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ABSTRACT

We analyze PLANET photometric observations of the caustic-crossing binary lens microlensing event,
EROS BLG-2000-5, and find that modeling the observed light curve requires incorporation of the microlens
parallax and the binary orbital motion. The projected Einstein radius (~rrE ¼ 3:61� 0:11 AU) is derived from
the measurement of the microlens parallax, and we are also able to infer the angular Einstein radius
(�E ¼ 1:38� 0:12 mas) from the finite source effect on the light curve, combined with an estimate of the angu-
lar size of the source given by the source position in a color-magnitude diagram. The lens mass,
M ¼ 0:612� 0:057M�, is found by combining these two quantities. This is the first time that parallax effects
are detected for a caustic-crossing event and also the first time that the lens mass degeneracy has been com-
pletely broken through photometric monitoring alone. The combination of ~rrE and hE also allows us to con-
clude that the lens lies in the near side of the disk, within 2.6 kpc of the Sun, while the radial velocity
measurement indicates that the source is a Galactic bulge giant.

Subject headings: binaries: general — gravitational lensing — stars: fundamental parameters

1. INTRODUCTION

Although an initial objective of microlensing experiments
was to probe the mass distribution of compact subluminous
objects in the Galactic halo (Paczyński 1986), the determi-
nation of the individual lens masses was in general believed
not to be possible because the only generically measurable
quantity is a degenerate combination of the mass with lens-
source relative parallax and proper motion. However,
Gould (1992) showed that there are additional observables
that in principle can be used to break the degeneracy
between physical parameters and so yield a measurement of
the lens mass. If one independently measures the angular

Einstein radius hE and the projected Einstein radius ~rrE,

�E � 2RSch

Drel

� �1=2

; ~rrE � 2RSchDrelð Þ1=2 ; ð1Þ

then the lens massM is obtained by

M ¼ c2

4G
~rrE�E

¼ 0:1227 M�
~rrE

1 AU

� �
�E

1 mas

� �
: ð2Þ

Here RSch � 2GMc�2 is the Schwarzschild radius of the lens
mass, D�1

rel � D�1
L �D�1

S , and DL and DS are the distances
to the lens and the source, respectively.

Measurement of hE requires a standard ruler on the plane
of the sky to be compared with the Einstein ring. For the
subset of microlensing events in which the source passes
very close to or directly over a caustic (region of singularity
of the lens mapping at which the magnification for a point
source is formally infinite), the finite source size affects the
light curve. The source radius in units of the Einstein radius,
�*, can then be determined through analysis of the light
curve, and thus one can determine hE (=h*/�*) once the
angular radius of the source h* is estimated from its dered-
dened color and apparent magnitude. Although this idea
was originally proposed for point mass lenses, which have
pointlike caustics (Gould 1994; Nemiroff & Wickrama-
singhe 1994; Witt & Mao 1994), in practice it has been used
mainly for binary lenses, which have linelike caustics and
hence much larger cross sections (Alcock et al. 1997, 2000;
Albrow et al. 1999a, 2000a, 2001a; Afonso et al. 2000).

All ideas proposed to measure ~rrE are based on the detec-
tion of parallax effects (Refsdal 1966; Grieger, Kayser, &
Refsdal 1986; Gould 1992, 1995; Gould, Miralda-Escudé, &
Bahcall 1994; Hardy & Walker 1995; Holz & Wald 1996;
Honma 1999; An & Gould 2001): either measuring the dif-

1 Department of Astronomy, Ohio State University, 140 West 18th
Avenue, Columbus, OH 43210.

2 Department of Physics and Astronomy, University of Canterbury,
Private Bag 4800, Christchurch, NewZealand.

3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore,
MD 21218.

4 Institut d’Astrophysique de Paris, INSU-CNRS, 98 bis Boulevard
Arago, F-75014 Paris, France.

5 South African Astronomical Observatory, P.O. Box 9, Observatory,
West Cape 7935, South Africa.

6 Kapteyn Institute, Rijksuniversiteit Groningen, Postbus 800, 9700 AV
Groningen, Netherlands.

7 School of Natural Sciences, Institute for Advanced Study, Einstein
Drive, Princeton, NJ 08540.

8 Hubble Fellow.
9 Physics Department, University of Tasmania, G.P.O. 252C, Hobart,

Tasmania 7001, Australia.
10 School of Physics and Astronomy, University of St. Andrews, North

Haugh, St. Andrews, Fife KY16 9SS, UK.
11 Perth Observatory, Walnut Road, Bickley, Western Australia 6076,

Australia.
12 Physics Department, Gettysburg College, 300 North Washington

Street, Gettysburg, PA 17325.

The Astrophysical Journal, 572:521–539, 2002 June 10

# 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

521



ference in the event as observed simultaneously from two or
more locations or observing the source from a frame that
accelerates substantially during the course of the event. The
prime example of the latter is the Earth’s orbital motion
(annual parallax). For these cases, it is convenient to re-
express~rrE as the microlens parallax �E,

�E � �L � �S
�E

¼ 1 kpc=Drel

�E=1 mas
¼ 1 AU

~rrE
: ð3Þ

Here �L and �S are the (annual) trigonometric parallax of
the lens and the source so that �X=1 mas ¼ 1 kpc=DX ,
where subscript ‘‘X ’’ is either ‘‘L ’’ (lens) or ‘‘S ’’ (source).
To date, �E has been measured for several events by detect-
ing the distortion in the light curve due to the annual paral-
lax effect (Alcock et al. 1995; Mao 1999; Soszyński et al.
2001; Bond et al. 2001; Smith, Mao, & Woźniak 2001; Mao
et al. 2002; Bennett et al. 2001).

An & Gould (2001) argue that �E is measurable for a
caustic-crossing binary event exhibiting a well-observed
peak caused by a cusp approach in addition to the two usual
caustic crossings. Hence, one can determine the lens mass
for such an event, since hE can be estimated from any well-
observed caustic crossing. The caustic-crossing binary event
EROS BLG-2000-5 is archetypal of such events. In addi-
tion, the event has a relatively long timescale (tE � 100
days), which is generally favorable for the measurement
of �E.

In fact, EROS BLG-2000-5 features many unique charac-
teristics not only in the intrinsic nature of the event but also
in the observations of it. These include a moderately well
covered first caustic crossing (entrance), a timely prediction
(of not only the timing but also the duration) of the second
caustic crossing (exit), the unprecedented 4 day length of the
second crossing, and two time series of spectral observations
of the source during the second crossing (Albrow et al.
2001b; Castro et al. 2001). To fully understand and utilize
this wealth of information, however, requires detailed quan-
titative modeling of the event. Here we present the first
model of EROS BLG-2000-5 based on the photometric
observations made by the Probing Lensing Anomalies
NETwork (PLANET)13 collaboration. In the current paper
we focus on the geometry of the event and find that both
parallax and projected binary orbital motion are required to
successfully model the light curve. Furthermore, we also
measure the angular Einstein radius from the finite source
effect during caustic crossings and the source angular size
derived from the source position in a color-magnitude dia-
gram (CMD). Hence, this is the first event for which both ~rrE
and hE are measured simultaneously and so for which the
lens mass is unambiguously measured.

2. DATA

On 2000 May 5, the Expérience de Recherche d’Objets
Sombres (EROS)14 collaboration issued an alert that EROS
BLG-2000-5 was a probable microlensing event
(R:A: ¼ 17h53m11 95, decl: ¼ �30�5503500; l ¼ 359=14,
b ¼ �2=43). On 2000 June 8, theMicrolensing Planet Search
(MPS)15 collaboration issued an anomaly alert, saying that

the source had brightened by 0.5 mag from the previous
night and had continued to brighten by 0.1 mag in 40
minutes. PLANET intensified its observations immediately
and has continued to monitor the event up to the present
(2001 August). Observations for PLANET were made from
four telescopes: the Canopus 1 m near Hobart, Tasmania,
Australia; the Perth/Lowell 0.6 m at Bickley, Western Aus-
tralia, Australia; the Elizabeth 1 m at the South African
Astronomical Observatory (SAAO) at Sutherland, South
Africa; and the Yale/AURA/Lisbon/OSU (YALO) 1 m at
the Cerro Tololo Inter-American Observatory (CTIO) at
La Serena, Chile. Data were taken in V (except Perth), I (all
four sites), and H (SAAO and YALO) bands. For the
present study, we make use primarily of the I-band data.
That is, we fit for the model using only I-band data, while
the V-band data are used (together with the I data) only to
determine the position of the source on the CMD (see x 5).
The light curve (Fig. 1) exhibits two peaks that have the
characteristic forms of an entrance (A) and exit (B) caustic
crossing (Schneider, Ehlers, & Falco 1992; see also Fig. 1 of
Gould & Andronov 1999) immediately followed by a third
peak (C) that is caused by the passage of the source close to
a cusp.

The data have been reduced in a usual way, and the
photometry on them has been performed by point-spread
function (PSF) fitting using DoPHOT (Schechter, Mateo, &
Saha 1993). The relative photometric scaling between the
different telescopes is determined as part of the fit to the
light curve, which includes the independent determinations
of the source and the background fluxes at each telescope.
We find, as was the case for several previous events, that
because of the crowdedness of the field, the moderate seeing
conditions, and possibly some other unidentified system-
atics, the amount of blended light entering the PSF is
affected by seeing and that the formal errors reported by
DoPHOT tend to underestimate the actual photometric
uncertainties. We tackle these problems by incorporating a
linear seeing correction for the background flux and rescal-
ing the error bars to force the reduced �2 of our best model
to unity. For details of these procedures, see Albrow et al.
(2000a, 2000b, 2001a) andGaudi et al. (2002).

We also analyze the data by difference imaging, mostly
using ISIS (Alard 2000). We compare the scatter of the
photometry on the difference images to that of the direct
PSF fit photometry by deriving the normalized-summed
squares of the signal-to-noise ratios,

Q �
X
i

FsAi

~��i

� �2

¼ N

�2

X
i

FsAi

�i

� �2

; ð4Þ

where Fs is the source flux derived from the model, Ai is the
magnification predicted by the model for the data point, �i
and ~��i are the photometric uncertainty (in flux) for individ-
ual data before and after rescaling the error bars [i.e.,
~��i ¼ �ið�2=NÞ1=2], and N is the number of data points.
Strictly speaking, Q defined as in equation (4) is model
dependent, but if the data sets to be compared do not differ
with one another in systematic ways (and the chosen model
is close enough to the real one), Q can be used as a proxy for
the relative statistical weight given by the data set without
notable biases. We find that difference imaging significantly
improves the stability of the photometry for the data from
Canopus and Perth, but it somewhat worsens the photo-
metry for the data from SAAO and YALO.We suspect that

13 http://www.astro.rug.nl/~planet.
14 http://www-dapnia.cea.fr/Spp/Experiences/EROS/alertes.html.
15 http://bustard.phys.nd.edu/MPS.
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the result is related to the overall seeing condition for the
specific site, but a definite conclusion will require more
detailed study and would be beyond the scope of this paper.
We hope to be able to further improve the photometry on
difference images in the future, but for the current analysis
we choose to use the data set with the better Q so that we
replace the result of the direct PSF photometry with the dif-
ference imaging analysis result only for Canopus and Perth
data sets.

For the final analysis and the results reported here, we
have used only a ‘‘ high-quality ’’ subset of the data. Prior to
any attempt to model the event, we first exclude various
faulty frames and problematic photometry reported by the
reduction/photometry software. In addition, data points
exhibiting large (formal) errors and/or poor seeing com-
pared to the rest of the data from the same site are elimi-
nated prior to the analysis. In particular, the thresholds for
the seeing cuts are chosen at the point where the behavior of

Fig. 1.—PLANET I-band light curve of EROS BLG-2000-5 (the 2000 season only). Only the data points used for the analysis (‘‘ cleaned high-quality ’’
subset; see x 2) are plotted. Data shown are from SAAO (red circles), Canopus (blue triangles), YALO (green squares), and Perth (magenta inverted triangles).
All data points have been deblended using the fit result (also accounting for the seeing correction) and transformed to the standard I magnitude:
I ¼ Is � 2:5 log FðtÞ � Fb½ �=Fsf g. The calibrated source magnitude (Is ¼ 16:602) is shown as a dotted line. The three bumps in the light curve and the
corresponding positions relative to the microlens geometry are also indicated.
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‘‘ seeing-dependent background ’’ becomes noticeably non-
linear with the seeing variation. The criterion of the seeing
and error cuts for each data set is reported in Table 1
together with other photometric information. In conjunc-
tion with the proper determination of the error rescaling
factors, we also remove isolated outliers as in Albrow et al.
(2001a). Following these steps, the ‘‘ cleaned high-quality ’’
I-band data set consists of 1286 (403 from SAAO, 333 from
Canopus, 389 from YALO, 161 from Perth) measurements
made during the 2000 season (between May 11 and
November 12) plus 60 additional observations (25 from
SAAO, 35 from YALO) made in the 2001 season. Finally,
we exclude 49 data points (19 from SAAO, 20 from Cano-
pus, 10 from Perth) that are very close to the cusp approach
(2; 451; 736:8 < HJD < 2; 451; 737:6) while we fit the light
curve. Here HJD is the Heliocentric Julian Date. We find
that the limited numerical resolution of the source, which in
turn is dictated by computational considerations, introdu-
ces errors in the evaluation of �2 in this region of the order
of a few and in a way that does not smoothly depend on the
parameters. These would prevent us from finding the true
minimum or properly evaluating the statistical errors. How-
ever, for the final model, we evaluate the predicted fluxes
and residuals for these points. As we show in x 4, these resid-
uals do not differ qualitatively from other residuals to the
fit.

3. PARAMETERIZATION

To specify the light curve of a static binary event with a
rectilinear source trajectory requires seven geometric
parameters: d, the binary separation in units of hE; q, the
binary mass ratio; �, the angle of the source-lens relative
motion with respect to the binary axis; tE, the Einstein time-
scale (the time required for the source to transit the Einstein
radius); u0, the minimum angular separation between the
source and the binary center (either the geometric center or
the center of mass) in units of hE; t0, the time at this mini-
mum; and �*, the source radius in units of hE. (In addition,
limb-darkening parameters for each wave band of observa-
tions, as well as the source flux Fs and background flux Fb

for each telescope and wavelength band, are also required
to transform the light curve to a specific photometric sys-
tem.) Most generally, to incorporate the annual parallax
and the projection of binary orbital motion into the model,
one needs four additional parameters. However, their inclu-
sion, especially of the parallax parameters, is not a trivial
procedure, since the natural coordinate basis for the
description of the parallax is the ecliptic system, while the
binary magnification pattern possesses its own preferred
direction, i.e., the binary axis. In the following, we establish

a consistent system to describe the complete set of the 11
geometric parameters.

3.1. Description of Geometry

First, we focus on the description of parallax. On the
plane of the sky, the angular positions of the lens and the
source (seen from the center of the Earth) are expressed gen-
erally by

uSðtÞ ¼ uS;c þ ðt� tcÞlS þ �S|ðtÞ ; ð5aÞ

uLðtÞ ¼ uL;c þ ðt� tcÞlL þ �L|ðtÞ : ð5bÞ

Here uS;c and uL;c are the positions of the lens and the source
at some reference time, t ¼ tc, as they would be observed
from the Sun; lS and lL are the (heliocentric) proper motion
of the lens and the source; and |ðtÞ is the Sun’s position vec-
tor with respect to the Earth, projected onto the plane of the
sky and normalized by an astronomical unit (see Appendix
A). At any given time t, |ðtÞ is completely determined with
respect to an ecliptic coordinate basis, once the event’s
(ecliptic) coordinates are known. For example, in the
case of EROS BLG-2000-5 (� ¼ 268=53, � ¼ �7=50),
| ¼ ð0; r� sin �Þ at approximately 2000 June 19, where r� is
the distance between the Sun and the Earth at this time in
astronomical units (r� ¼ 1:016). Then, the angular separa-
tion vector between the source and the lens in units of hE
becomes

uðtÞ � uS � uL
�E

¼ vþ ðt� tcÞlE � �E|ðtÞ ; ð6Þ

where v � ðuS;c � uL;cÞ=�E, lE � ðlS � lLÞ=�E, and �E is
defined as in equation (3). Although equation (6) is the most
natural form of expression for the parallax-affected trajec-
tory, it is convenient to reexpress equation (6) as the sum of
the (geocentric) rectilinear motion at the reference time and
the parallactic deviations. In order to do this, we evaluate u
and _uu at t ¼ tc,

utc � uðtcÞ ¼ v� �E|tc ; ð7aÞ

_uutc � _uuðtcÞ ¼ lE � �E _||tc ; ð7bÞ

where |tc � |ðtcÞ and _||tc � _||ðtcÞ. Solving equations (7a) and
(7b) for lE and v and substituting them into equation (6),
one obtains

uðtÞ ¼ utc þ ðt� tcÞ _uutc � �EDP ; ð8Þ

where DP � |ðtÞ � |tc � ðt� tcÞ _||tc is the parallactic devia-
tion. Note that DP ’ ð€||tc=2Þðt� tcÞ2 for t � tc, i.e., on rela-
tively short timescales, the effect of the parallax is equivalent
to a uniform acceleration of ��E€||tc . Equation (8) is true in

TABLE 1

PLANET I-Band Photometry of EROS BLG-2000-5

Telescope

Error Cut

(mag)

Seeing Cut

(arcsec)

Number

of Points

Error

Scaling

Median Seeing

(arcsec)

SAAO........... 	0.03a 	2.1 428 1.99 1.41

YALO .......... 	0.03a 	2.3 424 1.61 1.58

Canopusb ...... . . . . . . 333 2.96 2.82

Perthb ........... . . . 	3.1 161 3.63 2.44

a The formal value reported byDoPHOT.
b The difference imaging analysis result has been used.
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general for any microlensing event including point-source/
point-lens events.

Next, we introduce the binary lens system. Whereas the
parallax-affected trajectory (eq. [8]) is most naturally
described in the ecliptic coordinate system, the magnifica-
tion pattern of the binary lens is specified with respect to the
binary axis. Hence, to construct a light curve, one must
transform the trajectory from ecliptic coordinates to the
binary coordinates. If the origins of both coordinates are
chosen to coincide at the binary center of mass, this trans-
formation becomes purely rotational. Thus, this basically
adds one parameter to the problem: the orientation of the
binary axis in ecliptic coordinates. In accordance with the
parameterization of the projected binary orbital motion,
one may express this orientation using the binary separation
vector d, whose magnitude is d and whose direction is that
of the binary axis (to be definite, pointing from the less mas-
sive to the more massive component). With this parameter-
ization, the projection of the binary orbital motion around
its center of mass is readily facilitated via the time variation
of d. If the timescale of the event is relatively short com-
pared to the orbital period of the binary, then rectilinear rel-
ative lens motion, d ¼ dtc þ _dd tcðt� tcÞ, will be an adequate
representation of the actual variation for most applications
(see, e.g., Albrow et al. 2000a). Then, the light curve of a
rotating binary event with parallax is completely specified
by 11 independent parameters: dtc ,

_ddtc , utc , _uutc , q, �
, and �E.
However, one generally chooses to make tc an independent
parameter, such as the time when utc x _uutc ¼ 0. In that case,
the 11 parameters become d tc ,

_ddtc , utc , _uutc , q, �
, �E, and tc.
Although the parameterization described so far is physi-

cally motivated and mathematically both complete and
straightforward, in practice it is somewhat cumbersome to
implement into the actual fit. Therefore, we reformulate the
above parameterization for computational purposes. For
the analysis of EROS BLG-2000-5, we first choose the refer-

ence time tc as the time of the closest approach of the source
to the cusp and rotate the coordinate system so that the
whole geometry is expressed relative to the direction of dtc ,
i.e., the binary axis at time tc (see Fig. 2). We define the
impact parameter for the cusp approach, uc (� utc � ucusp

�� ��),
and set uc > 0 when the cusp is on the right-hand side of the
moving source. Then, _uutc is specified by t0E (� _uutcj j�1), the
instantaneous Einstein timescale at time tc, and by �0, the
orientation angle of _uutc with respect to d tc . In addition, we
express _dd tc in a polar coordinate form and use the approxi-
mation that both the radial component _dd and tangential
component ! are constant. Under this parameterization, _dd
corresponds to the rate of expansion ( _dd > 0) or contraction
( _dd < 0) of the projected binary separation, while ! is the
angular velocity of the projected binary axis rotation on the
plane of the sky. Finally, we define the microlens parallax
vector pE, whose magnitude is �E and whose direction is
toward ecliptic west (decreasing ecliptic longitude). In the
actual fit, �E;k and �E;?, the two projections of pE along and
normal to dtc , are used as independent parameters. Table 2
summarizes the transformation from the set of fit parame-
ters (dtc , q, �

0, uc, t
0
E, tc, �*, �E;k, �E;?,

_dd, !) to the set of physi-
cal parameters (d tc ,

_ddtc , utc , _uutc , q, �*, �E, tc).

3.2. Terrestrial Baseline Parallax

In general, the Earth’s spin adds a tiny daily wobble of
order �R�=~rrE (eq. [B3]), where R� is the Earth’s radius, to
the source’s relative position seen from the center of the
Earth as expressed in equation (6). Since R� ¼ 4:26� 10�5

AU, this effect is negligible except when the spatial gradient
over the magnification map is very large, for example, caus-
tic crossings or extreme cusp approaches. Even for those
cases, only the instantaneous offsets are usually what mat-
ters because the source crosses over the region of extreme
gradient with a timescale typically smaller than a day.
Hence, unless the coverage of the crossing from two widely
separated observers significantly overlaps, the effect has
been in general ignored when one models microlensing light
curves.

However, in the case of EROS BLG-2000-5, the second
caustic crossing lasted 4 days, and therefore daily modula-
tions of magnifications due to the Earth’s rotation, offset
according to the geographic position of each observatory,
may become important, depending on the actual magnitude
of the effect (see also Honma 1999 for a similar discussion
on the short-timescale magnification modulation observed
from an Earth-orbiting satellite). Hardy & Walker (1995)
and Gould & Andronov (1999) investigated effects of the
terrestrial baseline parallax, for fold-caustic crossing micro-
lensing events mainly focused on the instantaneous offsets
due to the separation between observers. They argued that
the timing difference of the trailing limb crossing for obser-
vations made from two different continents could be of the
order of tens of seconds to a minute (Hardy &Walker 1995)
and the magnifications near the end of exit-type caustic
crossings could differ by as much as a few percent (Gould &
Andronov 1999). Suppose that 	2 is the angle at which the
source crosses the caustic, Amax is the magnification at the
peak of the crossing, and Acc is the magnification right after
the end of the crossing. Then, for the second caustic crossing
of EROS BLG-2000-5, since t0E csc	2ðR�=~rrEÞ
’ 9ð0:25= sin	2Þ minutes and ��1
 ðAmax=AccÞðR�=~rrEÞ
’ 2� 10�2, the time for the end of the second caustic cross-

Fig. 2.—Geometry used for deriving the transformation shown in
Table 2. The direction of dtc is chosen to be the x-axis, while �E lies parallel
to the direction of decreasing ecliptic longitude êew. The reference time tc is
the time of the closet approach to the cusp ucusp.
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ing may differ from one observatory to another by as much
as 10 minutes, and the magnification difference between
them at the end of the crossing can be larger than 1%,
depending on the relative orientation of observatories with
respect to the event at the time of the observations. Based
on a model of the event, we calculate the effect and find that
it causes the magnification modulation of an amplitude as
large as 1% (Fig. 3). In particular, night portions of the
observatory-specific light curves exhibit steeper falls of flux
than would be the case if the event were observed from the
Earth’s center. That is, the source appears to move faster
during the night because the reflex of the Earth’s rotation is
added to the source motion. This would induce a systematic
bias in parameter measurements if it were not taken into

account in the modeling. We thus include the (daily) terres-
trial baseline parallax in our model to reproduce the
observed light curve of EROS BLG-2000-5. Here we
emphasize that this inclusion requires no new free parame-
ter for the fit once geographic coordinates of the observa-
tory are specified and R� in units of AU is assumed to be
known (see Appendix B).

In addition, we note the possibility of a simple test of the
terrestrial baseline parallax. Figure 4 shows that the end of
the crossing observed from SAAO is supposed to be earlier
than in the geocentric model (and earlier than seen from
South American observatories). Unfortunately, near the
end of the second caustic crossing (HJD � 2; 451; 733:66),
PLANET data were obtained only from SAAO near the

TABLE 2

Relations between Parameterizations

Physical

Parameters Fit Parameters

tc .................. tc
q................... q

�* ................. �*
�E................. ð�2E;k þ �2E;?Þ

1=2

d tc ................ dtc�
�1
E ð�E;kêew � �E;?êenÞ

_dd tc ................ ��1
E ½ð _dd�E;k þ !dtc�E;?Þêew þ ð� _dd�E;? þ !dtc�E;?Þêen�

utc ................. ucusp þ uc�
�1
E �E;? cos�0 � �E;k sin�0

� �
êew þ �E;k cos�0 þ �E;? sin�0

� �
êen

� �
_uutc ................. t0�1

E ��1
E �E;k cos�0 þ �E;? sin�0

� �
êew � �E;? cos�0 � �E;k sin�0

� �
êen

� �
Note.—For simplicity, the reference times tc for both systems are chosen to be the same:

the time of the closest approach to the cusp, i.e., ðutc � ucuspÞ x _uutc ¼ 0. The additional trans-
formation of the reference time requires the use of eqs. (6) and (8). Fig. 2 illustrates the
geometry used for the derivation of the transformation. The unit vector êen points toward
the NEP, while êew is perpendicular to it and points to the west (the direction of decreasing
ecliptic longitude).

Fig. 3.—Prediction of deviations of light curves for SAAO and YALO
from the geocentric light curve for a chosen model. The solid curve is the
magnitude difference between the SAAO light curve and the geocentric one,
and the dotted curve is the same for YALO. Nominal night portions
(between 6 p.m. and 6 a.m. local time) of the light curve are highlighted by
overlaid dots.

Fig. 4.—Close-up of model light curves for the end of the second caustic
crossing. The solid curve is modeled for SAAO observations, the dotted
curve is for YALO, and the dashed curve is the geocentric light curve. The
timing of the end of the second crossing for SAAO is earlier than for YALO
by 11 minutes. For comparison purposes, all the light curves are calculated
assuming no blend.
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very end of the night—the actual trailing limb crossing is
likely to have occurred right after the end of the night at
SAAO, while YALO was clouded out as a result of the bad
weather at CTIO. (The event was inaccessible from tele-
scopes on Australian sites at the time of trailing limb cross-
ing.) However, it is still possible to compare the exact timing
for the end of the second crossing derived by other observa-
tions from South American sites with our model prediction
and/or the observation from SAAO. In particular, the
EROS collaboration has published a subset of their obser-
vations from the Marly 1 m at the European Southern
Observatory (ESO) at La Silla, Chile, for the second cross-
ing of EROS BLG-2000-5 (Afonso et al. 2001). Comparison
between their data and our model/observations may serve
as a confirmation of terrestrial parallax effects.

3.3. Limb-darkening Coefficients

Because of the unprecedentedly long timescale of the sec-
ond caustic crossing and the extremely close approach to
the cusp, as well as the high quality of the data, we adopt a
two-parameter limb-darkening law of the form

S�ð#Þ ¼ �SS� 1� �� � ��ð Þ þ 3��
2

cos#þ 5��
4

cos1=2 #

� 	
;

ð9Þ

to model the surface brightness profile of the source. Here
�SS� � Fs;�=ð��2
Þ is the mean surface brightness of the source
and # is the angle between the normal to the stellar surface
and the line of sight, i.e., sin# ¼ �=�
, where h is the angular
distance to the center of the source. This is an alternative
form of the widely used square root limb-darkening law,

S�ð#Þ ¼ S�ð0Þ 1� c�ð1� cos#Þ � d�ð1�
ffiffiffiffiffiffiffiffiffiffiffi
cos#

p
Þ

h i
: ð10Þ

However, instead of being normalized to have the same cen-
tral intensity S�(0) as a uniform source, the form we adopt
(eq. [9]) is normalized to have the same total flux
Fs;� ¼ ð2��2
Þ

R 1

0 S�ð#Þ sin# dðsin#Þ. That is, there is no net
flux associated with the limb-darkening coefficients. The
transformation of the coefficients in equation (9) to the
usual coefficients used in equation (10) is given by

c� ¼
6��

4þ 2�� þ ��
; d� ¼

5��
4þ 2�� þ ��

: ð11Þ

Note that, although we fit limb darkening, the detailed dis-
cussion of its measurement and error analysis will be given
elsewhere.

4. MEASUREMENT OF THE PROJECTED
EINSTEIN RADIUS

Table 3 gives the parameters describing the best-fit micro-
lens model (see Appendix C for details of modeling and
Appendix D for the discussion on the error determination)
for the PLANET I-band observations of EROS BLG-2000-
5. We also transform the fit parameters to the set of parame-
ters introduced in x 3.1. In Table 4 we provide the result of
limb-darkening coefficient measurements. The measure-
ments of two coefficients, CI and �I, are highly anticorre-
lated so that the uncertainty along the major axis of error
ellipse is more than 50 times larger than that along its minor
axis. While this implies that the constraint on the surface

brightness profile derived by the caustic-crossing light curve
is essentially one-dimensional, its natural basis is neither the
linear nor the square root parameterized form. We plot, in
Figure 5, the surface brightness profile indicated by the fit
and compare these with theoretical calculations taken from
Claret (2000). The figure shows that allowing the profile
parameters to vary by 2 � does not have much effect on the
central slope but causes a large change in the behavior near
the limb. We speculate that this may be related to the spe-
cific form of the time sampling over the stellar disk, but

TABLE 3

PLANETModel Parameters for

EROS BLG-2000-5

Parameter Value Uncertaintya

dtc ..................... 1.928 0.004

q....................... 0.7485 0.0066

�0 (deg)............. 74.18 0.41

uc ..................... �5.12� 10�3 3� 10�5

t0E (days) ........... 99.8 1.5

tc (days)............ 1736.944b 0.005

�* ..................... 4.80� 10�3 4� 10�5

�E;k .................. �0.165 0.042

�E;? .................. 0.222 0.031
_dd (yr�1)............. 0.203 0.016

! (rad yr�1) ...... 0.006 0.076

lE;w (yr�1) ........ 3.83 0.49

lE;n (yr
�1)......... �2.82 0.44

lE (yr
�1) ........... 4.76 0.13

�ec
c (deg) .......... �36.3 7.8

�E..................... 0.277 0.008

	d (deg) ............ �126.5 3.6

a 1 � error bar. The uncertainties of fit parameters
are determined by fitting the �2 distribution to a
quadratic hypersurface. For more details, see
AppendixD.

b HJD� 2; 450; 000.
c The angle of lE with respect to ecliptic west.
d The angle of dtc with respect to ecliptic west.

TABLE 4

Limb-darkening Coefficients for

EROS BLG-2000-5

Parameter Value

CI .................................... 0.452� 0.075

�I .................................... 0.011� 0.137

�I cos�þ �I sin�
a,b ...... 0.207� 0.156

�I cos�� �I sin�
b,c....... 0.402� 0.003

cI ..................................... 0.552� 0.090

dI..................................... 0.011� 0.139

cI cos�þ dI sin�
a, d ....... 0.290� 0.166

dI cos�� cI sin�
c, d ....... 0.470� 0.003

Note.—The error bars account only for
the uncertainty in the photometric parame-
ters restricted to a fixed lens model, deter-
mined by the linear flux fit.

a Rotational transformation that maxi-
mizes the variance.

b � ¼ �61=32.
c Rotational transformation that mini-

mizes the variance.
d � ¼ �57=14.
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more detailed analysis regarding limb darkening is beyond
the scope of this paper and will be discussed elsewhere.

Figures 6 and 7 show ‘‘magnitude residuals,’’
ð2:5=ln 10Þ½DF=ðAFsÞ�, from our best model. Note in partic-
ular that the residuals for the points near the cusp approach
(HJD ¼ 2; 451; 736:944) that were excluded from the fit do
not differ qualitatively from other residuals. It is true that
the mean residual for Perth on this night (beginning 4.0 hr
after tc and lasting 2.3 hr) was about 2% high. However, the
Canopus data, which span the whole cusp approach from
1.2 hr before until 7.7 hr after tc, agree with the model to
within 0.5%. Moreover, the neighboring SAAO and YALO
points also show excellent agreement. See also Figure 8 and
especially Figure 9.

From the measured microlens parallax (�E ¼ 0:277
�0:008), the projected Einstein radius is (eq. [3])

~rrE ¼ 1 AU

�E
¼ 3:61� 0:11 AU : ð12Þ

We also derive tE, the heliocentric Einstein timescale,

lE ¼ _uutc þ �E _||tc ; ð13aÞ

tE � lEj j�1¼ 76:8� 2:1 days ; ð13bÞ

and the direction of lE is 36=3 from ecliptic west to south.
Since, toward the direction of the event, the Galactic disk
runs along 60=2 from ecliptic west to south, lE points to
23=9 north of the Galactic plane. The overall geometry of
the model is shown in Figure 8, and Figure 9 shows a close-

up of the geometry in the vicinity of the cusp approach
(t � tc). Next, the projected velocity ~vv on the observer plane
is

~vv ¼ ~rrElE ¼ �74:5� 3:1; 33:0� 11:0ð Þ km s�1 : ð14Þ

Here the vector is expressed in Galactic coordinates. We
note that the positive x-direction is the direction of the
Galactic rotation, i.e., the apparent motion of the Galactic
center seen from the local standard of rest (LSR) is in the
negative x-direction, while the positive y-direction is toward
the north Galactic pole so that the coordinate basis is left-
handed.

5. MEASUREMENT OF THE ANGULAR
EINSTEIN RADIUS

The angular radius of the source h* is determined by plac-
ing the source on an instrumental CMD and finding its off-
set relative to the center of the red giant clump, whose
dereddened and calibrated position toward the Galactic
bulge is known from the literature. For this purpose, we use
the data obtained from YALO. We find the instrumental I
magnitude of the (deblended) source Is from the fit to the
light curve. To determine the color, we first note that, except
when the source is near (and so partially resolved by) a caus-
tic, microlensing is achromatic. That is, the source is
equally magnified in V and I: FV ¼ FV ;b þ AFV ;s and
FI ¼ FI ;b þ AFI ;s. Hence, we assemble pairs of V and I
points observed within 30 minutes (and excluding all caus-
tic-crossing and cusp-approach data) and fit these to the
form FV ¼ a1 þ a2FI . We then find (V�IÞs;inst
¼ �2:5 log a2. We also find the magnitude of the blend Ib
from the overall fit and solve for the color of the blend
(V�IÞb;inst ¼ �2:5 log½a2 þ ða1=FI ;bÞ�.

We then locate the source on the instrumental CMD and
measure its offset from the center of the red giant clump:
D(V�IÞ ¼ 0:276� 0:010 and DI ¼ 0:33� 0:02. Here the
quoted uncertainty includes terms for both the clump center
and the source position. Finally, using the calibrated and
dereddened position of the red clump, [(V�I )0,
I0� ¼ ½1:114� 0:003; 14:37� 0:02� (Paczyński et al. 1999),
the source is at (V�IÞ0 ¼ 1:390� 0:010, I0 ¼ 14:70� 0:03.
The procedure does not assume any specific reddening law
for determining the dereddened source color and magnitude
but may be subject to a systematic error due to differential
reddening across the field.

We also perform a photometric calibration for observa-
tions made at SAAO. The calibration was derived from
images obtained on three different nights by observing
Landolt (1992) standards in the 2000 season, and the result-
ing transformation equations were confirmed with a further
night’s observations in 2001. Applying the photometric
transformation on the fit result for the source flux, we
obtain the (unmagnified) source magnitude of I ¼ 16:602 in
the standard (Johnson/Cousins) system, while the standard
source color is measured to be V�I ¼ 2:69. By adopting the
photometric offset between the SAAO and YALO instru-
mental systems determined by the fit, we are able to derive a
‘‘ calibrated ’’ YALO CMD for the field around EROS
BLG-2000-5 (Fig. 10). The positions of the source (S), blend
(B), and clump center (C) are also overlaid on the CMD.
The CMD also implies that the reddening toward the field is
AI ¼ 1:90 and E(V�IÞ ¼ 1:30, which yields a reddening

Fig. 5.—Surface brightness profile of the source star. The thick solid
curve is the prediction indicated by the best-fit model (see Table 4). In addi-
tion, the variation of profiles with the parameters allowed to deviate by 2 �
along the direction of the principal conjugate is indicated by a shaded
region. For comparison, also shown are theoretical profiles taken from
Claret (2000). The stellar atmospheric model parameters for them are
log g ¼ 1:0, ½Fe=H� ¼ �0:3, and Teff ¼ 3500 (dotted curve), 4000 (short-
dashed curve), and 4500 K (long-dashed curve). Note that the effective
temperature of the source is reported to be 4500� 250 K by Albrow et al.
(2001b) and 3800� 200K byMinniti et al. (2002).

528 AN ET AL. Vol. 572



law, RVI ¼ AV=EðV�IÞ ¼ 2:46, nominally consistent with
the generally accepted RVI ¼ 2:49� 0:02 (Stanek 1996). If
we adopt a power-law extinction model A� / ��p, then
RVI ¼ 2:46 corresponds to p ¼ 1:37. For this index,
E(B�V )/E(V�IÞ ¼ 0:838, which predicts a lower extinc-
tion than the spectroscopically determined reddening of
E(B�VÞ ¼ 1:30� 0:05 by Albrow et al. (2001b).

Both the source and the blend lie redward of the main
population of stars in the CMD. One possible explana-
tion is that the line of sight to the source is more heavily

reddened than average because of differential reddening
across the field. Inspection of the images does indicate
significant differential reddening, although from the
CMD itself it is clear that only a small minority of stars
in the field could suffer the additional DAV � 0:7 that
would be necessary to bring the source to the center of
the clump. There is yet another indication that the source
has average extinction for the field, i.e., the same or simi-
lar extinction as the clump center. The dereddened
(intrinsic) color derived on this assumption,

Fig. 6.—‘‘Magnitude ’’ residuals from PLANET model of EROS BLG-2000-5. Symbols are the same as in Fig. 1. The top panel shows the light curve
corresponding to the time of observations, the middle panel shows the averaged residuals from 15 sequential observations, and the bottom panel shows the
scatter of individual residual points.
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(V�IÞ0 ¼ 1:39, is typical of a K3 III star (Bessell & Brett
1988), which is in good agreement with the spectral type
determined by Albrow et al. (2001b). On the other hand,
if the source were a reddened clump giant with
(V�IÞ0 � 1:11, then it should be a K1 or K2 star.

We then apply the procedure of Albrow et al. (2000a) to
derive the angular source radius h* from its dereddened
color and magnitude: first we use the color-color relations
of Bessell & Brett (1988) to convert from (V�I )0 to (V�K)0,
and then we use the empirical relation between color and
surface brightness to obtain h* (van Belle 1999). From this,

we find that

�
 ¼ 6:62� 0:58 las

¼ 1:42� 0:12 R� kpc�1 ; ð15Þ

where the error is dominated by the 8.7% intrinsic scatter in
the relation of van Belle (1999). Alternatively, we use the
different calibration derived for K giants by Beuermann,
Baraffe, & Hauschildt (1999) and obtain �
 ¼ 6:47 las,
which is consistent with equation (15). Finally, we note that
if the source were actually a clump giant that suffered

Fig. 7.—Same as Fig. 6, but focusing mainly on the ‘‘ anomalous ’’ part of the light curve. Themiddle panel now shows the daily averages of residuals.
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DAV ¼ 0:7 extra extinction, its angular size would be 7.08
las. Since we consider this scenario unlikely, and since in
any event the shift is smaller than the statistical error, we
ignore this possibility. From this determination of h* and
the value �
 ¼ ð4:80� 0:04Þ � 10�3, determined from the
fit to the light curve, we finally obtain

�E ¼ �

�


¼ 1:38� 0:12 mas ; ð16Þ

where the error is again dominated by the intrinsic scatter in
the relation of van Belle (1999).

6. THE LENS MASS AND THE LENS-SOURCE
RELATIVE PROPER MOTION

By combining the results obtained in xx 4 and 5, one can
derive several key physical parameters, including the lens
mass and the lens-source relative parallax and proper
motion:

M ¼ c2

4G
~rrE�E ¼ 0:612� 0:057 M� ; ð17Þ

Drel ¼
~rrE
�E

¼ 2:62� 0:24 kpc ; ð18aÞ

�L � �S ¼ 1 AU

Drel
¼ 0:382� 0:035 mas ; ð18bÞ

lS � lLj j ¼ �E lEj j ¼ 18:0� 1:7 las day�1

¼ 31:1� 2:9 km s�1 kpc�1 : ð19Þ

For the binary mass ratio of the best-fit model, q ¼ 0:749,
the masses of the individual components are 0.350 and
0.262M�, both of which are consistent with the mass of typ-
ical mid-M dwarfs in the Galactic disk. Using the mass-
luminosity relation of Henry & McCarthy (1993) and
adopting MV ¼ 2:89þ 3:37ðV�I ), the binary then has a
combined color and magnitude MI ¼ 8:2� 0:2 and
(V�IÞ ¼ 2:54� 0:08. Since D�1

rel ¼ D�1
L �D�1

S , Drel is an
upper limit for DL, i.e., the lens is located in the Galactic
disk within 2.6 kpc of the Sun. Furthermore, an argument
based on the kinematics (see x 7) suggests that DSe8 kpc,
so that it is reasonable to conclude that DL � 2 kpc
(m�M ’ 11:5). Hence, even if the binary lens lay in front of
all the extinction along the line of sight, it would be �2 mag
fainter than the blend (B) and so cannot contribute signifi-
cantly to the blended light. However, the proximity of the
lens to the observer is responsible for the event’s long time-
scale and quite large parallax effect.

7. THE KINEMATIC CONSTRAINTS ON THE
SOURCE DISTANCE

The projected velocity ~vv (eq. [14]) is related to the kine-
matic parameters of the event by

~vv ¼ Drel lS � lLð Þ

¼ Drel
vS
DS

�Drel
vL
DL

þ v�

� �
?
; ð20aÞ

where the final subscript? serves to remind us that all veloc-
ities are projected onto the plane of the sky. Writing
v� ¼ vrot þ v�;p and vL ¼ vrot þ vL;p as the sum of the Galac-
tic rotation and the peculiar velocities and eliminatingDL in
favor ofDrel andDS, equation (20a) can be expressed as

~vv ¼ Drel

DS
ðvS � vrotÞ � 1þDrel

DS

� �
vL;p þ v�;p

� 	
?
: ð20bÞ

For a fixedDS and with a known Galactic kinematic model,
the distribution function of the expected value for ~vv can be
derived from equation (20b). The measured value of ~vv can
therefore be translated into the relative likelihood L for a
givenDS and the assumed kinematic model,

� 2 lnL ¼ ð~vv� h~vviÞ xC�1 x ð~vv� h~vviÞ þ ln Cj j þ const ;

ð21aÞ

h~vvi ¼ xSðhvS;?i � vrotÞ � ð1þ xSÞhvL;p;?i þ v�;p;? ; ð21bÞ

C ¼ x2SC ½vS;?� þ ð1þ xSÞ2C ½vL;?� þ C ½~vv� ; ð21cÞ

where C ½vS;?� and C ½vL;?� are the dispersion tensors for the
source and the lens transverse velocity, C ½~vv� is the cova-
riance tensor for the measurement of ~vv, and xS ¼ Drel=DS.

We evaluate L as a function of DS assuming three differ-
ent distributions for vS;?, which correspond, respectively, to
the source being in the near disk (hvS;?i ¼ vrot þ hvS;p;?i),
the bulge (hvS;?i ¼ hvS;p;?i), and the far disk
(hvS;?i ¼ �vrot � hvS;p;?i). Adopting the Galactic rotational
velocity, vrot ¼ ð220; 0Þ km s�1, the solar motion,
v�;p;? ¼ ð5:2; 7:2Þ km s�1 (Binney & Merrifield 1998), and
the kinematic characteristics of the lens and the source pop-

Fig. 8.—Geometry of the event projected on the sky. Left is Galactic
east, up is Galactic north. The origin is the center of mass of the binary lens.
The trajectory of the source relative to the lens is shown as a thick solid
curve, while the short-dashed line shows the relative proper motion of the
source seen from the Sun. The lengths of these trajectories correspond to
the movement over 6 months between HJD ¼ 2; 451; 670 and 2,451,850.
The circle drawnwith long dashes indicates the Einstein ring, and the curves
within the circle are the caustics at two different times. The solid curve is at
t ¼ tc, while the dotted curve is at the time of the first crossing. The corre-
sponding locations of the two lens components are indicated by filled
(t ¼ tc) and open (the first crossing) circles. The lower circles represent the
more massive component of the binary. The ecliptic coordinate basis is also
overlayed with the elliptical trajectory of �E| over the year.
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ulation given in Table 5, we derive the relative likelihood as
a function of source position (Fig. 11) and find that the mea-
sured value of ~vv (eq. [14]) mildly favors the far disk over the
bulge as the location of the source by a factor of �2.3. The
near-disk location is quite strongly disfavored (by a factor
of �10.6 compared to the far disk, and by a factor of �4.7
compared to the bulge).

The complete representation of the likelihood for the
source location requires one to consider all the available
constraints relevant to the source distance. In particular,

these include the radial (line-of-sight) velocity measurement
and the number density of stars constrained by the mea-
sured color and brightness (or luminosity) along the line of
sight. Although one may naively expect that a bulge loca-
tion is favored by the high density of stars in the bulge,
which follows from the fact that the line of sight passes
within 400 pc of the Galactic center, it is not immediately
obvious how the disk contribution compares to the bulge
stars for the specific location of the source on the CMD
(Fig. 10). Even with no significant differential reddening

Fig. 9.—Close-up of Fig. 8 around the cusp approach. The source at the closest approach (t ¼ tc) is shown as a circle. The solid curve is the caustic at t ¼ tc,
while the dotted curve is the caustic at the time of the first crossing. The positions of the source center at the time of each of the observations are also shown by
symbols (same as in Figs. 1, 6, and 7) that indicate the observatory. For the close-up panel, only those points that were excluded from the fit because of
numerical problems in the magnification calculation (see xx 2 and 4) are shown. Note that the residuals for all points (including these excluded ones) are shown
in Figs. 6 and 7.
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over the field, the particular source position, which is both
fainter and redder than the center of the clump, can be occu-
pied by relatively metal-rich (compared to the bulge aver-
age) first ascent giants in either the bulge or the far disk.
Because first ascent giants become redder with increasing
luminosity, the source must have higher metallicity if it lies
in the bulge than in the more distant disk. There exist two
estimates of the source metal abundance: ½Fe=H�
¼ �0:3� 0:1 by Albrow et al. (2001b) based on VLT
FORS1 spectra and ½Fe=H� ¼ �0:3� 0:3 by Minniti et al.
(2002) based on VLT UVES spectra. However, to incorpo-
rate these measurement into a likelihood estimate would
require a more thorough understanding of all the sources of
error as well as a detailed model of the metallicity distribu-
tion of the bulge and the disk. For this reason, we defer the
proper calculation of the likelihood in the absence of any
definitive way to incorporate the specific density function
and restrict ourselves to the kinematic likelihood.

We determine the radial velocity of the source from Keck
HIRES spectra of Castro et al. (2001), kindly provided to us
by R. M. Rich. We find the line-of-sight velocity to be
approximately �100 km s�1 (blueshift; heliocentric),16

which translates to approximately �90 km s�1 Galactocen-
tric radial velocity accounting for the solar motion of 10 km
s�1. The derived radial velocity strongly favors bulge mem-
bership of the source since it is 3 times larger than the line-
of-sight velocity dispersion for disk K3 giants, but it is con-
sistent with the motions of typical bulge stars (see Table 5).
Because the correlation between the radial and the trans-
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Fig. 10.—Calibrated CMD for the field around EROS BLG-2000-5,
observed from YALO. The arrow shows the reddening vector. The posi-
tions of the source (S), blend (B), and center of the red giant clump (C) are
denoted by capital letters.

TABLE 5

Kinematic Characteristics of the Lens and the Source Population

Parameter Location

hvyia
(km s�1)

�x
(km s�1)

�y
(km s�1)

�z
(km s�1)

vL;p ............. Disk �18 38 25 20

vS;p ............. Disk �11.5 31 21 17

Bulge . . . 100 100 100

Note.—The x-direction is toward the Galactic center from the LSR, the y-
direction is the direction of the Galactic rotation, and the z-direction is toward
the north Galactic pole. The lens is assumed to be an M dwarf, while the source
is a K3 giant. The quoted values for the disk components are derived from
Binney&Merrifield 1998.

a Asymmetric drift velocity.

16 Recently, Minniti et al. (2002) reported a radial velocity measurement
of�191 km s�1 for the source star of EROS BLG-2000-5. At this point, we
do not knowwhat the reason is for this discrepancy.

Fig. 11.—Kinematic likelihood for ~vv as a function of DS. The three
curves are for different distributions of the source velocity: near-disk–like,
vS ¼ vrot þ vS;p (short-dashed line); bulgelike, vS ¼ vS;p (solid line); and far-
disk–like, vS ¼ �vrot � vS;p (long-dashed line). The top panel shows the like-
lihood derived using only the two-dimensional projected velocity informa-
tion, while in the bottom panel the likelihood also includes the radial
velocity information derived from the high-resolution spectra of Castro
et al. (2001).
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verse velocity for K3 giants either in the disk or in the bulge
is very small, the likelihood for the radial velocity can be
estimated independently from the likelihood for the trans-
verse velocity, and the final kinematic likelihood is a simple
product of two components. We find that the final kine-
matic likelihood including the radial velocity information
indicates that the source star belongs to the bulge (Fig. 11):
the likelihood for the bulge membership is about 6 times
larger than that for the far-disk membership. Finally, we
note that, if the source lay in the far disk, it should have an
additional retrograde proper motion of �4 mas yr�1(10
kpc/DS) with respect to the bulge stars, which should be
measurable using adaptive optics or the Hubble Space
Telescope.

8. CONSISTENCY BETWEEN THE LENS MASS AND
THE BINARY ORBITAL MOTION

For the derived parameters, we find a projected binary
lens separation r? ¼ dDL�E ¼ 5:52 AU (5.25 AU) and
transverse orbital speed v? ¼ ½ _dd2 þ ð!dÞ2�1=2DL�E ¼ 2:76
km s�1 (2.62 km s�1) for DS ¼ 10 kpc (8 kpc). We can now
define the transverse kinetic and potential energies
K? ¼ ½q=ð1þ qÞ2�Mv2?=2 and T? ¼ �½q=ð1þ qÞ2�GM2=r?
and evaluate their ratio,

% ¼ T?

K?

����
���� ¼ 2GM

r?v
2
?

¼ c2

2

~rrE�E ~rr�1
E þ ðDS�EÞ�1

h i3
d _dd2 þ ð!dÞ2
h i

¼ 25:9� 5:1 ð22Þ

(DS ¼ 10 kpc). Here the error is dominated by the uncer-
tainty in the measurement of !. Since r? 	 r and v? 	 v, it
follows that T?j j � Tj j and K? 	 K , and hence

T?=K?j j � T=Kj j, where jT=K j is the ratio of the true three-
dimensional potential and kinetic energies. The latter must
be greater than unity for a gravitationally bound binary.
This constraint is certainly satisfied by EROS BLG-2000-5.
Indeed, perhaps it is satisfied too well. That is, what is the
probability of detecting such a large ratio of projected ener-
gies? To address this question, we numerically integrate over
binary orbital parameters (viewing angles, the orbital orien-
tation and phase, and the semimajor axis) subject to the
constraint that r? ¼ 5:5 AU (DS ¼ 10 kpc) and at several
fixed values of the eccentricity e. We assume a random
ensemble of viewing angles and orbital phases. The results
shown in Figure 12 assume a Duquennoy & Mayor (1991)
period distribution but are almost exactly the same if we
adopt a flat period distribution. All of the eccentricities
shown in Figure 12 are reasonably consistent with the
observed ratio, although higher eccentricities are favored.

One can also show that high eccentricities are favored
using another line of argument. First, note that
r? � v?j j ¼ !r2? is the same as the projection of the specific
angular momentum of the binary to the line of sight,
ðr� vÞ x n̂nj j ¼ 2�a2ð1� e2Þ cos ij j=P. Here a and P are the
semimajor axis and the orbital period of the binary, n̂n is the
line-of-sight unit vector, and i is the inclination angle of the
binary. Combining this result with Kepler’s third law,
4�2a3 ¼ GMP2, one obtains (here and throughout this sec-
tion we assume thatDS ¼ 10 kpc)

a 1� e2
� �2

cos2 i ¼ ð!r2?Þ
2

GM
¼ 4

c2
!2d4

~rrE�E ~rr�1
E þ ðDS�EÞ�1

h i4
¼ 0:0013� 0:0341 AU : ð23Þ

From the energy conservation, ðv2=2Þ � ðGM=rÞ
¼ �GM=ð2aÞ, one may derive a lower limit for a:

a ¼ r

2
1� rv2

2GM

� ��1

� r?
2ð1� %�1Þ ¼ 2:87� 0:09 AU :

ð24Þ

The corresponding lower limit for the binary period is
P � 6:22 yr for DS ¼ 10 kpc. Now, we can derive a con-
straint on the allowed eccentricity and inclination by divid-
ing equation (23) by equation (24):

1� e2
� �

cos ij j 	 0:021� 0:281 : ð25Þ

The constraint here essentially arises from the fact that the
fit barely detects projected angular motion !, while the for-
mal precision of its measurement corresponds to �80 yr
orbital period in 1 � level. For the observed projected sepa-
ration and the derived binary mass, this apparent lack of the
binary angular motion therefore naturally leads us to con-
clude that the binary orbit is either very close to edge-on or
highly eccentric (or both).

9. ANOTHER LOOK AT MACHO 97-BLG-41

We have found that both parallax and binary orbital
motion are required to explain the deviations from rectilin-
ear motion exhibited by the light curve of EROS BLG-
2000-5. In a previous paper about another event, MACHO
97-BLG-41 (Albrow et al. 2000a), we had ascribed all devia-
tions from rectilinear motion to a single cause: projected

Fig. 12.—Distributions of the ratio of transverse potential energy,
T?j j ¼ ½q=ð1þ qÞ2�GM2=r?, to transverse kinetic energy, K? ¼
½q=ð1þ qÞ2�Mv2?=2, for binaries seen at random times and random orienta-
tions, for three different eccentricities, e ¼ 0, 0.5, and 0.9. Also shown is the
1 � allowed range for EROSBLG-2000-5. Noncircular orbits are favored.
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binary orbital motion. Could both effects have also been sig-
nificant in that event as well? Only detailed modeling can
give a full answer to this question. However, we can give a
rough estimate of the size of the projected Einstein ring ~rrE
that would be required to explain the departures from linear
motion seen in that event.

Basically what we found in the case ofMACHO 97-BLG-
41 was that the light curve in the neighborhood of the cen-
tral caustic (near HJD � 2; 450; 654) fixed the lens geometry
at that time and so predicted both the position of the outly-
ing caustics and the instantaneous velocity of the source rel-
ative to the Einstein ring. If this instantaneous relative
velocity were maintained, then the source would have
missed this outlying caustic by about Duobs � 0:4 (Albrow
et al. 2000a, Fig. 3). On the other hand, the predicted dis-
placement of a caustic due to parallax is

Dupred ¼ ��EDP ; ð26aÞ

DP ¼ |tcc;1 � |tcc;2 � ðtcc;1 � tcc;2Þ _||tcc;2 : ð26bÞ

We find DPj j ¼ 0:072, and hence

�E ¼ 5:6
Dupred
Duobs

: ð27Þ

That is, to explain by parallax the order of the effect seen
requires ~rrE � 0:18 AU, which (using the measured �E ¼ 0:7
mas) would in turn imply a lens mass of M � 0:015 M�, a
lens distance ofDLd250 pc, and a projected lens-source rel-
ative transverse velocity on the observer plane (at time tcc;2)
of only 13 km s�1.While these values cannot be strictly ruled
out, they are a priori extremely unlikely because the optical
depth to such nearby, low-mass, slow lenses is extremely
small. On the other hand, if the lens lies at a distance typical
of bulge lenses DL � 6 kpc and the source is a bulge star,
then ~rrE ¼ Drel�E � 17 AU, which would imply
Dupred=Duobs � 1%. That is, parallax would contribute neg-
ligibly to the observed effect. We therefore conclude that
most likely parallax does not play a major role in the inter-
pretation of MACHO 97-BLG-41 but that detailed model-
ing will be required to determine to what extent such a role
is possible.

What is the physical reason that parallax must be somuch
stronger (i.e., �E must be so much bigger) to have a signifi-
cant effect in the case of MACHO 97-BLG-41 than for
EROS BLG-2000-5? Fundamentally, the former is a close
binary, and there is consequently a huge ‘‘ lever arm ’’
between the radial position of the outlying caustic, uc � 1:7,
and the binary separation, d � 0:5, that is, uc=d � 3:2. This
is almost an order of magnitude larger than for EROS
BLG-2000-5, for which uc � 0:8 (Fig. 8), d � 1:9, and
uc=d � 0:4. Consequently, parallax has to be an order of
magnitude larger to reproduce the effects of the same
amount of the projected binary orbital motion.

10. SUMMARY

We have presented here results from two seasons of pho-
tometric I-band monitoring of the microlensing event
EROS BLG-2000-5, made by the PLANET collaboration.
The light curve exhibits two peaks that are well explained by
a finite source crossing over a fold-type (inverse square root
singularity) caustic, followed by a third peak that is due to
the source’s passage close to a cusp. We find no geometry
involving a rectilinear source-lens relative trajectory and a
static lens that is consistent with the photometry. However,
by incorporating both parallax and binary orbital motion,
we are able to model the observed light curve. In particular,
the detection of the parallax effect is important because it
enables us to derive the microlens mass,M ¼ 0:612� 0:057
M�, unambiguously by the combination of the projected
Einstein radius, measured from the parallax effect, and the
angular Einstein radius, inferred from the source angular
size and the finite source effect on the light curve. The source
size is measurable from the magnitude and the color of the
source. The kinematic properties of the lens/source system
derived from our model together with the lens-source rela-
tive parallax measurement as well as an additional radial
velocity measurement indicate that the event is most likely
caused by a (K3) giant star in the bulge being lensed by a
disk binary (M dwarf) system about 2 kpc from the Sun.
Additional information on the specific density function
along the line of sight, differential reddening across the field,
and a metallicity measurement of the source could further
constrain the source location.
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APPENDIX A

DETERMINATION OF &

If s is the Sun’s position vector with respect to the Earth normalized by 1 AU, then the projection of s onto the plane of the
sky, |, is

| ¼ s� ðs x n̂nÞn̂n ; ðA1Þ

where n̂n is the line-of-sight unit vector toward the position of the event on the sky, while the projection of p̂p, the unit vector
toward the north ecliptic pole (NEP), is given by ~pp ¼ p̂p� ðp̂p x n̂nÞn̂n. Then, (&w; &n), the ecliptic coordinate components of |, are

&w ¼ ð~pp� |Þ x n̂n
~ppj j

¼ ðp̂p� sÞ x n̂nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp̂p x n̂nÞ2

q ; ðA2aÞ

&n ¼
~pp x |

~ppj j ¼ � ðp̂p x n̂nÞðs x n̂nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp̂p x n̂nÞ2

q ; ðA2bÞ

where we make use of p̂p x s ¼ 0. One can choose three-dimensional coordinate axes so that the x-axis is the direction of the
vernal equinox, the z-axis is the direction to the NEP, and ŷy ¼ ẑz� x̂x. Then,

p̂p ¼ ð0; 0; 1Þ ; ðA3aÞ

s ¼ ðr� cos ��; r� sin��; 0Þ ; ðA3bÞ

n̂n ¼ ðcos�0 cos�0; sin�0 cos�0; sin �0Þ ; ðA3cÞ

where r� is the distance to the Sun from the Earth in units of AU, �� is the Sun’s ecliptic longitude, and (�0, �0) are the ecliptic
coordinates of the event. By substituting equations (A3a), (A3b), and (A3c) into equations (A2a) and (A2b), one finds that

&w ¼ �r� sinð�� � �0Þ ; ðA4aÞ

&n ¼ �r� cosð�� � �0Þ sin �0 : ðA4bÞ

In general, one must consider the Earth’s orbital eccentricity (
 ¼ 1:67� 10�2) to calculate | for any given time. Then,

r� ¼ 1� 
 cos ; �� ¼ � � 	� ; ðA5aÞ

 � 
 sin ¼ �t ; ðA5bÞ

sin � ¼ ð1� 
2Þ1=2 sin 
1� 
 cos 

; cos � ¼ cos � 


1� 
 cos 
; ðA5cÞ

where  and � are the eccentric and true anomalies of the Earth, 	� ¼ 77=86 is the true anomaly at the vernal equinox (March
20, 07h35mUT for 2000; Larsen &Holdaway 1999), t is the time elapsed since perihelion, and� ¼ 2� yr�1. Note that the Earth
was at perihelion at January 3, 05h UT for 2000 (Larsen & Holdaway 1999). Although equations (A5a), (A5b), and (A5c)
cannot be solved for r� and �� in closed form as functions of t, one can expand in series with respect to 
 and approximate up
to the first order (epicycle approximation) so that

r� ¼ 1� 
 cosð�tÞ ; �� ¼ �t� 	� þ 2
 sinð�tÞ : ðA6Þ

APPENDIX B

MICROLENS DIURNAL PARALLAX

The angular position of a celestial object observed from an observatory on the surface of the Earth is related to its geocentric
angular position uX by

u0X ¼ uX � cR�

DX
; ðB1Þ

where

c ¼ r� ðr x n̂nÞn̂n ðB2Þ
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is the projection of the position vector r of the observatory with respect to the center of the Earth onto the plane of the sky and
normalized by the mean radius of the EarthR� andDX and n̂n are the distance and the line-of-sight vector to the object of inter-
est. If one observes a microlensing event, the actual dimensionless lens-source separation vector therefore differs from u (eq.
[6]) by

u0 ¼
u0S � u0L
�E

¼ uþ R�
~rrE

c ¼ tþ ðt� tcÞlE � �E |� R�

1 AU
c

� �
: ðB3Þ

To find the algebraic expression for ecliptic coordinate components of c, we choose the same coordinate axes as for
equations (A3a), (A3b), and (A3c). Then, the position vector r is expressed as

r ¼ ðcos �g cos 
�; cos �g sin 
� cos "þ sin �g sin "; sin �g cos "� cos �g sin 
� sin "Þ; ðB4Þ

where �g is the geographic latitude of the observatory, 
� is the hour angle of the vernal equinox (i.e., the angle of the local side-
real time) at the observation, and " ¼ 23=44 is the angle between the direction toward the north celestial pole and the NEP
(here we also assume that the Earth is a perfect sphere). Then, following a similar procedure as in Appendix A,

�w ¼ ð~pp� cÞ x n̂n
~ppj j ¼ ðp̂p� rÞ x n̂nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðp̂p x n̂nÞ2
q ; ðB5aÞ

�n ¼
~pp x c

~ppj j
¼ p̂p x r� ðp̂p x n̂nÞðr x n̂nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðp̂p x n̂nÞ2
q ; ðB5bÞ

one obtains the ecliptic coordinate components of c,

�w ¼ � sin �g sin " cos�0 þ cos �gðcos 
� sin�0 � sin 
� cos " cos�0Þ ; ðB6aÞ

�n ¼ sin �gðcos " cos�0 � sin " sin�0 sin �0Þ � cos �g½cos 
� cos�0 sin �0 þ sin 
�ðsin " cos�0 þ cos " sin�0 sin �0Þ� : ðB6bÞ

APPENDIX C

THE CHOICE OF FIT PARAMETERS

Judged by the number of fitting parameters alone, EROS BLG-2000-5 is by far the most complex event ever analyzed: com-
pared to the runner-up, MACHO 97-BLG-41 (Bennett et al. 1999; Albrow et al. 2000a), it has two more geometric parameters
and one more limb-darkening parameter. As a direct result, the path toward choosing a modeling procedure was substantially
more tortuous than usual. We therefore believe that it is important to document this path, at least in outline, in order to aid in
the modeling of future events.

As stated in x 3, the seven standard parameters for binary events are (d, q, �, u0, tE, t0, �
). Immediately following the first
caustic crossing, we fit this crossing to five empirical parameters, including tcc;1 and Dt1, the time and half-duration of the first
crossing. We then changed our choice of parameters ðt0; �
Þ ! ðtcc;1;Dt1Þ according to the prescription of Albrow et al.
(1999b), effectively cutting the search space down from seven to five dimensions and speeding up the search accordingly. This
permitted us to accurately predict in real time not only the time but also the (4 day) duration of the second crossing, which in
turn allowed two groups to obtain large-telescope spectra of the crossing (Albrow et al. 2001b; Castro et al. 2001). This was
the first prediction of the duration of a caustic crossing.

Why is the substitution ðt0; �
Þ ! ðtcc;1;Dt1Þ critical? Both tcc;1 and Dt1 are determined from the data with a precision of
�10�3 days � 10�5tE. Hence, if any of the parameters, �, u0, t0, �
, are changed individually by 10�4 (subsequent changes of
tcc;1 and Dt1 by 10�4tE), this will lead to an increase D�2 � 100. As a result, even very modest movements in parameter space
must be carefully choreographed to find a downhill direction on the �2 hypersurface. By making (tcc;1;Dt1) two of the parame-
ters and constraining them to very small steps consistent with their statistical errors, one in effect automatically enforces this
choreography.

In all the work reported here, we searched for �2 minima at fixed (d, q) and repeated this procedure over a (d, q) grid.
We found for this event (as we have found for others) that regardless of what minimization technique we apply, if we search
(d, q)-space simultaneously with the other parameters, then either we do not find the true �2 minimum or the search requires
prohibitive amounts of time.

Following the second crossing, we added a linear limb-darkening parameter but otherwise continued with the same parame-
terization. We found that the fitting process was then enormously slowed down because small changes in �, u0, or tE led to
large changes in tcc;2 and Dt2 (the second crossing time and half-duration), whereas these quantities were directly fixed by the
data.We therefore changed parameters ð�; u0; tEÞ ! ðtcc;2;Dt2; taxisÞ, where taxis is the time in which the source crossed the cusp
axis. Hence, all five of the non–(d, q) parameters were fixed more or less directly by the data, which greatly improved the speed
of our parameter search. We thus quickly found the �2 minimum for this (7þ 1)-parameter (seven geometry plus one limb
darkening) space. (Note that the limb-darkening parameter, like the source flux, the background flux, and the seeing correla-
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tion, is determined by linear fitting after each set of other parameters is chosen. Hence, it exacts essentially zero computational
cost. We therefore track it separately.)

Since the light curve showed systematic residuals of several percent (compared to daily-averaged photometry errors51%),
we were compelled to introduce more parameters. We first added two parallax parameters, the magnitude �E and its relative
orientation with respect to the binary, yielding a (9þ 1)-parameter fit. Since five of the nine geometrical parameters remained
empirical, this procedure also converged quickly. However, while �2 had fallen by several hundred (indicating a very signifi-
cant detection of parallax), the problem of systematic residuals was not qualitatively ameliorated. This created something of a
crisis. We realized that further improvements would be possible if we allowed for binary orbital motion. Lacking apparent
alternatives, we went ahead and introduced projected binary orbital motion. This led to radical changes in our now (11þ 1)-
parameterization. Allowing two dimensions of binary motion meant that both the orientation and the size of the binary sepa-
ration could change. The latter induced changes in both the size and shape of the caustic and so made it essentially impossible
to define the time parametersDtcc in such a way that was at the same timemathematically consistent and calculable in a reason-
able amount of time. We therefore went back to something very like the original geometric parameterization but with four
additional parameters (dt0 , q, �, u0, tE, t0, �*, �E,

_dd, !). Here the direction of �E contains the information on the direction of the
binary axis relative to the line of ecliptic latitude at time t0, when the source is closest to the binary center of mass in the Sun’s
frame of reference. The binary orbital motion is incorporated via _dd and !. The quantities �, u0, and tE are all given in the frame
of reference of the Sun as well.

However, while this parameterization has the advantage of mathematical simplicity, it would have introduced severe insta-
bilities into the fitting procedure. At bottom, the problem is the same as the one that led to the substitution
ðt0; �
Þ ! ðtcc;1;Dt1Þ described above, but substantially more damaging. This is because the microlens parallax is a relatively
poorly constrained quantity. Yet, within the framework of this parameterization, a change of the trial value of �E of only 1%
(by itself) would shift tcc;1 by�0.3 day and so induce D�2 � 1000. Thus, to avoid such huge �2 jumps, even more careful chor-
eography would have been required.

Instead, we made the following changes to the parameter scheme. First, we made the reference time tc be the time of the clos-
est approach of the source to the cusp, rather than the closest approach to the center of mass. Second, we adopted, for the
frame of reference, the frame of the Earth at tc rather than the frame of the Sun. Our final choice of parameters is
(dtc ; q; �

0; uc; t
0
E; tc; �
; �E; _dd; !), where uc is the impact parameter relative to the cusp and �0 and t0E are evaluated at tc and in the

frame of reference of the Earth at the time. The change of reference frame is responsible for the form of the parallax deviation
given in equation (8), but from a practical point of view it is very helpful so that the nonparallax parameters do not change very
much when the parallax is changed: in particular, they are similar to the solution without parallax (i.e., �E � 0). The particular
choice of the reference time tc is useful because most of the ‘‘ action ’’ of the event happens close to this time, either during the
cusp approach itself or during the second caustic crossing a week previously. Hence, both tc and uc are relatively well fixed by
the data, while the angle � is also relatively well fixed since it is strongly constrained by the cusp approach and second crossing.
As a consequence, we are able to find relatively robust minima for each (d, q) grid point in about a single day of computer time,
which is quite adequate to reach a global minimum.

Unfortunately, the (11þ 1)-parameterization failed to qualitatively lessen the problem of systematic residuals. We then rec-
ognized that more limb-darkening freedom was required and so added a square root limb-darkening parameter in addition to
the linear one. This reduced the systematic residuals to less than 1%. As a result, we fit limb darkening with a two-parameter
form so that the final fit we adopted is an (11þ 2)-parameterization fit.

APPENDIX D

HYBRID STATISTICAL ERRORS

As we described in Appendix C, our �2 minimization procedure is effective at fixed (d, q) (with the nine other geometrical
parameters allowed to vary) but does not work when all 11 geometrical parameters are allowed to vary simultaneously. We
therefore find the global minimum by evaluating �2 over a (d, q) grid. How can the errors, and more generally the covariances,
be determined under these circumstances?

In what follows, the parameters will be collectively represented by a vector ai and the indices i, j will be allowed to vary over
all p ¼ 11 parameters. We assign a1 ¼ d and a2 ¼ q and designate that the indices m, n will be restricted to these two parame-
ters. What we seek to evaluate is cij ¼ covðai; ajÞ � haiaji � haiihaji.

First, we note that it is straightforward to determine cmn: simply evaluate �2 at a series of points on the (a1, a2) grid, and fit
these to �2 ¼ �2

min þ
P2

m;n¼1 b̂bmnðam � amin
m Þðan � amin

n Þ. Then ðĉcmnÞ ¼ ðb̂bmnÞ�1 is the covariance matrix restricted to the first
two parameters, i.e., ĉcmn ¼ cmn.

Next, at fixed ða1; a2Þ ¼ ðay1; a
y
2Þ, we evaluate the restricted covariance matrix of the remaining p� 2 ¼ 9 parameters by

varying zero, one, or two parameters at a time and fitting the resulting �2 hypersurface to
�2 ¼ �2

min þ
P11

i;j¼3
~bbijðai � amin

i Þðaj � amin
j Þ. Then, using the result derived in Appendix A of Gould & An (2002), one can

show that ð~ccijÞ ¼ ð~bbijÞ�1 is related to the full covariance matrix by

~ccij ¼ cij �
X
m;n

b̂bmncmicnj ði; j 6¼ 1; 2Þ ; ðD1Þ
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and the parameters ~aai at the constrained minimum are

~aai ¼ amin
i �

X
m;n

ðamin
m � a

y
mÞb̂bmncni ði 6¼ 1; 2Þ : ðD2Þ

Differentiating equation (D2) with respect to aym yields

@~aai

@aym
¼

X
n

b̂bmncni ; ðD3Þ

cmi ¼
X
n

ĉcmn
@~aai

@a
y
n

: ðD4Þ

The partial derivatives can be determined simply by finding the change in ai as one steps along one axis of the (d, q) grid. Since
ĉcmn is already known from the first step, the cmi are also known. Finally, the remaining covariances can be found by substitut-
ing equation (D4) into equation (D1),

cij ¼ ~ccij þ
X
m;n

ĉcmn
@~aai

@aym

@~aaj

@ayn
: ðD5Þ
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