is the case forMACHO 97-BLG-28, this

Fig. 7.—Global photometric and astrometric behavior of the best-fit model for the cusp-crossing Galactic binary lens microlensing event MACHO 97-
BLG-28. (a) The shaded areas indicate the regions interior to the binary lens caustic, and the solid line shows the trajectory of the center of the source, whereas
the dotted lines show the width of the source. The crosses denote the positions of the twomasses of the lens; the heavier mass is on the right. (b) The thin, dotted
lines show the critical curves. The filled circles show the positions of the images at fixed intervals of 1 day. (c) The light curve (magnification as a function of
time) for a point source (solid line) and uniform source (dotted line). (d ) and (e) The two components of hcl as a function of time. The solid line is for a point
source and the dotted line for a uniform source. ( f ) The centroid �hcl of all the images relative to the position of the source.
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behavior is completely washed out, resulting in a smooth
trajectory. Not surprisingly, the maximum astrometric
deviation is also somewhat suppressed. In this case, the
maximum difference between the astrometric shifts for point
source and finite source amounts to�50 las.

In Figure 10, we show the two components of
Dhldcl � hldcl � huscl , the astrometric offset due to limb darken-
ing, as a function of time. The are two important points to
note. First, the deviation is largest just after the source limb
first crosses the fold caustic and just before the source limb
leaves the caustic entirely. Second, the two components of
Dhldcl are not correlated, implying that the limb-darkening
offset is truly two-dimensional. This is opposed to the astro-

metric offset in pure fold caustic crossings, which is essen-
tially one-dimensional, at least for simple linear folds (Paper
I). This latter point is well illustrated in Figure 11, where we
show the trajectory of Dhldcl . The maximum astrometric shift
due to limb darkening for MACHO 97-BLG-28 is �35C
las. This is similar to the maximum astrometric shift due to
limb darkening for the fold caustic-crossing event OGLE-
1999-BUL-23 in Paper I (�60C las), once the factor of �2
difference between the value of hE of the two events is taken
into account. However in the case of the cusp, the deviation
ise10 las for a considerable fraction of the time the source
is resolved, whereas in the case of the fold, the deviation is
onlye10 las for the last�10% of the caustic crossing.

Fig. 8.—Photometric and astrometric behavior of MACHO 97-BLG-28 near the cusp crossing. (a) The shaded area is shows the region interior to the
caustic. The solid line shows the source trajectory, and the dotted line shows the width of the source. (b) The dotted line shows the critical curve, and the circles
are the positions of the images at fixed intervals of 15 minutes. The size of each circle is proportional to the logarithm of the magnification of the image. (c) The
magnification near the cusp crossing as a function of time. The solid line is for a point source, the dotted line for a uniform source, the short-dashed line for
limb-darkened source in the I band, and the long-dashed line for the V band. (d ) and (e) The two components of the centroid hcl as a function of time. Line
types are the same as (c). ( f ) The path of the centroid shift �hcl.
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4. COMPARISON WITH ANALYTIC EXPRESSIONS

In x 2, we derived analytic expressions for the local photo-
metric and astrometric behavior of sources near cusp
singularities using the generic form for the cusp mapping,
whereas in x 3, we used numerical techniques to study the
behavior of microlensing observables near the cusp of a
binary lens. It is important to make contact between the
analytic and numerical results and, in particular, to explore

the validity and applicability of the analytic results to
observable lens systems.

In order to compare the two results, we must specify the
coefficients a, b, and c of the generic cusp mapping equation
(9) that correspond to the cusp that was crossed in the
binary lens event MACHO 97-BLG-28. These coefficients
are defined in terms of the local derivatives of the binary lens
potential at the point on the critical curve corresponding to
the image of the cusp point. The critical curves of a binary
lens can generically be found by solving a quartic complex
polynomial (Witt 1990). However, for the binary lens coor-
dinate system described in the previous section (masses on
the h1-axis and origin at the midpoint of the lenses), the
equation for critical points on the h1-axis takes the simpler
form

m1 � d

2
� �c; 1

� �2

þm2
d

2
� �c; 1

� �2

� d

2
� �c; 1

� �2

� d

2
� �c; 1

� �2

¼ 0 : ð140Þ

For d ¼ 0:687 and q ¼ m1=m2 ¼ 0:232, the cusp critical
point of interest is hc ¼ ð�0:9488; 0Þ, which is mapped to
the cusp caustic point uc ¼ ð�0:0096; 0Þ using the binary
lens equation (137).

The coefficients a, b, and c can be found using the expres-
sions (eq. [10]) by taking the derivatives of the potential (eq.
[136]). We find, for critical points on the h1-axis, that

a ¼ m1

�c; 1 � d=2
� �4 þ m1

�c; 1 þ d=2
� �4 ; ð141Þ

b ¼ 2m1

�c; 1 � d=2
� �3 þ 2m1

�c; 1 þ d=2
� �3 ; ð142Þ

c ¼ 1þ
m1 �c; 1 þ d=2
� �2þm2 �c; 1 � d=2

� �2
d=2� �c; 1
� �2

d=2þ �c; 1
� �2 : ð143Þ

Fig. 10.—Two components of the astrometric offset due to limb darken-
ing Dhldcl ¼ hldcl � huscl relative to a uniform source as a function of time. The
short-dashed line is for the I band, whereas the long-dashed line is for theV
band. The two components are (a) parallel and (b) perpendicular to the axis
of the cusp (i.e., tangent line to the cusp), which is coincident with the
binary axis.

Fig. 11.—Path of the astrometric offset due to limb darkening
Dhldcl ¼ hldcl � huscl relative to a uniform source.

Fig. 9.—Detail of the path of the centroid hcl of MACHO 97-BLG-28
during a 3 day span centered on the cusp crossing. The solid line is for a
point source, the dotted line for a uniform source, the short-dashed line for
limb-darkened source in the I band, and the long-dashed line for the V
band.
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Inserting equation (140) into equation (143), we find that
c ¼ 2 for any critical points on the h1-axis. For
hc ¼ ð�0:9488; 0Þ, we find a ¼ 1:694, b ¼ �2:450, and
c ¼ 2. With these coefficients, the local behavior of the cusp
is completely specified, and the magnifications and positions
of the images associated with the cusp can be determined
using the expressions derived in x 2.2. However, in order to
compare with the photometric and astrometric behavior of
MACHO 97-BLG-28, not only the local behavior of the
cusp images must be specified but also the behavior of the
images not associated with the cusp. As in x 2.3, we assume
that the magnification and centroid of the two images
unrelated to the cusp can be well represented by a first-order
Taylor expansion about the time tc when the source crosses
the axis of the cusp (i.e., tangent line to the cusp). We find
the slope and intercept of these expansions that minimizes
the differences between the analytic and numerical calcula-
tions. Note that these parameters (the three slopes and three
intercepts) are the only free parameters; the photometric
and astrometric behavior of the images associated with the
cusp are completely determined once the coefficients a, b,
and c are specified.

In Figure 12, we show the point-source photometric and
astrometric behavior near the cusp crossing of MACHO 97-
BLG-28, as determined using both the full binary lens
formalism and the analytic expressions. Also shown in
Figure 12 are the corresponding predictions for a finite
source. To calculate the finite-source magnification and
centroid for the generic cusp, we adopt the inverse ray-
shooting procedure described in x 3.1, using the cusp
mapping (eq. [9]) to predict the source positions. In both the
point-source and finite-source case, the agreement is quite
remarkable. We find that the difference in magnification is
d5% and that the difference in the centroid is d5 las. This
is generally smaller than any of the physical effects we have
considered, including limb darkening.

5. SOME APPLICATIONS

Generally speaking, the results derived in x 2 on the
photometric and astrometric microlensing properties near
cusps are useful for two basic reasons. First, they are (for
the most part) analytic, making computations enormously
simpler and considerably less time consuming and making
results easier to interpret. This allows for rapid and efficient
exploration of parameter space, a significant advantage
over numerical methods. Second, the results are generic;
they are applicable to any cusp produced by a gravitational
lens. Similarly, they are local, being tied to the global lens in
consideration only via the coefficients a, b, c of the generic
cusp mapping (eq. [9]). This means that the observables due
to the cusp crossing can be analyzed in a parametric manner
(with the coefficients a, b, c being the parameters), without
regard to the global (and, presumably, nonanalytic) proper-
ties of the lens in question. In this section, we discuss several
possible applications of our results that take advantage of
these properties.

One issue often encountered in microlensing studies is the
question of when the point-source approximation is valid.
This is important because it is typically easier to calculate
the observable properties under the assumption of a point
source than when a finite source is considered. For a given
source location, the accuracy of the point-source approxi-
mation depends primarily on the distance of the source from

the nearest caustic, relative to the size of the source, and sec-
ondarily on the surface brightness profile of the source. For
a source near a simple linear fold, there exist semianalytic
expressions for the finite-source magnification, relative to
the point-source magnification, for uniform and limb-
darkened sources (see, e.g., Paper I). For a source interior to
the fold caustic (where there are an additional two images
due to the fold), the difference in the uniform source magni-
fication from the point-source magnification is d5% for
separations ze1:5, where z is the distance of the center of
the source from the fold in units of the source radius, and
the point-source magnification is proportional to z�1=2. The
effect of limb darkening is d1%C in the same range, where
C is the limb-darkening parameter, which has typical values
in the range 0.5–0.7 for optical wavelengths. Using the
results derived in x 2.4.3, we can also determine the effect of
finite sources on the magnification near a cusp. For sources
outside the cusp and on the axis of the cusp, the point-
source magnification is loutloc ¼ ur1=ð��zÞ (eq. [36]), whereas
the uniform source magnification is lus; outloc ¼ ður1=��ÞP0ðzÞ
(eq. [124]). Thus, the fractional deviation from a point
source is zP0ðzÞ � 1, independent of �* and ur1 (at least for
small sources). Figure 5a shows zP0(z) as a function of z.
We find that the uniform source magnification deviates

Fig. 12.—Comparison between the photometric and astrometric proper-
ties of the event MACHO 97-BLG-28 near the cusp crossing computed
using the full binary lens formalism and using the generic cusp mapping.
The coefficients of the cusp mapping were determined from the local deriva-
tives of the potential at the position of the image of the binary lens cusp. See
text. (a) The light solid line shows the point-source magnification as a func-
tion of time calculated using the binary lens formalism, and the light dotted
line (barely visible) is using the analytic expressions derived here. The heavy
solid line shows the uniform-source magnification calculated using the full
binary lens equation, and the short-dashed line is using the generic cusp
mapping. For comparison, the long-dashed line is the magnification for the
I band. (b) and (c) The two components of the centroid hcl. Line types are
the same as in (a).
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from the point-source magnification by d5% for ze2:5.
Similarly, one can show that the effects of limb darkening
ared1%C for ze2:5; see equation (129) and Figure 5c. For
a given distance to the cusp, the effects of finite sources are
less severe for sources perpendicular to the axis of the cusp
than parallel to the axis (see eqs. [134] and [135]). Thus, one
can use the results for sources along the axis of the cusp to
determine the applicability of the point-source approxima-
tion for the magnification given a certain photometric accu-
racy and arbitrary source trajectory relative to the axis of
the cusp. It is interesting to note that, at a given distance
from the caustic, the effects of finite uniform and limb-
darkened sources are larger for cusps than for folds.

The remarkable agreement of the analytic predictions for
the properties of MACHO 97-BLG-28 with the exact
numerical calculation suggests another application of our
results. One primary difficulty with modeling Galactic
caustic-crossing binary lenses is the fact that the magnifica-
tion is generally nonanalytic. Furthermore, in order to cal-
culate the finite-source magnification, this nonanalytic
point-source magnification must be integrated over the
source. This can be quite time consuming, thus making it
difficult to explore quickly and efficiently the viable region
of parameter space. Furthermore, the observables are gen-
erally not directly related to the canonical parameters. This
means that small changes in the parameters generally lead
to large changes in the observables. Therefore, the parame-
ters must be quite densely sampled, further exacerbating the
problems with the calculations. Thus, finding all viable
model fits to well-sampled Galactic binary lensing events
has proved quite difficult. These problems have been dis-
cussed in the context of fold caustic–crossing binary lens
events in Albrow et al. (1999b), who proposed an elegant
and practical solution. Taking advantage of the fact that the
behavior near a fold caustic is universal, and using analytic
expressions for the point-source and finite-source magnifi-
cation, Albrow et al. (1999b) devised a procedure wherein
the behavior near the fold crossing is isolated and fitted sep-
arately from the remainder of the light curve. Again,
because the behavior near a fold can be calculated semiana-
lytically, fitting this subset of the data is considerably easier
and quicker than fitting the entire data set. This fit can then
be used to constrain the viable regions of the parameter
space of the global binary lens fit. We propose that a similar
procedure might be used to fit cusp-crossing binary lens
events. Consider an observed binary lens event with one
well-sampled cusp crossing (e.g., MACHO 97-BLG-28).
Extracting the portion of the light curve near the cusp cross-
ing, a fit to the generic cusp forms presented in x 2 can be
performed, allowing for images not associated with the
cusp. This fit can then be used to constrain viable combina-
tions of the parameters a, b, and c. One can then search for
cusps in the space of binary lens models that satisfy these
constraints. Finally, one can search for viable fits to the
entire data set in this restricted subset of parameter space.
Although there are undoubtedly nuances in the imple-
mentation, it seems likely that this (admittedly schematic)
procedure should provide a relatively robust and efficient
method for fitting many cusp-crossing binary lens events.

We discuss one final application of our results that may
prove useful in the context of quasar microlensing. For
poorly sampled microlensed light curves, there exists a
rough degeneracy between the effects of the size of the
source and the typical angular Einstein ring radius hhEi (see,

e.g., Wyithe et al. 2000b). As discussed by Lewis & Ibata
(1998), this degeneracy can be broken with astro-
metric observations since the scale of the motion of the cent-
roid of all the microimages is set by hhEi. Because of the
highly stochastic nature of the centroid motion for micro-
lensing at high optical depth, in order to use an observed
data set to determine hhEi, one would have to calculate
many realizations of the distribution of centroid shifts and
compare these statistically to the observed distribution. This
procedure is likely to be quite time consuming. It may be
possible to use the results presented here to devise a method
to obtain a cruder, but considerably less time consuming,
estimate for hhEi given an observed data set. This method
makes use of the analytic results we obtained for fold caustic
crossings. The centroid shift can be quite large when the
source crosses a fold caustic, when two additional images
appear in a position generally unrelated to the centroid of
the other images. In Paper I, we argued that finite sources
only provide a small perturbation to the centroid jump
when the source crosses a fold caustic, at least for sources
with angular size significantly smaller than hhEi. For the
case of a pure fold caustic crossing, it is not possible to pro-
vide a prediction for the magnitude of the centroid jump
from a purely local analysis (Paper I). However, in the case
of the source crossing one of the two fold arcs abutting a
cusp (see Fig. 2), the fact that only two images are associated
with the fold and one image varies continuously as the
source crosses the caustic implies that one can make a defi-
nite prediction for the magnitude j’ jump

cl j of the centroid
jump for a given source trajectory for a generic cusp. In
x 2.3.2, we found that, for sources crossing a fold arc at a
horizontal distance from the cusp of ju01j, the centroid jump
is given by

u
jump
cl

��� ��� ¼ h
jump
cl

��� ����E ’

ffiffiffiffiffiffiffiffiffiffiffi
u01

ujump

s
�E ; ð144Þ

where ujump � �ð2ac� b2Þ=ð6bÞ. This expression is valid for
ju01j small and assuming that the total magnification of the
images not associated with the cusp is small. Given a certain
global lens geometry (i.e., shear and convergence), one can
obtain an estimate of the distribution of the quantity ujump

by using known techniques to locate the cusps and taking
the local derivatives of  at the corresponding image points
to determine the coefficients a, b, and c. Thus, the distribu-
tion of ujump can be determined. Similarly, the distribution
of u01 can be estimated once the locations of the cusps are
known. Therefore, one can predict the distribution of
ðu01=ujumpÞ1=2 for a given lens system. Comparing this to an
observed distribution of j’ jump

cl j, one can constrain hhEi. We
note that there are some limitations to this method. It is gen-
erally only appropriate for sources that are small with
respect to hhEi. Also, it assumes that the observed centroid
shifts are dominated by caustic crossings and that these are
well approximated by the folds abutting cusps.

6. SUMMARY AND CONCLUSION

We have presented a comprehensive, detailed, and
quantitative study of gravitational lensing near cusp cata-
strophes, concentrating on the specific regime of micro-
lensing (when the individual images are unresolved). We
started from a generic polynomial form for the lens map-
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ping near a cusp that relates the image positions to the
source position. This mapping is valid to third order in the
image position. The quantitative properties of this mapping
are determined by the polynomial coefficients, which can be
related to local derivatives of the projected potential of the
lens. Near a cusp, the critical curve is a parabola, which
maps to the cusped caustic. We find an simple expression
for the vertical component of the image position h2, which is
a cubic of the form �32 þ p�2 þ q ¼ 0, where p and q are func-
tions of the source position u.

The solutions of the cubic in h2 are characterized by the
discriminant DðuÞ ¼ ðp=3Þ3 þ ðq=2Þ2. For source positions
u outside the caustic, we have DðuÞ > 0, and thus, there is
locally one image. We determined the magnification and
location of this image and showed, in particular, that along
the axis of the cusp (tangent line to the cusp), the magnifica-
tion scales as u�1, where u is the distance from the cusp
point. Perpendicular to the axis, the magnification scales as
u�2=3. We also determined the image positions and magnifi-
cations for sources on the caustic, where DðuÞ ¼ 0. On the
caustic, there are two images. One image is infinitely magni-
fied and results from the merger/creation of a pair of
images, whereas the second image has finite magnification
and can be smoothly joined to the single lensed image of a
source just outside the caustic. For sources inside the caustic
[DðuÞ < 0], we find that there are three images. One image
has positive parity and diverges as the source approaches
the top fold caustic abutting the cusp but can be continu-
ously joined to the nondivergent image when the source is
on the bottom fold. Similarly, the other positive parity
image diverges as the source approaches the bottom fold
but can be continuously joined to the nondivergent image
when the source is on the top fold. The third image has nega-
tive parity and diverges as the source approaches either fold
caustic. All three images diverge as one approaches the cusp
point.

For sources on the axis of the cusp but interior to the
caustic, the total magnification of all the images diverges as
u�1. We also derived analytic expressions for the centroid of
all three images created when the source is interior to the
caustic. We generalized our results beyond the local
behavior near the cusp by deriving expressions for the total
magnification and centroid including the images not associ-
ated with the cusp. We further considered rectilinear source
trajectories and parameterized this trajectory in order to cal-
culated the dependence of the photometric and astrometric
behavior on time. In particular, because of the presence of
the infinitely magnified images when the source is on the
fold caustics but finite magnification outside the caustic, we
find that the centroid exhibits a finite, instantaneous jump
whenever the source crosses one of the two folds abutting
the cusp. We present a formula for the magnitude of the
jump that depends only on the local coefficients of the cusp
mapping and the location of the caustic crossing. We note
that this magnitude decreases monotonically as a function
of the horizontal distance between the cusp and where the
source crosses the cusped caustic curve so that a source that
crosses the cusp point exactly exhibits no jump
discontinuity.

Beginning with the appropriate modifications to the for-
mulae for the total magnification and centroid for finite
sources with arbitrary surface brightness profiles and com-
bining these with the analytic results we obtained for the

magnification and centroid for point sources near a cusp,
we derived semianalytic expressions for the uniform and
limb-darkened finite-source magnification for small sources
on and perpendicular to the axis of the cusp. We also
derived expressions for the centroid of a small source on the
axis for uniform and limb-darkened sources.

In order to illustrate the photometric and astrometric
lensing behavior near cusps and to provide order-of-
magnitude estimates for the effect of finite sources and limb
darkening on these properties, we numerically calculated
the total magnification and centroid shift for the observed
cusp-crossing Galactic binary microlensing event MACHO
97-BLG-28. We find that the cusp crossing results in large,
O(hE) centroid shifts, which should be easily detectable with
upcoming interferometers. We find that limb darkening
induces a deviation in the centroid of�35C las.

We compared our numerical calculations with the ana-
lytic expectation and found excellent agreement. Adjusting
only the magnification and centroid of the images unrelated
to the cusp and adopting the coefficients appropriate to the
cusp of MACHO 97-BLG-28, we find that our analytic for-
mulae predict the magnification tod5% and the centroid to
5 las, for positions within�2 source radii of the cusp.

Finally, we suggested several applications of our results
to both Galactic and cosmological microlensing applica-
tions. We suggest that one can use our analytic expressions
to determine the applicability of the point-source approxi-
mation for sources near a cusp. In particular, we note that
the finite-source magnification deviates from the point-
source magnification by d5% for sources separated by
e2.5 source radii. We also discussed how the local and
generic behavior of the cusp can be used to simplify the fit-
ting procedure for cusp-crossing events. Lastly, we outlined
a method by which the typical angular Einstein ring radius
of the perturbing microlenses of a macrolensed quasar
might be estimated using measurements of the jump in the
centroid that occurs when the source crosses a fold, making
use of the analytic expression for the magnitude of the jump
derived here.

Despite their apparent diversity, the mathematical under-
pinning of all gravitational lenses is identical. In particular,
all lenses exhibit only two types of stable singularities: folds
and cusps. In Paper I, we studied gravitational microlensing
near fold caustics; here we have focussed on microlensing
near cusp caustics. A generic form of the mapping from
source to image plane near each of these types of caustics
can be found and used to derive mostly analytic expressions
for the photometric and astrometric behavior near folds
and cusps. These expressions can be used to predict the
behavior near all stable caustics of gravitational lenses and
applied to a diverse set of microlensing phenomena, includ-
ing Galactic binary lenses and cosmological microlensing.
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