
IDENTIFYING LENSES WITH SMALL-SCALE STRUCTURE. II. FOLD LENSES

Charles R. Keeton,
1
B. Scott Gaudi,

2
and A. O. Petters

3, 4

Received 2005 March 18; accepted 2005 August 19

ABSTRACT

When the source in a four-image gravitational lens system lies sufficiently close to a ‘‘fold’’ caustic, two of the
lensed images lie very close together. If the lens potential is smooth on the scale of the separation between the two
close images, the difference between their fluxes should approximately vanish, Rfold � (Fþ � F�)/(Fþ þ F�) � 0.
(The subscript indicates the image parity.) Violations of this ‘‘fold relation’’ in observed lenses are thought to indicate
the presence of structure on scales smaller than the separation between the close images. We present a detailed study
of the fold relation in realistic smooth lenses, finding it to be more subtle and rich than was previously realized. The
degree to which Rfold can differ from zero for smooth lenses depends not only on the distance of the source from the
caustic, but also on its location along the caustic, and then on the angular structure of the lens potential (ellipticity,
multipole modes, and external shear). Since the source position is unobservable, it is impossible to say from Rfold

alone whether the flux ratios in an observed lens are anomalous or not. Instead, we must consider the full distribution
ofRfold values that can be obtained from smooth lens potentials that reproduce the separation d1 between the two close
images and the distance d2 to the next nearest image. (By reducing the image configuration to these two numbers, we
limit our model dependence and obtain a generic analysis.) We show that the generic features of this distribution can
be understood, whichmeans that the fold relation provides a robust probe of small-scale structure in lens galaxies.We
then compute the full distribution using Monte Carlo simulations of realistic smooth lenses. Comparing these
predictions with the data, we find that five of the 12 known lenses with fold configurations have flux ratio anomalies:
B0712+472, SDSS 0924+0219, PG 1115+080, B1555+375, and B1933+503. Combining this with our previous
analysis revealing anomalies in three of the four known lenses with cusp configurations, we conclude that at least half
(8/16) of all four-image lenses that admit generic, local analyses exhibit flux ratio anomalies. The fold and cusp
relations do not reveal the nature of the implied small-scale structure, but do provide the formal foundation for
substructure studies, and also indicate which lenses deserve further study. Although our focus is on close pairs of
images, we show that the fold relation can be used—with great care—to analyze all image pairs in all 22 known four-
image lenses and reveal lenses with some sort of interesting structure.

Subject headinggs: cosmology: theory — dark matter — galaxies: formation — gravitational lensing —
large-scale structure of universe

1. INTRODUCTION

Once baffling, the flux ratios between the images in four-
image gravitational lens systems have recently become a source
of considerable excitement. During the 1990s, standard smooth
lens models (using ellipsoidal lens galaxies, plus tidal shear from
lens environments) successfully handled ever-improving data on
the number and relative positions of lensed images, but consis-
tently failed to fit the image fluxes. The first step toward solving
this problem came when Mao & Schneider (1998) realized that
small-scale structure in lens galaxies, which had previously been
neglected, could easily explain the ‘‘anomalous’’ flux ratios. The
excitement began in earnest when Metcalf & Madau (2001) and
Chiba (2002) pointed out that the cold dark matter (CDM) par-
adigm might naturally explain the sort of substructure required
to fit the fluxes. Soon after, Dalal &Kochanek (2002) introduced
a method of analyzing lens data to measure the properties of
substructure. They concluded that 2:0þ5:0

�1:4% (at 90% confidence)
of the mass in lens galaxies is contained in substructure, which
seemed to agree with CDM predictions, and to reveal that the

so-called missing satellites (Moore et al. 1999; Klypin et al.
1999) are in fact present but dark. Anomalous flux ratios had
become a powerful test of CDM on small scales, and potentially
a unique probe of the fundamental nature of dark matter.

Before carrying the conclusions too far, though, we must re-
call that there are many links in the chain of logic from obser-
vations of flux ratio anomalies to tests of CDM that need to be
filled in. First, we must identify lenses with anomalous flux
ratios. Second, we should list all the different types of small-
scale structure5 that might create flux ratio anomalies, and under-
stand what observations or analyses could distinguish between
them. Third, we must see whether present data do distinguish dif-
ferent types of small-scale structure. If so, we can then quantify
the amount of small-scale structure present in real lens galaxies.
By comparing the inferred nature and abundance of small-scale
structure to theoretical predictions, we can test the CDM para-
digm. Finally, if we can understand how the predictions depend
on the assumption that dark matter is cold and collisionless, we
may be able to use lensing to probe the fundamental properties of
the dark matter particle.

Dalal & Kochanek (2002) were the first to construct a realiza-
tion of the full chain of logic. Briefly, they identified anomalous
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flux ratios as those that could not be fit with standard lens mod-
els. They focused on radio flux ratios in order to ignore micro-
structure associated with individual stars in lens galaxies, and
assumed that the only important small-scale structure is dark
matter clumps of the sort predicted by CDM. (They argued that
other sorts of small-scale structure, such as globular clusters and
dwarf galaxies, are much less abundant than the inferred number
of CDM clumps.) They assumed that the amount of CDM sub-
structure is a universal fraction of the total density, used the lens
observations to place constraints on that fraction, and then com-
pared their results with predictions from CDM simulations.
Making the various assumptions was necessary to build the first
connection between lens flux ratios and the nature of dark matter.
However, questions have been raised about some of them, which
prompt us to go back and reassess each link in the chain. This
evaluation is essential if we want to claim lensing as a reliable
probe of small-scale structure in the universe. Moreover, it is
intrinsically interesting because it will lead us to a deeper under-
standing of diverse topics in both lensing and structure formation
theory.

Let us first consider the CDM end of the chain. There has been
a surge of interest in refining predictions about substructure.
It now appears that the substructure mass fraction need not be
universal, but may vary both within a given halo and from one
halo to another (e.g., Chen et al. 2003; Zentner & Bullock 2003;
Mao et al. 2004; Oguri & Lee 2004). Tidal forces might be able
to destroy dark matter clumps at the small radii where lensed
images typically appear, in which case CDM might predict too
little substructure to explain observed flux ratio anomalies (Mao
et al. 2004; Amara et al. 2004). If so, we should consider whether
small halos projected along the line of sight can provide suffi-
cient small-scale structure. The situation is unclear, as Chen et al.
(2003) claim that the millilensing optical depth from the line of
sight is fairly small, while Metcalf (2005a, 2005b) claims that
interloping structures are sufficient to explain flux ratio anom-
alies. Another possibility is that revised analyses of lens data
may lower the required amount of small-scale structure (see be-
low). A third possibility, of course, is that lensing and CDM
simply disagree about small-scale structure. In any case, the im-
portant point is that the CDM predictions are challenging and
still somewhat uncertain, and more work needs to be done. Mas-
tering the theory involves both technical issues (numerical resolu-
tion) and physical effects (dynamical friction, tidal disruption),
so it is not only essential for interpreting the lensing results, but
also interesting in its own right.

Now moving to the lensing side, we must first ask whether
flux ratio anomalies are real. Evans & Witt (2003) recently sug-
gested that at least some of the ‘‘anomalies’’ might just be artifacts
of certain assumptions in standard lens models. Specifically, in-
stead of assuming the usual elliptical symmetry, they allowed
perturbations from m ¼ 3 and m ¼ 4 multipole modes. Such
modes are not only observed in the luminosity distributions of
real galaxies (Bender et al. 1989; Saglia et al. 1993; Rest et al.
2001), but also predicted in the mass distributions of simulated
galaxies (Heyl et al. 1994; Naab & Burkert 2003), so it does not
seem unreasonable to allow them in lens models. Evans & Witt
found that they could fit two of the three ‘‘anomalous’’ lenses
they considered, without substructure. However, Congdon &
Keeton (2005) found that multipole models fail to explain the
strongest anomalies. Also, Kochanek&Dalal (2004) argued that
even low-order multipole modes cannot explain an important
statistical property of the ensemble of flux ratio anomalies: an
asymmetry between images that form at minima of the time

delay surface and those that form at saddle points, such that
anomalous minima are almost always brighter than expected,
while anomalous saddles are usually fainter than expected. To its
credit, the CDM substructure hypothesis, and stellar micro-
lensing, can both explain such an asymmetry (Metcalf &Madau
2001; Schechter & Wambsganss 2002; Keeton 2003; Bradač
et al. 2004). However, it is not yet known whether alternative
hypotheses could explain the asymmetry as well. In a different
response to Evans &Witt, Yoo et al. (2005) recently showed that
in PG 1115+080 the Einstein ring image of the quasar host gal-
axy rules out the sorts of multipole modes that would be needed
to fit the quasar flux ratios. This type of analysis is very prom-
ising, but it demands deep, high-resolution, near-infrared obser-
vations combined with a sophisticated modeling analysis, and it
must be applied on a case-by-case basis.
Clearly, a top priority must be to develop methods to deter-

mine whether flux ratio anomalies are real and indicate small-
scale structure. One approach is to look for new data that cleanly
reveal small-scale structure. The most unambiguous situation is
the detection of flux perturbations associated with microlensing
by stars in the lens galaxy. Detecting time variability in optical
fluxes can prove that microlensing occurs (e.g., Woźniak et al.
2000; Schechter et al. 2003). Barring that, the next best thing
is to take optical spectra of lensed images and use similarities
or differences between emission line and continuum flux ratios
to distinguish between microlensing, millilensing (a term some-
times applied to flux perturbations caused by CDM-type sub-
structure), and errors in the macromodel (Moustakas & Metcalf
2003). The required observations are challenging, but the method
does appear to be successful (Wisotzki et al. 2003; Metcalf et al.
2004; Morgan et al. 2004; Wayth et al. 2005a; Keeton et al.
2005). At this point, it is appropriate to note that the ‘‘more data’’
program has made it possible to conclude that, whatever their
lensing interpretation may be, flux ratio anomalies are not elec-
tromagnetic phenomena. Measurements offlux ratios at different
epochs and wavelengths have shown that differential extinction
and scattering cannot explain the unusual observed flux ratios
(see Koopmans et al. 2003a; Kochanek & Dalal 2004; Chiba
et al. 2005; Appendix B).
An alternate approach is to reanalyze existing data. Tradi-

tionally, flux ratio anomalies have been identified as those that
cannot be fit with certain smooth lens models (e.g., Dalal &
Kochanek 2002;Metcalf & Zhao 2002; Kochanek&Dalal 2004).
That analysis is, of course, susceptible to the criticism of being
model-dependent. Perhaps even more important, it may be sen-
sitive to certain global symmetries in the popular lens models
that lead to global relations among the magnifications of the four
images (Dalal 1998; Witt & Mao 2000; Hunter & Evans 2001;
Evans & Hunter 2002). Failure to fit observed flux ratios may
simply indicate failure of the global symmetries—which is very
different from saying that there must be small-scale structure. To
circumvent both of these problems, we would like to develop
an analysis that is both local in the sense that it only depends
on properties of the lens potential around and between closely
spaced images, and generic in the sense that it does not depend
on any specific properties of the types of models that are used to
analyze the data.
Fortunately, lens theory has uncovered precisely what we

need: local and generic relations between the magnifications be-
tween certain images in certain configurations. Specifically, two
images in a ‘‘fold pair’’ (defined in x 2) should have magnifi-
cations �A and �B that satisfy the approximation relation j�Aj�
j�Bj � 0, while three images in a ‘‘cusp triplet’’ should have
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j�Aj � j�Bj þ j�Cj � 0. This cusp relation played a central role
in the analysis by Mao & Schneider (1998) that led to the idea
that lens flux ratios may probe small-scale structure. If we want
to use the fold and cusp relations today, however, we must rig-
orously understand how ‘‘local’’ and ‘‘generic’’ they really are,
and whether they can actually be used as the basis of a realistic
but robust method for identifying flux ratio anomalies that in-
dicate small-scale structure.

The standard fold and cusp relations are derived from low-
order Taylor series expansions in the vicinity of a fold or cusp
caustic (Blandford & Narayan 1986; Mao 1992; Schneider &
Weiss 1992; Schneider et al. 1992; Petters et al. 2001; Gaudi &
Petters 2002a, 2002b). Formally, they are only valid when the
source lies asymptotically close to a caustic.We have undertaken
to reexamine the relations in more realistic settings, when the
source sits a small but finite distance from a caustic, and the lens
potential has a variety of nontrivial but smooth structures such as
different radial profiles, ellipticities, octopole (m ¼ 4) modes, and
external tidal shears. In Keeton et al. (2003, hereafter Paper I ),
we studied the cusp relation. We found it to be insensitive to
the radial profile of the lens galaxy, but quite sensitive to ellip-
ticity, multipole modes, and shear. We quantified the degree to
which these features can cause j�Aj � j�Bj þ j�Cj to deviate from
zero even for smooth lenses. We then compared those allowed
deviations with observed data and found that five observed lenses
violate the realistic cusp relation in ways that indicate the pres-
ence of small-scale structure (B0712+472, RX J0911+0551,
SDSS 0924+0219, RX J1131�1231, and B2045+265). We were
very careful to state the limitations of the analysis, in particular
to remark that study of the cusp relation—like all other analyses
of single-epoch, single-band flux ratios—cannot reveal the na-
ture of the implied small-scale structure. The strongest con-
clusion that can be drawn from a generic analysis is that the lens
must have significant structure on scales smaller than the sep-
aration between the triplet of cusp images. We believe that this
sort of deep discussion of the general features and applicability
of a generic magnification relation is as valuable as the specific
identification of flux ratio anomalies that it allows.

In this paper we turn our attention to the fold relation. We
again seek to understand the general properties of the relation in
realistic situations and to use that understanding to identify vio-
lations of the fold relation. We adopt the same basic approach as
in Paper I: we first examine simple lens potentials analytically,
then develop aMonte Carlo approach to study the fold relation in
a realistic lens population, and finally use the realistic fold re-
lation to look for flux ratio anomalies in observed lenses. How-
ever, many fine points of the discussion are rather different,
because there are subtle but important ways in which the fold and
cusp relations behave differently. In addition, we have come to
understand that the fold relation may be used—with great care—
to learn something interesting about image pairs that are not ob-
viously fold pairs. The discussion of observed lenses therefore
has a somewhat larger scope in this paper than it did in Paper I.
One final difference is that the sample of published four-image
lenses has grown by three since Paper I.

As in Paper I, we assert that, even though we adopt specific
families of lens potentials, our analysis is more general than
explicit modeling. One reason is that we take pains to understand
what is generic in the fold relation. A second reason is that we
have a better distinction between global and local properties of
the lens potential. For example, a globalm ¼ 1 mode (i.e., a lack
of reflection symmetry) would affect conclusions about anom-
alies in direct modeling, but not in our analysis. A third point

is that our results are less modeling-dependent, less subject to
the intricacies of fitting data and using optimization routines.
A fourth advantage of our analysis is that, rather than simply
showing that the standard models fail to fit a lens, it clearly diag-
noses why. We believe that these benefits go a long way toward
establishing that small-scale structure in lens galaxies is real and
can be understood.

We must address a question that is semantic but important:
Where do we draw the line between a normal ‘‘smooth’’ lens
potential and ‘‘small-scale structure’’? As in Paper I, we take a
pragmatic approach and consider ‘‘smooth’’ lenses to include
anything that is known to be common in galaxies, especially
early-type galaxies: certain radial density profiles, reasonable
ellipticities, small octopole modes representing disky or boxy
isophotes, and moderate tidal shears from lens environments.
Finding evidence for any or all of those in any given lens would
not cause much stir. We then consider ‘‘small-scale structure’’ to
be anything whose presence in lens galaxies would be notable
and worthy of further study. In other words, we do not attempt to
distinguish between microlensing, CDM-type substructure, mas-
sive and offset disk components, large-amplitude or intermediate-
scale multipole modes, and so on, as explanations for flux ratio
anomalies. That is properly the subject of a separate analysis,
which can begin only once flux ratio anomalies have been rig-
orously identified.

The organization of the paper is as follows. In x 2we introduce
a way to quantify four-image lens configurations that is conve-
nient for the fold relation. In x 3 we review the ideal magnifi-
cation relations for folds and cusps. In x 4 we use a simple lens
potential to examine the general properties of the fold relation in
different regimes. In x 5 we introduce a Monte Carlo technique
for characterizing the fold relation for a realistic population of
lens potentials. In x 6 we use our understanding of the fold rel-
ation to evaluate all of the observed four-image lenses. We offer
our conclusions and discussion in x 7. Two appendices provide
supporting technical material. In Appendix Awe present an im-
portant extension of the usual Taylor series analysis leading to
the fold relation. In Appendix B we summarize the data that
we analyze for all of the published four-image lenses.

2. CHARACTERIZING FOUR-IMAGE LENSES

At least 23 quadruply imaged lens systems are known. This
count includes the 10 image system B1933+503, which is com-
plex because there are two different sources that are quadruply
imaged and a third that is doubly imaged (Sykes et al. 1998). It
excludes PMN J0134�0931 and B1359+154 because each sys-
tem has multiple lens galaxies that lead to image multiplicities
larger than four (Rusin et al. 2001; Keeton & Winn 2003; Winn
et al. 2003). The count also excludes systems like Q0957+561 in
which some faint secondary features, including the host galaxy
of the source quasar, may be quadruply imaged but are diffi-
cult to study (Bernstein et al. 1997; Keeton et al. 2000). Pub-
lished data for the quadruply imaged systems are reviewed in
Appendix B.

The image configurations of quad lenses can usually be clas-
sified ‘‘by eye’’ into three categories: folds, cusps,6 and crosses.
The names are related to the location of the source with respect to
the lensing caustics. For our purposes it is more important to find
a simple but quantitative way to characterize the configurations.

6 Some authors subdivide cusps depending on whether they are associated
with the long or short axis of the lens potential (e.g., Saha & Williams 2003),
and we will follow suit when convenient.
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When studying cusp lenses in Paper I, we used the separation
and opening angle of a triplet of images. To study fold config-
urations, we are interested in pairs of images, in particular pairs
comprising one image at a minimum of the time delay surface
and one at a saddle point. (The parities of the images can usually
be determined unambiguously; see Saha & Williams 2003.) Let
us label the two minima M1 and M2 , and the two saddles S1 and
S2. (For definiteness, suppose M1 is the brighter minimum and
M2 the fainter, and likewise for the saddles.) When considering
the pair M1S1, for example, we define d1 ¼ D(M1; S1) and d2 ¼
min½D(M1; S2);D(M2; S1)�, whereD(i, j) is the distance between
images i and j. In other words, d1 is the separation between the
images for the pair in question, and d2 is the distance to the next
nearest image. Note that d1 and d2 describe a pair of images. At
times it is convenient to characterize the full configuration of
all four images, and we define d�1 and d

�
2 to be the values of d1 and

d2 for the pair with the smallest separation. In other words, a
given four-image lens is fully characterized by the four values
of (d1, d2) for the four different minimum/saddle pairs; but it is
sometimes convenient to use (d�1 ; d

�
2) as an abbreviation that en-

codes the overall morphology of the lens.

Figure 1 illustrates the three fiducial configurations and in-
dicates d1 and d2 for sample image pairs. In a fold lens, the source
sits near a fold caustic, so two of the images lie close together
with d1Td2. Furthermore, d2 is comparable to the other scale in
the problem, the Einstein radius REin. In a cusp lens, the source is
near a cusp caustic, so three of the images are close together and
we have d1 � d2TREin. If the source does not lie near a caustic,
then the images form a relatively symmetric cross configuration
with d1 � d2 �REin.
Incidentally, the three ‘‘archetypal’’ image configurations

shown in Figure 1 were created using a singular isothermal el-
lipsoid lens with axis ratio q ¼ 0:5 or ellipticity e ¼ 1� q ¼
0:5.We chose source positions such that d fold

1
¼ d

cusp
1 ¼ d

cusp
2 ¼

0:46REin, which is similar to the separation between close image
pairs and triplets in observed fold and cusp lenses. The values
d cross
1 ¼ d cross

2 ¼ 1:54REin were set by the choice of ellipticity.
We then chose the fold source position such that d fold

2 ¼ d cross
1 ¼

d cross
2 . Having different distances be equal to each other means

that we can smoothly morph from the fold to the cusp by fixing
d1 and varying d2, or from the fold to the cross by fixing d2 and
varying d1.

Fig. 1.—Three fiducial configurations of four-image lenses: fold (top), cusp (middle), and cross (bottom). In each panel the figure on the left shows the caustics and
source position in the source plane, while the figure on the right shows the critical curves and image positions in the image plane. Despite appearances, the fold and cusp
sources sit a finite distance from the caustic. The configurations are distinguished by the distances d1 and d2, as indicated.
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3. ASYMPTOTIC MAGNIFICATION RELATIONS
FOR FOLDS AND CUSPS

In this section we briefly review the expected relations be-
tween the magnifications of images corresponding to a source
near a fold or cusp caustic. The relations have been discussed
before (Blandford & Narayan 1986; Mao 1992; Schneider &
Weiss 1992; Schneider et al. 1992; Petters et al. 2001; Gaudi &
Petters 2002a, 2002b), but we have extended the relations to a
higher order of approximation.

As Paper I discussed in depth, when the source lies near a cusp
caustic, the three associated images should have7

Rcusp �
j�Aj � j�Bj þ j�Cj
j�Aj þ j�Bj þ j�Cj

¼ FA � FB þ FC

FA þ FB þ FC

� 0; ð1Þ

where �i is the signed magnification of image i, while Fi ¼
Fsrcj�ij is the flux of the image if the source has flux Fsrc. (Rcusp

is defined such that it is independent of Fsrc.) In our naming
convention, B is the middle of the three images and there is no
need to specify whether it is a minimum or saddle image. To
state equation (1) more precisely, we expand the lens mapping
in a Taylor series about the cusp and find Rcusp ¼ 0þ Acuspd

2þ
: : : , where d is the maximum separation between the three
images, while Acusp depends on properties of the lens potential
at the cusp point (physically, what matters is the ellipticity,
higher order multipoles, and external shear; see Paper I ). Since
the constant and linear terms vanish, a source lying sufficiently
close to the cusp produces three close images with d ! 0 and
hence Rcusp ! 0. As the source moves a small but finite dis-
tance from the cusp, the cusp relation picks up a correction term
at second order in d. Nevertheless, for realistic distributions of
ellipticity, multipole amplitudes, and shear, it is possible to de-
rive reliable upper bounds on Rcusp. Roughly speaking, we may
say that those bounds can be violated only if the lens poten-
tial has significant structure on scales smaller than the distance
between images, although Paper I provides a muchmore careful
discussion.

Appendix A of this paper shows that when the source lies near
a fold caustic, the two images near the fold critical point should
have

Rfold �
j�minj � j�sadj
j�minj þ j�sadj

¼ Fmin � Fsad

Fmin þ Fsad

� 0: ð2Þ

We are interested in pairs consisting of a minimum and a saddle,
and we define Rfold such that the saddle image gets the minus
sign in the numerator. Again, to be more precise we use a Taylor
series expansion of the lens mapping near the fold point to find
Rfold ¼ 0þ A0(�u)1/ 2 þ : : : , where �u is the perpendicular
distance of the source from the caustic and A0 is a constant that
depends on local properties of the lens potential (see eq. [A19]
in Appendix A). Working instead in the image plane, we can
write Rfold ¼ 0þ Afoldd1 þ : : : , where d1 is the distance be-
tween the two images (see eq. [A20]). The ideal fold relation
Rfold ! 0 holds only when the source is asymptotically close to
the caustic. Now there is a correction term at first order in d1,
whose coefficient Afold depends on properties of the lens po-

tential (see eq. [A21]). In other words, the correction to the fold
relation is of lower order than the correction to the cusp relation,
which means that the fold relation is more sensitive to a small
offset from the caustic. Thus, some care will be needed to de-
termine whether an observed violation of the ideal fold relation
really reveals small-scale structure or just indicates that the
source lies a finite distance from a fold caustic.

4. UNDERSTANDING THE FOLD RELATION

4.1. In the Asymptotic Regime

We can begin to understand general features of the fold rela-
tion by examining the coefficient in the asymptotic limit for Rfold,

Afold ¼
3 2

122 � 3 112 222 þ  2222(1�  11)

6 222(1�  11)
; ð3Þ

where the  ’s represent various derivatives of the lens potential,
evaluated at the fold point (see eqs. [A21]–[A23] inAppendixA).
Imagine moving along the caustic and evaluating Afold at vari-
ous points. As we approach a cusp,  222 ! 0 while the other
derivatives remain finite (e.g., Petters et al. 2001, p. 346), so
jAfoldj ! 1. The sign depends on the type of cusp. A ‘‘posi-
tive’’ cusp has two minimum images and one saddle, and typ-
ically occurs on the long axis of the lens potential; it has Afold !
�1with a minus sign because the saddle image is brighter than
each minimum. A ‘‘negative’’ cusp has two saddles and one
minimum, and typically occurs on the short axis of the poten-
tial; it has Afold ! þ1 with a plus sign because the minimum
image is brighter than each saddle. One implication of jAfoldj !
1 is that the fold relation breaks down near a cusp, but that is
not surprising because the asymptotic analysis in Appendix A
explicitly assumes that we have chosen a fold point and are ex-
amining a small neighborhood that does not include a cusp point.
Besides, near a cusp it is the cusp relation that ought to be sat-
isfied, not the fold relation.

The more interesting implication is that Afold can take on all
real values, both positive and negative. Unless there is some
remarkable discontinuity, there must be a region where Afold

changes sign. Figure 2 confirms that this is the case for a typical
example, namely, an isothermal ellipsoid lens with axis ratio
q ¼ 0:5 or ellipticity e ¼ 1� q ¼ 0:5. There is a region where
|Afold| is small or even zero, so that the ideal fold relation Rfold !
0 is quite a good approximation. In this region the distance d2
is large,8 but interestingly the smallest values of |Afold| do not cor-
respond to the largest values of d2. Over the larger range where
d2 is large enough that the image configuration would be clas-
sified as a fold (roughly d2k1), we find jAfoldj� 0:1–0.3. The
important implication is that a lot of lenses that are clearly folds
may nevertheless fail to satisfy the ideal fold relation Rfold ! 0.

An even more important conclusion is that the validity of the
ideal fold relation depends not just on whether the source is
close to a fold caustic, but also on where the source is located
along the caustic. This point is shown more directly in the next
subsection.

4.2. Across the Source Plane

To move beyond the asymptotic regime, we use the software
by Keeton (2001) to solve the lens equation exactly throughout

7 In Paper I we used the absolute value of Rcusp , but it has become clear that
the sign is an important component of theoretical predictions (e.g., Metcalf &
Madau 2001; Schechter & Wambsganss 2002; Keeton 2003; Kochanek & Dalal
2004; Bradač et al. 2004), so we retain it now. Working with the signed quantity
would not change the conclusions of Paper I.

8 The distance d1 can be arbitrarily small depending on how close the source
is placed to the caustic, but d2 remains finite evenwhen the source lies right on the
caustic.
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the source plane for an isothermal ellipsoid lens with ellipticity
e ¼ 0:5. For each source inside the astroid caustic, we find the
four images, identify the pair with the smallest separation, and
then compute d1, d2, and Rfold for that pair. (These are by defi-
nition the same as d�1 and d

�
2 .) The results are shown in Figure 3.

First, it is valuable to understand how d1 and d2 vary with source
position, as shown in Figures 3a and 3b. The separation d1 be-
tween the images measures very directly the distance of the
source from the caustic. The distance d2 to the next nearest image
varies along the caustic and basically measures the distance of
the source from a cusp. In general, fixing both d1 and d2 fixes the
source to one of eight positions (two in each quadrant).

Figures 3c and 3d show Rfold as a function of source position,
with contours of d1 and d2 overlaid. Rfold is large and negative
near the long-axis cusp, and it is large and positive in a band
extending from one short-axis cusp to the other and passing
through the origin. The area in which Rfold > 0 is larger than the
area in which Rfold < 0, which means that the distribution of
Rfold values is not symmetric about Rfold ¼ 0. Near the origin,
Rfold is large and positive. Both of these points will be important
for our analysis of real lenses in x 6. There is a ‘‘wedge’’ of small
Rfold values starting at the caustic but extending well inside; this
corresponds to the region where the asymptotic coefficient Afold

is nearly zero (see Fig. 2). Interestingly, in the region near the
caustic and midway between the cusps, where d2 is large and
where we would expect to find archetypal folds, Rfold is not ter-
ribly small. The source must get very close to the caustic before
Rfold vanishes. A remarkable visual impression is thatRfold seems
to be more correlated with the d2 contours than with the d1
contours.

Finally, by tabulating the results for all the different source
positions we can plot Rfold in the (d1, d2) plane, as shown in

Figures 3e and 3f.9 There are two plots because there are two
source positions in each quadrant, and hence two values of Rfold ,
with the same values of d1 and d2. These figures show more
clearly that Rfold vanishes as d1 ! 0, but the speed with which
that occurs depends on the value of d2. Furthermore, in the upper
left corner (the region of fold configurations), the Rfold contours
bend over and become quite sensitive to d2.
We are forced to conclude that the fold relation depends not

only on proximity to a fold caustic, but also on location along the
caustic. Although we are not shocked—we knew that the fold
relation should break down near a cusp—we are nevertheless
surprised to discover how sensitive Rfold is to location along the
fold caustic even when the source is far from a cusp. This point is
profound, because the location of the source along the caustic is
not observable and cannot really be determined from the prop-
erties of the two images in the fold pair; it can only be inferred by
considering the properties of the other two images as well. In par-
ticular, the distance d2 to the next nearest image gives some
indication of the location of the source along the caustic, and
therefore plays a strong role in the fold relation.
We begin to suspect that using the fold relation in practice is

not a simple matter of finding a close pair of images and asking
how much they deviate from Rfold � 0; the fold relation is in
truth more subtle and rich.

4.3. For All Four Image Pairs

So far, among the four images in a given configuration we
have only examined the pair with the smallest separation, be-
cause the fold relation best describes close pairs. The formalism
can be applied to any pair, however, and to round out our general
understanding of the fold relation it is instructive to examine all
the pairs.
Figure 4 shows Rfold for all minimum/saddle image pairs, as a

function of the distances d�1 and d�2 that characterize the image
configuration. In the top panel we fix d�2 , so varying d�1 morphs
the configurations from folds to crosses. The largest value of
d�1 corresponds to a symmetric cross, in which case the two
minima are identical and the two saddles are identical, so all four
minimum/saddle pairs have the same value of Rfold. In the limit
d�1 ! 0 we obtain ideal folds, and the fold pair converges to
Rfold ! 0 (the ideal fold relation). In this limit two other pairs
converge to Rfold ! �1, which is easily understood: the two
fold images (A and B in Fig. 1) have much higher magnifica-
tions than the two other images, so the pairs AD andCBwill both
have Rfold ! �1. There is no intuitively obvious asymptotic
limit for the pair of nonfold images (CD). The figure suggests
that such limits do exist, but we suspect that they depend on
properties of the lens potential in ways that the limits Rfold ! 0
and �1 do not.
In the bottom panel we fix d�1 , so varying d�2 morphs the con-

figurations between folds and cusps. Here the fold limit does not
quite reach Rfold ! 0 and�1 because we have fixed d�1 to a finite
value that does not actually correspond to an ideal fold. The
more interesting limits are in the direction of cusps. As d�2 ! d�1
we obtain a symmetric cusp configuration. For a symmetric ideal
cusp, we can predict Rfold ! �1

3
and�1 based on the following

logic. By symmetry, FA ¼ FC, so the ideal cusp relation implies
FB � 2FA, and the fold relation then yields Rfold � �1

3
. The

sign is positive (+) for a long-axis cusp (in which case B is a sad-
dle), or negative (�) for a short-axis cusp (B is a minimum). At
the same time, in an ideal cusp the images A, B, and C are all

9 We generated the figures with Monte Carlo sampling of the source plane,
which yields imperfect sampling of the (d1, d2) plane in the lower left corner.

Fig. 2.—Caustic curve for an isothermal ellipsoid lens with an axis ratio
q ¼ 0:5, or ellipticity e ¼ 1� q ¼ 0:5. The numbers above the points indicate
values of the coefficient Afold in the asymptotic fold relation Rfold ¼ Afold d1þ
: : : at various points along the caustic. (See eq. [A21] in Appendix A; recall that
Afold is to be evaluated on the caustic, but it then describes the fold relation in the
vicinity of the caustic.) The numbers below the points indicate the correspond-
ing values of d2 (in units with REin ¼ 1). The other quadrants can be filled in by
symmetry.
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Fig. 3.—(a) Gray scale and contours both show the distance d1 as a function of source position, for an isothermal ellipsoid lens with ellipticity e ¼ 0:5. The contours
range from 0 to 1.5 in steps of 0.25, in units with REin ¼ 1. (b) The distance d2 as a function of source position; the contours are again spaced by 0.25. (c) The colors show
Rfold as a function of source position; the color coding is shown along the top edge of panel e. The d1 contours from panel a are overlaid. (d ) The colors again show Rfold ,
with the d2 contours from panel b now overlaid. (e–f ) The colors and contours both show Rfold as a function of d1 on the abscissa and d2 on the ordinate; the contours
range from �0.4 to 0.4 in steps of 0.1. Panel e shows the case Rfold > 0, while panel f shows the case Rfold < 0. Recall that folds have d1Td2 � REin, cusps have
d1 � d2TREin, and crosses have d1 � d2 � REin. The region outside the triangles is inaccessible for this lens potential. Note that the figures were generated with Monte
Carlo simulations and that the sampling is imperfect at d1 � d2TREin.



much brighter than the fourth image D, so any pair involving
D has Rfold � �1. As the source moves around the numerical
values will change, but we generically expect two distinct values
of Rfold, one positive and one negative, for cusp lenses. Our
archetypal cusp lens does not quite reach the asymptotic values
because the source lies a finite distance from the cusp (d�1 is 0.46
rather than �0), but it does confirm the basic reasoning.

Examining Rfold for widely separated image pairs in this way
does not really tell us about small-scale structure, because we
are no longer restricted to short length scales. Nevertheless, it is
still helpful for obtaining a general understanding of the fold
relation.

5. THE FOLD RELATION IN REALISTIC
LENS POTENTIALS

While the ideal fold relation Rfold ! 0 is completely general,
it is only valid when the source is extremely close to a caustic.
In realistic situations, the better approximation Rfold ¼ Afoldd1
depends on the source position and properties of the lens po-
tential. In Paper I we explicitly showed that the properties of the
lens potential affecting the cusp relation are ellipticity, low-order
multipole modes, and tidal shear. Here we simply define a ‘‘re-
alistic smooth lens’’ to be one that has these angular structures.
(See x 1 for more discussion.) Unfortunately, the ellipticity,
multipole moments, and shear in individual lenses cannot be
observed directly. Ellipticity and multipole modes in the lens
galaxy light may be measurable, but for lensing we need the
properties of themass. The mass properties could be constrained
with lens modeling (with perhaps the best example being the

analysis by Yoo et al. 2005), but we seek to avoid model de-
pendence as much as possible. Instead, our approach is to adopt
observationally motivated priors on the distribution of elliptic-
ity, multipole modes, and shear and useMonte Carlo simulations
to derive probability distributions for Rfold for a realistic lens
population.

5.1. Methods

The simulation methods are the same as in Paper I, so we re-
view the main points here and refer the reader to that paper for
further details. We consider only isothermal radial profiles (� /
R�1) for the simulated galaxies, because in Paper I we showed
that local analyses of the lens mapping are not very sensitive to
changes in the radial profile. For the angular structure, we con-
sider ellipticity, as well as additional octopole modes (m ¼ 4
multipole perturbations). To model populations of early-type gal-
axies, we draw the ellipticities and octopole moments from mea-
surements of isophote shapes in observed samples of early-type
galaxies.10 Even if the shapes of the light and mass distributions
are not identical on a case-by-case basis, it seems reasonable to
think that their distributionsmay be similar (see Rusin &Tegmark
2001). Indeed, the distribution of isodensity contour shapes in
simulated merger remnants is very similar to the observed dis-
tribution of isophote shapes (Heyl et al. 1994; Naab & Burkert
2003). We use three different observational samples, because
they have different strengths and weaknesses and allow a check
for systematic effects:

1. Jørgensen et al. (1995) report ellipticities for 379 E/S0
galaxies in 11 clusters, including Coma. Their ellipticity distri-
bution has mean ē ¼ 0:31 and dispersion �e ¼ 0:18. They do not
report octopole moments.
2. Bender et al. (1989) report ellipticities and octopole mo-

ments for 87 nearby, bright elliptical galaxies. Their ellipticity
distribution has mean ē ¼ 0:28 and dispersion �e ¼ 0:15, while
their octopole moment distribution has mean ā4 ¼ 0:003 and
dispersion �a4 ¼ 0:011.
3. Saglia et al. (1993) report ellipticities and octopole mo-

ments for 54 ellipticals in Coma. Their ellipticity distribution has
ē ¼ 0:30 and �e ¼ 0:16, while their octopole moment distribu-
tion has ā4 ¼ 0:014 and �a4 ¼ 0:015.

The ellipticity and octopole distributions for the three samples
are shown in Figure 6 of Paper I. All three samples are limited
to low-redshift galaxies (by the need for good resolution to
measure isophote shapes). We must assume that the distribu-
tions are reasonable for intermediate-redshift galaxies as well,
which seems plausible if major mergers involving ellipticals are
infrequent.
For the external shear amplitude, we adopt a lognormal distri-

bution with median � ¼ 0:05 and dispersion �� ¼ 0:2 dex. This
is consistent with the distribution of shears expected from the
environments of early-type galaxies, as estimated from N-body
and semianalytic simulations of galaxy formation by Holder &
Schechter (2003). It is broadly consistent with the distribution
of shears required to fit observed lenses. Dalal &Watson (2004)
use a halo model calculation to suggest that the median shear
should be more like � ¼ 0:03. However, the smaller median

10 Most lenses are produced by early-type galaxies. Among the four-image
lenses, the only known spiral lens galaxy is in Q2237+0305, and even there the
images are most affected by the spheroidal bulge. This lens is not very important
for our analysis, because it is a cross lens, and because it is already known to
exhibit microlensing (e.g., Woźniak et al. 2000).

Fig. 4.—Top: Rfold as a function of the distance d�1 , for fixed d�2 ¼ 1:54.
Moving from left to right smoothly changes the image configuration from fold
to cross. There are multiple curves because there are four image pairs for each
image configuration, and there may be two different configurations with the
same (d�1 , d

�
2 ). For each configuration, the smallest separation pair is marked in

red. Bottom: Rfold as a function of the distance d�2 , for fixed d
�
1 ¼ 0:46. Moving

from left to right smoothly changes the image configuration from cusp to fold.
The horizontal lines show various asymptotic limits: Rfold ! 0 for an ideal fold
pair; Rfold ! �1

3
for the two pairs of an ideal cusp triplet; and Rfold ! �1 for

two other pairs in an ideal fold or cusp lens. The vertical lines indicate the sepa-
rations for our archetypal lenses: d�fold1 ¼ d

�cusp
1 ¼ d

�cusp
2 ¼ 0:46, and d

�cusp
2 ¼

d�cross1 ¼ d�cross2 ¼ 1:54. We use an isothermal ellipsoid lens with ellipticity e ¼
0:5, and quote all lengths in units of REin.
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shear is not very compatible with the shears required to fit
observed four-image lenses (e.g., Keeton et al. 1997). Further-
more, if we want to determine how much Rfold can deviate from
zero for smooth lens potentials, then the conservative approach
is to adopt the larger median shear. We assume random shear
directions.

For each combination of ellipticity, octopole moment, and
shear11 we choose random sources with density�103R�2

Ein, solve
the lens equation using the software by Keeton (2001), and
compute (d1, d2, Rfold) for each minimum/saddle image pair. For
each input distribution, we examine a total of �106 mock four-
image lenses. Note that choosing sources with uniform density
in the source plane has two important consequences. First, it en-
sures that each lens potential is automatically weighted by the
correct lensing cross section. Second, it means that we neglect
magnification bias, which would favor lenses with higher am-
plifications, and therefore give more weight to sources near the
caustics that produce small deviations from the ideal fold rela-
tion. We therefore believe that neglecting magnification bias is
the conservative approach when seeking to understand how large
the deviations can be for smooth lens potentials.

5.2. First Results

We use our ensemble of mock image configurations to extract
the probability distribution for Rfold at fixed values of d1 and d2.

12

Conceptually, this is like going to the appropriate point in the (d1,
d2) plane of Figures 3e and 3f and reading off Rfold, except that
we now consider a large ensemble of lens potentials. To illustrate
how we use these distributions, Figure 5 compares the value of
Rfold for each image pair in our archetypal fold, cusp, and cross
lenses to the appropriate conditional probability distribution
p(Rfold|d1, d2) derived from the Monte Carlo simulations. If the
observed value lies outside the predicted distribution, then we
conclude that the image pair is inconsistent with lensing by a
realistic population of smooth lens potentials. It is reassuring
to see that our archetypal lenses (which were generated with a
smooth lens) are indeed found to be consistent with lensing by a
smooth potential.

We can observe some of the general features identified in
x 4.3. Many of the distributions are bimodal, and some of those
have two completely disjoint peaks. This is because given values
of d1 and d2 can correspond to multiple source positions that
yield different Rfold values (see Fig. 3). In the fold lens, the pair
involving two fold images (AB) has Rfold � 0. The two pairs
involving one fold and one nonfold image (CB and AD) each
have large |Rfold|; they do not have Rfold ! �1 because the
source sits a finite distance from the caustic, but the general trend
that the fold pair has small |Rfold| while the two fold/nonfold pairs
have large |Rfold| is confirmed. In the cusp lens, two pairs have
Rfold � �1

3
while the other two have large |Rfold|. Again, the rea-

son that the peaks in the AD and CD pairs do not actually reach
Rfold ! �1 is because the source sits a finite distance from the
caustic. Finally, in the cross case all four pairs have similar Rfold

distributions—identical in the case of a symmetric cross—which
are centered at some positive value but fairly broad. The consis-
tency between our general analytic arguments and our detailed

Fig. 5.—Probability distributions for Rfold. On the left we show the image configurations, with lensed images (A–D) marked in blue and the lens galaxy (G)
marked in red. The four columns then show Rfold for the different image pairs, sorted by increasing d1 from left to right. (We adopt the convention of naming each
pair such that the first letter indicates the minimum image while the second letter indicates the saddle.) The green vertical lines mark the actual values for our
archetypal lenses. The black curves show the predicted distributions for realistic lens populations, with solid, dashed, and dotted curves showing results for Monte
Carlo simulations based on the Jørgensen, Bender, or Saglia galaxy samples, respectively. The predicted distributions are normalized to unit area.

11 Note that we need not specify the galaxy mass, because for an isothermal
lens the mass merely sets the length scale REin , and we can always work in units
such that REin ¼ 1.

12 Strictly speaking, to accommodate our finite sampling of phase space, we
consider all image configurations within�0.05 of the specified d1 and d2 values.
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Monte Carlo simulations is reassuring and indicates that we have
obtained new, deep insights into the fold relation.

6. APPLICATION TO OBSERVED LENSES

We are finally ready to examine the fold relation for observed
four-image lenses. We summarize the data here (x 6.1) and pro-
vide more details in Appendix B. Our main interest for the fold
relation is of course fold image pairs (x 6.2), but it is also inter-
esting to consider the other image pairs in fold lenses (x 6.3), as
well as image pairs in cusp (x 6.4) and cross (x 6.5) lenses.

6.1. Summary of the Data

Table 1 lists the values of d1, d2, REin , and Rfold for all minimum/
saddle image pairs in 22 known four-image lens systems,13 and
Appendix B provides some comments about the data. Most avail-
able flux ratio data come from broadband optical /near-infrared
images or radio continuum observations. We consider separate
optical and radio Rfold values, since they correspond to very dif-
ferent source sizes and therefore provide different information
about small-scale structure. We also consider any other flux ratio
data that are available: in the mid-infrared for Q2237+0305
(Agol et al. 2000) as well as PG 1115+080 and B1422+231
(Chiba et al. 2005), and the optical broad emission lines for HE
0435�1223 (Wisotzki et al. 2003), WFI 2033�4723 (Morgan
et al. 2004), and SDSS 0924+0219 (Keeton et al. 2005).

We need the Einstein radius REin to normalize d1 and d2. This
must be determined from lens models, but it is quite robust and
not very dependent on the choice of model (e.g., Kochanek
1991; Cohn et al. 2001). We treat the main lens galaxy as an
isothermal ellipsoid with surface mass density

�(r; �) ¼ �(r; �)

�crit

¼ REin

2r½1� � cos 2(�� ��)�1=2
; ð4Þ

where �crit is the critical surface density for lensing, � is related
to the axis ratio q of the galaxy by � ¼ (1� q2)/(1þ q2), and ��
is the position angle of the galaxy. Few four-image lenses can be
fit by a pure isothermal ellipsoid model, because elliptical lens
galaxies tend not to be isolated. In most cases, modeling the en-
vironmental contribution to the lens potential as an external shear
provides an excellent fit to the image positions (e.g., Keeton et al.
1997). The exceptions are HE 0230�2130, MG J0414+0534,
RX J0911+0551, and B1608+656, each of which is known to
have a satellite galaxy near the main lens galaxy that must be
included in order to fit the image positions (Wisotzki et al.
1999; Schechter & Moore 1993; Koopmans et al. 2003b). We
treat the satellite galaxies as isothermal spheres. We stress that
when fitting the models to determine REin , we use only the rel-
ative positions of the images and the lens galaxy as constraints;
it is not necessary to use the flux ratios as model constraints.

Figure 6 shows how the observed lenses populate the (d1, d2)
plane. Although we have labeled them as folds, cusps, and
crosses, in fact there is no sharp distinction between the fold and
cross samples. SDSS 0924+0219 and B1933+503, which have
d1 /REin � 0:9, could arguably be relabeled as crosses, although
we choose not to do so (see x 6.2). The smooth transition simply
reflects the fact that there are no sharp boundaries between dif-
ferent four-image configurations in the source plane.

In Figure 6 there is a particular region occupied by simulated
lenses (gray scale), but it is specific to an isothermal ellipsoid
lens with ellipticity e ¼ 0:5. Varying the ellipticity and/or adding

shear would move the upper edge so that the region could ac-
commodate the other cross lenses. The two fold lenses at d2 /
REin � 2 are a different story, though. These are HE 0230�2130
and B1608+656, each of which has two lens galaxies. Turning
this around, we may say that observed lenses that are outliers in
the (d1, d2) plane are likely to have complex lens potentials
containing multiple galaxies.

6.2. Fold Image Pairs

We now examine the fold relation by comparing the observed
Rfold values to the distributions expected for a realistic galaxy
population. Figures 7 and 8 show the comparisons for the 12 fold
lenses,14 arranged in order of increasing d�1 /REin. While there is
a tremendous amount of information here, the discussion in x 4
helps us pick out the main trends. First, let us consider the var-
ious predicted distributions. When d�1 /REin is small, Rfold for the
fold pair (the first column) is predicted to lie in a very narrow
range near zero. This is the fold relation in its familiar form. At
the same time, two other image pairs have distributions that fea-
ture two narrow and well-separated peaks (compare the top row
of Fig. 5), while the fourth pair has a broad distribution with no
particular center. As d�1 /REin increases, the distribution for the
fold pair broadens while the two peaks for the next closest pair
(the second column) tend to move closer together. HE 0230�
2130 and B1608+656 buck these trends, for a simple reason:
they have two lens galaxies, so they have configurations that are
rare in our Monte Carlo simulations,15 and that leads to narrow
and unusual predicted Rfold distributions.
For most image pairs, there are no tremendous differences

between the Rfold distributions from the three different simula-
tions (based on the Jørgensen, Bender, or Saglia galaxy samples;
also see Fig. 9). This gives us confidence that our conclusions are
robust in the sense of not being very sensitive to the simulation
input data.
Now we turn to the observed values of Rfold. Many of them lie

within the predicted range, so there is no obvious violation of the
fold relation. The outliers are as follows:

1. B0712+472.—The optical data grossly violate the fold
relation, but the radio data do not (as in the cusp relation; see
Paper I). The wavelength dependence suggests that the optical
anomaly is caused by microlensing.
2. B1555+375.—The radio data violate the fold relation at

high confidence, as shown more clearly in Figure 9.
3. PG 1115+080.—The optical value of Rfold differs from the

predictions at 99.2% confidence for the Jørgensen and Saglia
simulations and at 96.1% confidence for the Bender simulations.
The flux ratios can in principle be fit using large-amplitude
multipole modes (Kochanek & Dalal 2004), but such modes are
inconsistent with the Einstein ring image of the quasar host
galaxy (Yoo et al. 2005). In other words, it appears that this lens
is anomalous, but themodel-independent evidence is not quite as
secure as for the other anomalies. The mid-infrared value of Rfold

differs from the optical value and agrees well with the predicted
distribution, suggesting that the optical anomaly is created by
microlensing.

13 We do not analyze 0047�2808, as discussed in Appendix B.

14 Note that we now include B0712+472 among the folds, even though we
considered it a cusp in Paper I. Both classifications seem valid, depending on
one’s purpose. The close pair AB can be considered a fold, while the close triplet
ABC can be considered a cusp. The sourcemust lie close to the caustic in a region
not far from a cusp. For the purposes of this paper, it is a fold.

15 In fact, the Jørgensen and Saglia simulations do not contain any config-
urations with the same d1 and d2 values as the BD pair in B1608+656, to within
the sampling resolution of our Monte Carlo simulations.
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TABLE 1

Lens Data

Rfold

Lens

REin

(arcsec) Type Image Pair

d1

(arcsec) Optical Radio Other References

B0128+437...................................... 0.20 Fold AB 0.14 0.263 � 0.023 1

AD 0.27 0.328 � 0.028

CD 0.42 0.014 � 0.042

CB 0.50 �0.058 � 0.037

HE 0230�2130............................... 0.82 Fold AB 0.74 0.000 � 0.008 2

CD 1.46

AD 1.64

CB 1.65 �0.289 � 0.007

MG 0414+0534 .............................. 1.08 Fold A1A2 0.41 �0.024 � 0.038 0.085 � 0.002 3, 4

BA2 1.71 �0.500 � 0.043 �0.477 � 0.004

A1C 1.96 0.739 � 0.015 0.736 � 0.003

BC 2.13 0.400 � 0.046 0.323 � 0.007

HE 0435�1223............................... 1.18 Cross CB 1.53 �0.029 � 0.014 �0.035 � 0.010 5, 6

AB 1.59 0.226 � 0.004 0.136 � 0.005

CD 1.85 0.049 � 0.019 0.137 � 0.007

AD 1.88 0.299 � 0.012 0.300 � 0.011

B0712+472...................................... 0.68 Fold/Cusp AB 0.17 0.519 � 0.052 0.085 � 0.036 1, 7

CB 0.91 �0.123 � 0.075 �0.337 � 0.051

CD 1.18 0.361 � 0.062 0.672 � 0.120

AD 1.25 0.636 � 0.062 0.848 � 0.060

RX J0911+0551.............................. 0.95 Cusp BA 0.48 0.027 � 0.013 7

BC 0.62 0.303 � 0.012

DC 2.96 �0.137 � 0.016

DA 3.08 �0.400 � 0.014

SDSS 0924+0219 ........................... 0.87 Fold AD 0.69 0.873 � 0.002 0.821 � 0.012 8

AC 1.18 0.483 � 0.003 0.696 � 0.019

BD 1.46 0.751 � 0.002 0.593 � 0.023

BC 1.53 0.149 � 0.002 0.363 � 0.031

SDSS 1004+4112............................ 6.91 Fold AB 3.73 0.194 � 0.015 9, 10

DB 11.44 �0.512 � 0.017

AC 11.84 0.401 � 0.011

DC 14.38 �0.312 � 0.016

PG 1115+080 .................................. 1.03 Fold A1A2 0.48 0.215 � 0.011 0.036 � 0.032 7, 11

A1B 1.67 0.722 � 0.009 0.724 � 0.104

CB 1.99 0.214 � 0.019 0.135 � 0.234

CA2 2.16 �0.445 � 0.011 �0.632 � 0.060

RX J1131�1231 ............................. 1.81 Cusp BA 1.19 0.209 � 0.013 12

CA 1.26 �0.272 � 0.019

BD 3.14 0.824 � 0.012

CD 3.18 0.587 � 0.026

HST 12531�2914........................... 0.55 Cross BC 0.77 �0.092 � 0.057 7, 13

AC 0.78 �0.187 � 0.046

BD 0.91 0.164 � 0.089

AD 1.02 0.015 � 0.078

HST 14113+5211............................ 0.83 Cross CD 1.13 0.138 � 0.049 7, 14

CB 1.38 0.287 � 0.109

AD 1.41 0.128 � 0.049

AB 1.42 0.305 � 0.116

H1413+117...................................... 0.56 Cross AB 0.76 0.031 � 0.016 3

AC 0.87 0.205 � 0.015

DC 0.91 �0.056 � 0.023

DB 0.96 �0.229 � 0.022

HST 14176+5226 ........................... 1.33 Cross CB 1.73 0.088 � 0.040 13

AB 2.09 0.163 � 0.040

CD 2.13 0.089 � 0.043

AD 2.13 0.164 � 0.040

B1422+231...................................... 0.76 Cusp AB 0.50 �0.038 � 0.018 �0.038 � 0.007 0.031 � 0.027 3, 11, 15

CB 0.82 �0.317 � 0.020 �0.339 � 0.006 �0.245 � 0.055

AD 1.25 0.942 � 0.019 0.936 � 0.006

CD 1.29 0.898 � 0.032 0.884 � 0.011



4. SDSS 0924+0219.—Although AD is not a particularly
close pair (making the predicted Rfold distribution fairly broad),
image D is so faint that there is a gross violation of the fold
relation in both broadband and broad emission line flux ratios.
Differences between the flux ratios plus time variability suggest
the presence of microlensing (Kochanek 2005; Keeton et al.
2005).

5. B1933+503.—Although the 4/3 image pair is not partic-
ularly close, image 4 is so bright that there is a clear violation of
the fold relation in the radio data.

HE 0230�2130 and B1608+656 deserve mention because
each has two lens galaxies. In HE 0230�2130, the observedRfold

value shows images A andB to bemore similar than expected for
simple smooth lens potentials. In B1608+656, the observed Rfold

value agrees with the predictions for simple lenses, which seems
coincidental. These systems show that violations of the fold
relation can reveal the lens potential to contain structure that is
complex but not necessarily small-scale. That raises the question
of whether any of the other anomalies could be caused by some-
thing large like a second galaxy. Probably not: in both of these
systems the second galaxy was already known from direct obser-
vations and analyses of the image positions (see x 6.1). In other
words, it is difficult for a massive second galaxy to escape notice.
We therefore believe that the ‘‘second galaxy’’ hypothesis is not
a valid explanation for most flux ratio anomalies.

TABLE 1—Continued

Rfold

Lens

REin

(arcsec) Type Image Pair

d1

(arcsec) Optical Radio Other References

B1555+375.............................................. 0.24 Fold AB 0.09 0.274 � 0.003 1, 16

CB 0.35 �0.084 � 0.004

AD 0.40 0.858 � 0.006

CD 0.42 0.725 � 0.010

B1608+656.............................................. 0.77 Fold AC 0.87 0.321 � 0.006 17

BC 1.51 �0.016 � 0.002

AD 1.69 0.706 � 0.004

BD 2.00 0.486 � 0.004

B1933+503.............................................. 0.49 Fold 4-3 0.46 0.656 � 0.007 18, 19

4-6 0.63 0.637 � 0.007

1-3 0.90 0.143 � 0.014

1-6 0.91 0.111 � 0.013

WFI 2026�4536..................................... 0.65 Fold A1A2 0.33 0.181 � 0.043 20

A1C 0.83 0.626 � 0.015

BC 1.19 �0.431 � 0.014

BA2 1.28 0.096 � 0.011

WFI 2033�4723..................................... 1.06 Fold A1A2 0.72 0.219 � 0.010 0.174 � 0.099 20

A1C 1.54 0.330 � 0.007 0.056 � 0.074

BA2 2.01 �0.072 � 0.012 �0.042 � 0.091

BC 2.13 0.077 � 0.044 �0.161 � 0.057

B2045+265.............................................. 1.13 Cusp AB 0.28 0.255 � 0.017 0.287 � 0.020 7, 21

CB 0.56 0.153 � 0.023 0.133 � 0.045

AD 1.91 0.809 � 0.022

CD 1.93 0.750 � 0.033

Q2237+0305 ........................................... 0.85 Cross AD 1.01 Variable; see text 0.130 � 0.145 �0.008 � 0.068 22, 23, 24

BD 1.18 0.172 � 0.139 0.048 � 0.062

AC 1.37 0.289 � 0.170 0.270 � 0.079

BC 1.40 0.328 � 0.163 0.319 � 0.072

Notes.—The lengths REin and d1 are given in arcseconds. We do not explicitly quote d2, because it can be determined from the other d1 values. For example, in
B0128+437 the value of d2 for image pair AB would be the smaller of d1(AD) and d1(CB).

References.— (1) Koopmans et al. 2003a; (2) Wisotzki et al. 1999; (3) Falco et al. 1999; (4) Trotter et al. 2000; (5) Wisotzki et al. 2002; (6) Wisotzki et al. 2003;
(7) Cfa-Arizona Space Telescope Lens Survey (CASTLES); (8) Keeton et al. 2005; (9) Oguri et al. 2004; (10) Inada et al. 2005; (11) Chiba et al. 2005; (12) Sluse
et al. 2003; (13) Ratnatunga et al. 1995; (14) Fischer et al. 1998; (15) Patnaik et al. 1999; (16) Marlow et al. 1999; (17) Fassnacht et al. 2002; (18) Sykes et al. 1998;
(19) Biggs et al. 2000; (20) Morgan et al. 2004; (21) Fassnacht et al. 1999; (22) Woźniak et al. 2000; (23) Falco et al. 1996; (24) Agol et al. 2000.

Fig. 6.—Colored points mark the locations of known four-image lenses in
the plane of d1/REin and d2/REin. The color indicates the visual classification as
a fold, cusp, or cross, while the point size indicates the value of Rfold. To help
guide the eye, the gray scale shows Rfold for an isothermal ellipsoid lens with
ellipticity e ¼ 0:5 (from Fig. 3e).
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To summarize, our analysis of the fold relation reveals two
flux ratio anomalies that were already known from violations of
the cusp relation (B0712+472 [optical] and SDSS 0924+0219
[optical]). It also reveals strong new evidence for fold flux ratio
anomalies in B1555+375 (radio) and B1933+503 (radio), plus
good but slightly less strong evidence for a fold anomaly in
PG 1115+080 (optical ). In addition, a violation of the fold re-
lation in HE 0230�2130 (optical ) is presumably due to the pres-
ence of a second lens galaxy in that system.

While these specific conclusions are valuable, there are some
important general lessons as well. First, even the closest observed
fold image pairs have predicted Rfold distributions with a finite
width. Therefore, a nonzero Rfold value in the range Rfold � 0–0.2
cannot generally be taken to indicate a flux ratio anomaly. As a
rule of thumb, when d1 /REinP0:4 it does appear that a value
Rfoldk 0:2 is likely to indicate an anomaly, although we caution
that this is just a rule of thumb and a full analysis of the predicted
Rfold distribution must be done to reliably identify an anomaly.

Fig. 7.—Observed and predicted Rfold values, for six of the known fold lenses. The black curves show the predicted distributions for realistic lens populations, as
in Fig. 5. The vertical colored lines show the observed values and their uncertainties, with green indicating optical /near-infrared data and red indicating radio data.
For PG 1115+080, the blue lines indicate mid-infrared data (Chiba et al. 2005). All data are listed in Table 1. The lenses are sorted by increasing d�1 /REin from top to
bottom. For each lens, the image pairs are sorted by increasing d1/REin from left to right.
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The importance of the full analysis becomes clear when we
consider PG 1115+080, WFI 2026�4536, and SDSS 1004+
4112. These three lenses have similar configurations with d1 /
REin � 0:5, and (curiously enough) they all have Rfold � 0:2. Yet
one is anomalous (PG 1115+080), while the other two are fully
compatible with the predicted distributions. What is more, the
predicted distributions for WFI 2026�4536 are bimodal and
qualitatively different from those for the other two lenses, even
though all three image configurations are visually similar. These
lenses teach the lesson that identifying fold flux ratio anomalies

is not a simple matter offinding a close pair of images and asking
whether Rfold ! 0. The distance from Rfold ! 0 that is needed to
provide strong evidence for an anomaly depends in a compli-
cated way on various properties of the lens potential that cannot
be directly observed. Only a full and careful analysis of the fold
relation can handle these issues.
We conclude that violations of the fold relation can be used to

find flux ratio anomalies in a fairly model-independent way.
However, that analysis is more subtle than was previously re-
alized. It is necessary to know not only the separation d1 between

Fig. 8.—Similar to Fig. 7, but for the remaining six known fold lenses (again sorted by d�1 /REin). For SDSS 0924+0219 and WFI 2033�4723, the vertical green
lines show data from broadband optical flux ratios, while the vertical blue lines show data from optical emission-line flux ratios (Morgan et al. 2004; Keeton et al.
2005).
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the two images, but also the distance d2 to the next nearest image,
and to account for the finite width of the Rfold distribution ex-
pected for smooth lenses.

Finally, it is worthwhile to comment that all 12 of the fold
image pairs have Rfold values that are positive or consistent with
zero. An important prediction to emerge from theoretical studies
is that small-scale structure (either dark matter clumps or stars)
should tend to amplify minimum images and/or suppress saddle
images (Metcalf & Madau 2001; Schechter & Wambsganss
2002; Keeton 2003; Bradač et al. 2004). Since either possibility
would make Rfold > 0, seeing only nonnegative values is cer-
tainly consistent with the substructure hypothesis (see Kochanek
& Dalal 2004). It is inconsistent with nongravitational expla-
nations of flux ratio anomalies (such as extinction or scattering),
because those should affect minimum and saddle images in the
same way.What is less clear is whether lumpy substructure is the
only thing that can explain the asymmetry between minima and
saddles, or whether small-scale but smooth structure is a viable
alternative. Our analysis does offer an intriguing hint: nearly all
the weight in our predicted Rfold distributions lies at Rfold > 0,
which indicates that even smooth, global features like ellipticity
and shear affect minima and saddles differently. Still, it is not
clear whether smooth features can explain the further asymmetry
that all the anomalous Rfold values exceed the predictions. The
minimum/saddle asymmetry appears to be a very promising probe
of small-scale structure, but much more study is clearly called
for.

6.3. Other Image Pairs in Fold Lenses

We can also consider the Rfold values for the other image pairs
in fold lenses, although we must be careful about how we inter-
pret them. As discussed in xx 4.3 and 5.2, there are some useful
general properties of the fold relation for these other image pairs.

For example, the predicted Rfold distribution for a pair compris-
ing a fold image and a nonfold image has two narrow peaks, one
positive and one negative. While we are not aware of a simple
way to predict the specific values, it seems from Figures 7 and
8 that they depend mainly on d�1 /REin.

There are several image pairs for which the observed Rfold

value lies far from the peaks in the predicted distributions: CB in
B0712+472, CB in B1555+375, AC and DC in SDSS 1004+
4112, and A1C and BC in WFI 2033�4723.16 The relatively
large distance between the images in each pair prevents us from
concluding that the discrepancies reveal ‘‘small-scale’’ structure
in the lens. We can still conclude, though, that each pair is incon-
sistent with smooth lens models containing moderate elliptic-
ities, octopole moments, and shears. Indeed, two of these lenses
are already known to have complex potentials. SDSS1004+4112
is produced by a cluster of galaxies (Oguri et al. 2004), while
WFI 2033�4723 appears to lie in a group of galaxies with at
least six perturbers lying within 2000 of the main lens galaxy
(Morgan et al. 2004).

The situation seems different for the CB pair in PG 1115+080
and the CD pair in B0128+437. In these cases the observed
values lie in the tail of the predicted distributions, at around the
1% probability level. It may be that having two ‘‘rare’’ values
among 88 image pairs is statistically unsurprising, although it
is hard to know how to quantify that possibility because the
88 pairs are not all independent. Alternatively, it may be that
modest changes in the assumed distributions of ellipticity, octo-
pole moment, and shear could raise the tail of the predicted
Rfold distribution enough to make the observed values seem less
unusual.

Overall, we conclude that gross discrepancies between ob-
served and predicted Rfold values for the ‘‘other’’ pairs in fold
lenses indicate complex structure in the lens potential. It is not
necessarily small-scale structure, but it is still interesting and
worth studying with detailed lens models.

6.4. Cusp Lenses

A cusp configuration has a close triplet of images that can be
thought of as two close pairs. As discussed in xx 4.3 and 5.2, we
expect the predicted Rfold distribution for each pair to have two
narrow and well-separated peaks. This constitutes a sort of ‘‘fold
relation’’ for cusp lenses, which might help us better understand
flux ratio anomalies in these systems.

Figure 10 compares the observed and predicted Rfold distri-
butions for the four observed cusp lenses. Image pairs like BA in
RX J0911+0551 and BA in RX J1131�1231, which have ob-
served Rfold values lying between and far from the two predicted
peaks, appear to indicate anomalies. In one sense these con-
clusions are not new, because these anomalies had already been
identified through violations of the cusp relation (see Paper I).
However, the fold relation can help us determine which of the
three images is most anomalous. In RX J0911+0551, the vio-
lation of the fold relation is stronger in the BA pair than in the
BC pair, so we infer that image A is probably the one most af-
fected by small-scale structure. Similar reasoning leads to the
conclusion that image B in RX J1131�1231 is the most anom-
alous. There could in fact be more than one perturbed image (see
Dobler & Keeton 2005 for examples among other lenses), but
the important point is that the fold relation can suggest which

Fig. 9.—(a) Close-up of the AB panel for B1555+375 from Fig. 7. The red
line shows the observed radio value for Rfold , with its uncertainty (see Table 1).
The solid, dashed, and dotted curves show the predicted Rfold distributions for
Monte Carlo simulations based on the Jørgensen, Bender, and Saglia galaxy
samples, respectively. For comparison, the hatched region shows the distri-
butions for an isothermal ellipsoid with ellipticity e ¼ 0:5. (b) Similar to panel
a, but showing cumulative probability distributions.

16 Note that in WFI 2033�4723 the differences between the optical contin-
uum flux ratios and the emission-line flux ratios are interpreted as evidence for
microlensing (see Morgan et al. 2004).
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image is most anomalous—a distinction that could not be made
by the cusp relation.

The CB pair in B2045+265 illustrates a curious aspect of this
analysis. For this lens, simulations without octopole modes
(using the Jørgensen data) predict an Rfold distribution consisting
of two narrow peaks far from the observed values. However, in
simulations that include octopole modes (using the Bender or
Saglia data), there is a small but finite probability for Rfold to lie
between the two peaks. In this case, the possibility that octopole
modes may be present limits our ability to declare that the fold
relation is violated. This result is surprising because B2045+265
shows a very strong violation of the cusp relation, even when
octopole modes are considered (see Paper I). The difference
must be that the cusp relation considered three images simulta-
neously, while the fold relation considers them in two separate
pairs.

Finally, we remark that the fold relation does not indicate
anomalies among three cusp images in B1422+231. This is con-
sistent with our conclusion from Paper I that generic magnifi-
cation relations do not identify anomalies in this lens, even though
detailed lens modeling suggests that it is indeed anomalous
(Mao & Schneider 1998; Bradač et al. 2002; Metcalf & Zhao
2002; Dobler & Keeton 2005). Bradač et al. (2002, 2004) claim
that the challenge for smooth lens models is not just the relative
brightnesses of images A, B, and C, but also the faintness of
image D. Dobler & Keeton (2005) were able, though, to find an

acceptable model under the hypothesis that only image A is
perturbed by small-scale structure. We conclude that the nature
of the anomaly in B1422+231 is not yet clear, and generic
magnification relations are not adequate for understanding this
system.

6.5. Cross Lenses

The image pairs in cross lenses are not close pairs, but for
completeness we still consider them in the context of the fold
relation. Figure 11 compares the observed and predicted Rfold

values for the six known cross lenses. The predicted distribu-
tions are all broad and centered at some positive value of Rfold

(also see Fig. 5 and x 5.2). There are several cases of disagree-
ment, which can be understood as follows. First, in Q2237+0305
microlensing perturbs the flux ratios, and in fact causes them to
change with time (Woźniak et al. 2000).
Next, in HE 0435�1223, HST 14113+5211, and HST 12531�

2914, several of the observed Rfold values lie to the left of the
predicted distributions. However, our ellipsoid+shear lens mod-
els fit the flux ratios fairly well, provided that the shear is allowed
to be moderately large (� ¼ 0:13 for HE 0435�1223, and ��
0:3 for the other two). Such large shears are rare in the distri-
bution used for our Monte Carlo simulations, which is why the
predicted Rfold distributions in Figure 11 do not extend down to
the observed values. They are not unreasonable, though, for
lenses that lie in complex environments like groups or clusters,

Fig. 10.—Similar to Fig. 7, but for the known cusp lenses. Again, the vertical green lines show optical /near-infrared values of Rfold , while the vertical red lines
show radio values. For B1422+231, the vertical blue lines show mid-infrared values of Rfold (Chiba et al. 2005).
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which is probably the case for all three of these lenses (see Witt
& Mao 1997; Fischer et al. 1998; Morgan et al. 2005). In other
words, the discrepancies in Figure 11 for these three lenses indi-
cate that there is ‘‘interesting’’ structure in the lens potential, but
in this case it is probably structure in the environment of the lens
as opposed to small-scale structure.

Finally, in HST 14176+5226 and HST 1413+117 there are
discrepancies between the data and predictions that are not fully
explained by a large shear. The fold relation cannot provide

strong conclusions here, but it does suggest that these two sys-
tems deserve further study.

A striking general feature of Figure 11 is that nearly all
the weight in the predicted probability distributions lies at
Rfold > 0, while some of the observed Rfold values are nega-
tive. We have argued that several of the negative observed
values can be explained by large shears, which are absent from
our Monte Carlo simulations. Thus, as a rule of thumb it ap-
pears that a negative Rfold value in a cross lens may indicate that

Fig. 11.—Similar to Fig. 7, but for the known cross lenses. For Q2237+0305, the vertical blue lines show mid-infrared values of Rfold (Agol et al. 2000); also, the
green lines bend to represent the time variability in the optical flux ratios (Woźniak et al. 2000), with time running vertically. For HE 0435�1223, the vertical blue
lines indicate data from optical emission-line flux ratios (Wisotzki et al. 2003).
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there is a significant environmental contribution to the lens
potential.

7. CONCLUSIONS

When the source in a four-image gravitational lens system lies
sufficiently close to a fold caustic, the two images that straddle
the fold critical curve should be mirror images of each other, and
the dimensionless flux combination Rfold � (Fmin�Fsad)/(Fminþ
Fsad) should vanish. A violation of this ‘‘fold relation’’ in an ob-
served lens is thought to indicate that the lens galaxy has sig-
nificant structure on scales smaller than the separation between
the two close images. The fold relationmay therefore join the cusp
relation as an important model-independent method for iden-
tifying flux ratio anomalies that indicate small-scale structure.

We have learned, though, that the fold relation is more subtle
and rich than was previously realized. The ideal fold relation
Rfold ! 0 holds only when the source is asymptotically close to a
fold caustic. In more realistic situations, we find Rfold / u1

=2 /
d1, where u is the distance of the source from the caustic and d1 is
the distance between the two close images. In other words, Rfold

goes to zero fairly slowly as the source approaches the caustic,
which means that Rfold 6¼ 0 might just indicate that the source
sits a finite distance from the caustic. (For comparison, the cusp
relation has a more rapid dependence Rcusp / d 2; see Paper I.) If
we seek to use the fold relation to identify flux ratio anomalies
that indicate small-scale structure, then we must understand how
much Rfold can deviate from zero just because of the finite offset
of the source.

This is where we find our most startling result: Rfold is deter-
mined not just by the distance of the source from the caustic, but
also by the location of the source along the caustic. If we write
Rfold ¼ Afoldd1 þ : : : , then the coefficientAfold varies enormously
around the caustic. The problem is that the location of the source
along the caustic, and hence the value of Afold , is not directly
observable. Consequently, it is no simple matter to say how large
Rfold must get before we can infer the presence of small-scale
structure. Fortunately, the placement of the source along the
caustic is encoded in the image configuration: not in the sepa-
ration d1 between the close pair of images, but rather in the dis-
tance d2 to the next nearest image. (For example, a source near a
fold but not near a cusp leads to d1Td2 � REin, while a source
near a cusp leads to d1 � d2TREin.) We may still be able to
predict the range of Rfold possible for a smooth lens potential, but
only if we consider d2 as well as d1.

This general understanding allows us to develop a general
method for using the fold relation to search for flux ratio anom-
alies in real lens systems. We postulate a reasonable and realistic
population of smooth lens potentials containing ellipticity, oc-
topole modes, and tidal shear, and use Monte Carlo simulations
of four-image lenses produced by these lens potentials to derive
the conditional probability distribution p(Rfold|d1, d2) for Rfold

at fixed d1 and d2 (strictly speaking, fixed d1/REin and d2/REin ).
We can then compare the observed value of Rfold for a real lens to
the corresponding predicted distribution to determine whether
the data are consistent with lensing by a smooth potential. In
making our predictions, we actually consider three different gal-
axy populations in order to understand how our results depend
on assumptions about what constitutes a ‘‘reasonable and real-
istic’’ lens population.

The fold relation applies most directly to the close pair of
images in a lens with a fold configuration. Among the 12 known
fold lenses, we find evidence for five violations: the optical (but
not radio) fluxes in B0712+472; the optical fluxes in SDSS
0924+0219; the optical fluxes in PG 1115+080; the radio fluxes

in B1555+375; and the radio fluxes in B1933+503. The optical
anomalies in B0712+472 and SDSS 0924+0219 were already
known from violations of the cusp relation (see Paper I ), but it is
valuable to see them identified by the fold relation as well. The
optical anomaly in PG 1115+080 is not quite as secure as the
others: the confidence level is 99.2% for two of our three sets of
predictions, but only 96.1% for one that includes fairly strong
octopole modes. Detailed lens modeling of PG 1115+080 sug-
gests that multipole modes cannot provide an acceptable expla-
nation of the flux ratio anomaly (Kochanek & Dalal 2004; Yoo
et al. 2005), and while that conclusion is more model-dependent
than ours, it does suggest that PG 1115+080 is indeed anoma-
lous. The radio anomalies in B1555+375 and B1933+503 are
newly revealed by the fold relation.
We believe that fold flux ratio anomalies provide robust and

model-independent evidence for small-scale structure, for two
reasons. First, the identification of the anomalies involves a local
analysis of the lens mapping and thus relies only on local prop-
erties of the lens potential. This is precisely what we want in an
analysis aimed at revealing small-scale, local structure. Second,
we have explicitly shown that (apart from PG 1115+080) our
conclusions do not change if we modify the parameter distribu-
tions that define our realistic galaxy population.
Based on our detailed analyses of individual fold lenses, we

can extract a few rules of thumb. Since the sources in real lenses
always lie a finite distance from a caustic, Rfold values in the
range 0PRfoldP 0:2 are predicted to be quite common and prob-
ably do not indicate flux ratio anomalies. When the separation
between the two close images is small (d1 /REinP 0:4), the de-
pendence on d2 is not very strong; all that really matters is having
d2 be large enough for the image configuration to be identified as
a fold. In this case, it appears that large values Rfoldk 0:2 can
reveal candidate anomalies. However, the fact that only one of
four observed lenses with Rfold � 0:2 is anomalous provides a
strong reminder that a full and careful analysis of the fold rela-
tion must be done before drawing conclusions about anomalies.
Finally, as d1 increases, so too does the value of Rfold required to
indicate an anomaly, and rules of thumb about the fold relation
cease to be valid.
One final rule of thumb is that our smooth lens potentials

almost always predict Rfold > 0 for fold image pairs, indicating
an asymmetry such that minimum images are generally expected
to be brighter than saddle images in fold pairs. This point
probably has implications for the prediction that substructure
affects minima and saddles differently, tending to amplify min-
ima but suppress saddles (Metcalf & Madau 2001; Schechter &
Wambsganss 2002; Keeton 2003; Bradač et al. 2004), and for the
observation that anomalous minima seem to be too bright while
anomalous saddles seem to be too faint (Kochanek & Dalal
2004; Dobler & Keeton 2005). However, these issues are not yet
fully understood, and further study is needed.
Our full analysis of the fold relation also allows us to apply it

to the two close image pairs in a cusp lens. This application is
more subtle because the analysis underlying the fold relation
breaks down near a cusp caustic. Nevertheless, the predicted Rfold

distribution for smooth lenses is bimodal with two narrow and
well-separated peaks, which constitutes a sort of fold relation
that can be used to evaluate observed Rfold values. We find that
applying this fold relation to cusp lenses does not reveal any new
anomalies beyond those that were identified by the cusp relation
(Paper I ). However, it may help us understand which of the three
images is anomalous (a distinction that the cusp relation cannot
make). For example, it appears that the strongest anomaly in
RX J0911+0551 is probably in image A, while the strongest
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anomaly in RX J1131�1231 is probably in image B. We take
these conclusions less as definite statements and more as inter-
esting suggestions to be examined with detailed lens models.
One curious qualitative result is that, in cusp lenses, the fold
relation appears to be more sensitive than the cusp relation to
octopole modes. This fact limits our ability to find a clear vio-
lation of the fold relation in B2045+265, even though this lens
has a very strong violation of the cusp relation.

Finally, we can also use our full understanding to apply the
fold relation to all minimum/saddle pairs in all four images lenses,
regardless of how close the pairs are. We must be very careful to
remember that when d1kREin we are no longer performing a
local analysis of the lens mapping, so we cannot claim to draw
any model-independent conclusions about small-scale structure.
Nevertheless, it is still interesting to determine which lenses
seem to be inconsistent with lensing by an isothermal ellipsoid
perturbed by octopole modes and moderate shear. Among fold
lenses that do not have fold anomalies, we find that B0128+437,
HE 0230�2130, SDSS 1004+4112, and WFI 2033�4723 all
have discrepancies between the data and predictions for other
image pairs.17 In three of these cases (SDSS 1004+4112, HE
0230�2130, and WFI 2033�4723), the discrepancies are (pre-
sumably) caused by complex structure in the environment of the
main lens galaxy. Finally, each of the six known cross lenses has
at least one discrepant image pair. In Q2237+0305 the discrep-
ancy is caused by microlensing. In three others (HST 12531�
2914, HST 14113+5211, andH1413+117) it may be attributed to
a large shear from a complex lens environment. Again, we em-
phasize that discrepancies in the fold relation for large-separation
image pairs cannot be taken as strong evidence for small-scale
structure. However, they can suggest that the lens potential has
some interesting and complex structure that deserves further study.

At this point it is worthwhile to review the lenses in which vio-
lations the cusp and fold relations provide model-independent
evidence for small-scale structure in the lens potential:

1. Among four known cusp lenses, there are three anomalies:
RX J0911+0551 (optical), RX J1131�1231 (optical), and B2045+
265 (radio).

2. Among 12 known fold lenses, there are five anomalies:
B0712+472 (optical but not radio), SDSS 0924+0219 (optical ),
PG 1115+080 (optical ), B1555+375 (radio), and B1933+503
(radio).

There may be other anomalies that are not identified by a ge-
neric analysis, but that are revealed by detailed lens model-
ing; B1422+231 is a prime example (Mao & Schneider 1998;
Bradač et al. 2002; Metcalf & Zhao 2002; Dobler & Keeton
2005). Moreover, there may be systems among the ‘‘discrep-
ant’’ lenses mentioned above that in fact contain small-scale

structure; a good example is Q2237+0305, whose time-variable
discrepancies are caused by microlensing (Woźniak et al. 2000).
In other words, our accounting represents a strict lower bound on
the number of lenses with flux ratio anomalies caused by small-
scale structure—andmakes it eminently clear that such anomalies
are quite common.

Interpreting these anomalies to place constraints on the nature
of the implied small-scale structure involves many consid-
erations that are beyond the scope of this paper. No analysis of
single-epoch, single-band photometry can determine the scale
of the structure required to explain flux ratio anomalies, beyond
the idea that it must be smaller than the separation between the
images. Time variability (as in Q2237+0305) or differences be-
tween optical and radio flux ratios (as in B0712+472) may in-
dicate microlensing, although even then a much more detailed
analysis is required to determine the microlensing scale (e.g.,
Kochanek 2004 and references therein). Absent such data, it
is impossible for any analysis of broadband photometry in in-
dividual lenses to robustly distinguish between microlensing,
millilensing, or intermediate-scale phenomenon. All three pos-
sibilities are interesting, but they have very different implica-
tions for astrophysics.

Fortunately, there are excellent prospects for obtaining ad-
ditional data that can help distinguish between the different
hypotheses. Even apart from time variability, comparisons be-
tween optical continuum and broadband flux ratios can estab-
lish the scale of the small-scale structure (Moustakas &Metcalf
2003; Wisotzki et al. 2003; Metcalf et al. 2004; Morgan et al.
2004; Wayth et al. 2005a; Keeton et al. 2005). Showing that
minimum and saddle images are affected differently by small-
scale structure might also establish the scale (Metcalf &Madau
2001; Schechter &Wambsganss 2002; Keeton 2003; Kochanek
& Dalal 2004; Bradač et al. 2004). These are several examples
of the more general point that the size of the source quasar
provides a scale in the problem that may help us determine
the scale of structure in the lens (Dobler & Keeton 2005). It is
important to note that all of these approaches require signifi-
cant effort to obtain, analyze, and interpret new data; studying
all four-image lenses in this much detail is not feasible. It is
therefore crucial to have a reliable way to identify lenses that
warrant further study. The fold relation joins the cusp relation in
providing precisely the realistic but robust method that we need
for identifying flux ratio anomalies. As such, the two relations
provide the foundation for studies of small-scale structure in
lens galaxies.
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APPENDIX A

UNIVERSAL RELATIONS FOR FOLDS

The generic properties of lensing near a fold caustic have been studied before by Blandford & Narayan (1986), Schneider et al.
(1992, see chap. 6), Petters et al. (2001, see chap. 9), and Gaudi & Petters (2002a). In this appendix we extend the analysis to a higher
order of approximation.

17 Actually, the discrepancy in HE 0230�2130 is seen in the fold pair, but it
can be attributed to the presence of a second lens galaxy, so we prefer to discuss it
here rather than among the fold flux ratio anomalies.
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A1. LOCAL ORTHOGONAL COORDINATES

Consider the lens equation y ¼ x� grad (x). If we assume that the induced lensing map, h(x) ¼ x� grad (x), from the lens plane
to the source plane is locally stable, then the caustics of hmust be either folds or cusps (Petters et al. 2001, p. 294). Let us focus on a
fold caustic, and translate coordinates in the lens and source planes so that the caustic passes through the origin y ¼ 0 of the light
source plane, while the origin x ¼ 0 of the lens plane maps into the origin of the light source plane. By abuse of notation, we still use x
and y to denote the translated coordinates.

Consider a small neighborhood NL about the origin in the lens plane, which maps to a local region NS about the origin in the source
plane.We assume thatNS is sufficiently small that no critical points outsideNL are mapped intoNS, and there are no cusp caustic points
inside NS. In other words, the only caustic in NS is a fold arc passing through the origin.

By Taylor-expanding, we see that the Jacobian matrix of the lensing map h is given at the origin x ¼ 0 by

½Jac h�(0) ¼ 1� 2â �b̂

�b̂ 1� 2ĉ

" #
; ðA1Þ

where

â ¼ 1

2
 11(0); b̂ ¼  12(0); ĉ ¼ 1

2
 22(0): ðA2Þ

The subscripts indicate partial derivatives of  relative to x ¼ (x1; x2). Note that  has no linear part (since h maps the origin to it-
self ). For y ¼ 0 to be fold caustic point, the rank of ½Jac h�(0) must be unity, which means that we must have (1� 2â)(1� 2ĉ)� b̂2 ¼ 0
while at least one of (1� 2â), (1� 2ĉ), and b̂2 does not vanish (Petters et al. 2001, p. 349). Consequently, (1� 2â) and (1� 2ĉ) can-
not both vanish. We lose no generality by assuming 1� 2â 6¼ 0.

Now introduce the orthogonal matrix (see Petters et al. 2001, p. 344)

M ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 2â)

2 þ b̂
2

q 1� 2â �b̂

b̂ 1� 2â

" #
; ðA3Þ

and define new orthogonal coordinates in the neighborhoods NL and NS by

a ¼ (�1; �2) � Mx; u ¼ (u1; u2) � My: ðA4Þ

(Note that the coordinate changes are the same in the lens and source planes, which is different from the approach of Schneider et al.
1992, p. 185.) Using these coordinates, Petters et al. (2001, p. 346) showed rigorously that x ¼ 0 is a fold critical point if and only if the
following conditions hold:

(1� 2â)(1� 2ĉ) ¼ b̂2; 1� 2â 6¼ 0; d̂ � � 222(0) 6¼ 0: ðA5Þ

Remark.—The matrix M orthogonally diagonalizes ½Jac h�(0).
Let us now Taylor expand the lens potential near the origin. We argue below that carrying the expansion to fourth order in a is both

necessary and sufficient for the precision we desire. The most general fourth-order expansion can be written as (see Petters et al. 2001,
pp. 346–347)

 (a) ¼ 1

2
(1� K )�21 þ

1

2
�22 þ e�31 þ f �21�2 þ g�1�

2
2 þ h�32 þ k�41 þ m�31�2 þ n�21�

2
2 þ p�1�

3
2 þ r�42: ðA6Þ

The zeroth-order term in the potential is irrelevant, so we neglect it. The first-order terms must vanish in order to ensure that the origin
of the lens plane maps to the origin of the source plane. In the second-order terms, the coefficients of the �1�2 and �

2
2 terms are fixed (to

0 and 1
2
, respectively) by the conditions that the origin is a fold critical point such that ½Jac h�(0) is in diagonal form. Note that the

coefficient e of the �31 term here is different from the ellipticity parameter used in the main text. We retain e here to match the notation
used by Petters et al. (2001). The e coefficient does not appear in the main text, and the ellipticity parameter does not appear explicitly
in this appendix, so there should be little confusion.

Conventional analyses of lensing near a fold caustic have only considered the K, e, f, g, and h terms in the expansion (Blandford &
Narayan 1986; Schneider et al. 1992; Petters et al. 2001; Gaudi & Petters 2002a). However, we show below that some of the other
terms are significant for our analysis.

A2. IMAGE POSITIONS AND MAGNIFICATIONS

We seek to use perturbation theory (e.g., Bellman 1966) to find expansions for the image positions and magnifications that are
accurate to first order in u. We work from our fourth-order expansion of the lens potential, and then verify that it is adequate for our
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purposes. For bookkeeping purposes, let us introduce a scalar parameter � by taking u ! �u, so we can identify terms of a given order
by examining the power of �.

For the potential equation (A6), the lens equation is

�u1¼ K�1 � 3e�21 þ 2 f �1�2 þ g�22
� �

� 4k�31 þ 3m�21�2 þ 2n�1�
2
2 þ p�32

� �
; ðA7Þ

�u2 ¼� f �21 þ 2g�1�2 þ 3h�22
� �

� m�31 þ 2n�21�2 þ 3p�1�
2
2 þ 4r�32

� �
: ðA8Þ

Since the lowest order terms are linear or quadratic in a, it is natural to postulate that the image positions can be written as a series
expansion in � with the following form:

�1 ¼�1�
1=2 þ 	1� þO �ð Þ3=2; ðA9Þ

�2 ¼�2�
1=2 þ 	2� þO �ð Þ3=2: ðA10Þ

Substituting into the lens equation, we obtain

0¼ (�1K )�1=2 � (3�2
1eþ 2�1�2 f þ �2

2g� 	1K þ u1)� þO �ð Þ3=2; ðA11Þ
0 ¼� (�2

1 f þ 2�1�2gþ 3�2
2hþ u2)�

� 2�1	1 f þ 2(�1	2 þ �2	1)gþ 6�2	2hþ �3
1mþ 2�2

1�2nþ 3�1�
2
2 pþ 4�3

2r
� �

�3=2 þO �ð Þ2: ðA12Þ

It is easily understood why these equations are carried to different orders. Equation (A7) has a term that is linear in a, which means
that correction terms appear at O(�)3/2. By contrast, in equation (A8) the lowest order term is quadratic in a, and since

�i�j ¼ � i� j� þ (� i	j þ � j	i)�
3=2 þO �ð Þ2; ðA13Þ

we see that the correction terms only appear at O(�)2.
Following perturbation theory, we can now solve for the unknowns � i and 	i by demanding that equations (A11) and (A12) be

satisfied at each order in �. We then find that the positions of the two images can be written as

��1 ¼ 3hu1 � gu2
3hK

� þO �ð Þ3=2; ðA14Þ

��2 ¼�
ffiffiffiffiffiffiffiffiffi
�u2

3h

r
�1=2 � 3ghu1 � (g2 þ 2Kr)u2

9h2K
� þO �ð Þ3=2: ðA15Þ

Note that the distance between the two images is

d1 ¼ 2

ffiffiffiffiffiffiffiffiffi
�u2

3h

r
�1=2 þO �ð Þ3=2: ðA16Þ

To find the magnifications of the images, we compute the Jacobian determinant of the lens equation and evaluate that at a� to obtain

��� ��1¼ �2K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�3hu2

p
�1=2 þ 4

3h
g2 � 3f hþ 2Kr
� �

u2� þO �ð Þ3=2: ðA17Þ

This result shows that the � labels for the two images have been assigned such that �þ > 0 while �� < 0.
Remarks.—(1) To check our results, we note that at lowest order we recover the same scalings d1 / �1/2 and �� / ��1/2 found by

previous analyses (Schneider et al. 1992; Petters et al. 2001; Gaudi & Petters 2002a). (2) To first order in � the image separation and
the two magnifications depend only on the u2 component of the source position. (3) In several places we have �hu2ð Þ1/2 or �u2/hð Þ1/2.
In general, at least for simple lens potentials like an isothermal ellipsoid or isothermal sphere with shear, we have h 	 0 all along the
caustic. This means that only source positions with u2 > 0 lead to the production of two fold images.

At first order in the image positions and magnifications, the presence of r demonstrates that the fourth-order terms in equa-
tion (A6) cannot be ignored. At the same time, we can now verify that going to fourth order is sufficient. Any term of O(a)5 in the
potential would enter the lens equation at O(a)4; that would in turn be of order �2 or higher, which is beyond the order to which we
are working. Similarly, terms of O(a)5 in the potential would enter ��1 at O(a)3 or at least �3/2. In other words, going to fourth order
in equation (A6) is both necessary and sufficient when we seek the image positions and magnifications correct to first order
in �.
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A3. GENERIC BEHAVIOR OF THE FOLD RELATION

From equation (A17) we see that the two fold images have magnifications that are equal and opposite to lowest order in �, which
means that the combination j�þj � j��j should approximately vanish. In observed lenses, the magnifications are not directly
observable but the fluxes are, so to construct a dimensionless combination of the fluxes we define

Rfold �
j�þj � j��j
j�þj þ j��j ¼

Fþ � F�

Fþ þ F� : ðA18Þ

Plugging in the series expansions for ��, we find

Rfold ¼
2(g2 � 3f hþ 2Kr)

3hK

ffiffiffiffiffiffiffiffiffi
�u2

3h

r
�1=2 þO �ð Þ: ðA19Þ

By comparing the expansion for d1 in equation (A16), we see that we can write

Rfold ¼ Afoldd1 þO �ð Þ; ðA20Þ

where

Afold �
g2 � 3f hþ 2Kr

3hK
¼ 3 2

122 � 3 112 222 þ  2222(1�  11)

6 222(1�  11)
: ðA21Þ

In the last equality, we have replaced the coefficients ( f, g, h, K, r) with their definitions in terms of derivatives of the potential; for
example,

f ¼ 1

2
 112 ¼

1

2

@ 3 

@�21@�2
; g ¼ 1

2
 122 ¼

1

2

@ 3 

@�1@�22
; ðA22Þ

and so forth, where the derivatives are evaluated at the origin a ¼ 0.
To summarize, Rfold vanishes for a source asymptotically close to a fold caustic. For a source a small but finite distance away, there

is a correction term that scales as the square root of the distance of the source from the caustic, or (more usefully) as the separation
between the two fold images. The coefficient Afold of this linear scaling depends on properties of the lens potential at the fold critical
point. In particular, the presence of r reiterates the fact that the fourth-order expansion in the potential (eq. [A6]) is necessary to obtain
an expansion for Rfold that is accurate at order �

1/2 or d1.
We have verified all of the approximations in this appendix by comparing them to exact numerical solutions of the lens equation

obtained with the software by Keeton (2001).

APPENDIX B

DATA FOR THE OBSERVED FOUR-IMAGE LENSES

In this appendix we summarize the observational data that we use for all of the observed four-image lenses; this text complements
the data values given in Table 1. For each lens system, we need the relative positions of the lensed images in order to measure the
separations d1 and d2, and also to use as constraints on lens models for determining the Einstein radius REin. The position of the lens
galaxy (or galaxies), if available, is also valuable for the lens modeling. We also need the flux ratios between the images in order to
determine Rfold. We consider radio and optical /near-infrared flux ratios separately, because they are believed to correspond to very
different source sizes and provide very different information about small-scale structure in the lens potential (see, e.g., Dalal &
Kochanek 2002; Dobler & Keeton 2005). At optical/near-infrared wavelengths, we examine the colors of the images to detect (and
correct for) any differential extinction that may be present. Falco et al. (1999) carried out a detailed version of this analysis for a sample
of lenses that includes seven that we consider, and we use their results where available. If there is no evidence for differential
extinction, we combine data from different passbands using a weighted average. At radio wavelengths, we again examine the
wavelength dependence of the flux ratios to determine that there are no significant electromagnetic effects. If there are other flux
measurements, such as in optical broad emission lines or at mid-infrared wavelengths, we use those as well (as discussed below).

0047�2808.—This is a quadruply imaged system (Warren et al. 1996, 1999), but its lack of pointlike images means that it requires
special modeling techniques (e.g., Wayth et al. 2005b) and that it is probably not very interesting for the analysis of small-scale
structure anyway. We do not include it in our sample.
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B0128+437.—For the image positions, we use the radio astrometry from Phillips et al. (2000). For the radio fluxes, we use themean
and scatter in Rfold from 41 epochs of MERLIN monitoring by Koopmans et al. (2003a). The monitoring shows no evidence for time
dependence.

HE 0230�2130.—We use the opticalHubble Space Telescope (HST ) astrometry from CASTLES (CfA-Arizona Space Telescope
Lens Survey).18 There are two lens galaxies; we include both of them in lens models, taking their observed positions as constraints but
optimizing their masses. For the optical fluxes of the lensed images, we use the BRI data for images A, B, and C from Wisotzki et al.
(1999). The colors are consistent with no differential extinction. ( Image D is not well separated from galaxy G2 in the Wisotzki et al.
data, so we do not consider it.)

MG 0414+0534.—We use the optical HST astrometry from CASTLES. We include the satellite galaxy near the lens galaxy
(‘‘object X’’; Schechter & Moore 1993) in lens models. For the optical image fluxes, we use the extinction-corrected flux ratios from
Falco et al. (1999). For the radio fluxes, we use the high-resolution VLBI data from Trotter et al. (2000). Those observations resolve
each image into four subcomponents; the Rfold values are similar for the different subcomponents, so we take the weighted average.
The radio flux ratios are constant in time to 1%–3% (Moore & Hewitt 1997).

HE 0435�1223.—We use the optical HST astrometry from CASTLES. For the optical broadband fluxes, we use the gri data from
Wisotzki et al. (2002). Wisotzki et al. (2003) also report emission-line fluxes; we take the mean and scatter in Rfold from the C iv and
C iii] lines. There is no evidence for wavelength dependence in the broadband flux ratios, and the spectra of the different images have
identical spectral slopes, so there does not appear to be any differential extinction. Image D appeared to vary by 0.07 mag between the
two sets of observations, which may imply evidence for microlensing.

B0712+472.—We use the opticalHSTastrometry and photometry from CASTLES. The values of Rfold differ slightly in the V, I, and
H bands, but within the measurement uncertainties; hence there is no evidence for differential extinction. For the radio fluxes, we use
the mean and scatter in Rfold from MERLIN monitoring by Koopmans et al. (2003a). There is evidence for time dependence in the
radio fluxes.

RX J0911+0551.—We use the optical HST astrometry and photometry from CASTLES. The lens galaxy has a satellite galaxy,
which we include in lens models. The image flux ratios vary with wavelength in a manner that is consistent with differential extinction,
so we correct for extinction using a redshifted RV ¼ 3:1 extinction curve from Cardelli et al. (1989; see also Paper I ).

SDSS 0924+0219.—Keeton et al. (2005) report image positions, broadband flux ratios, and broad emission line flux ratios from
HST observations. We use the weighted average of the V and I broadband flux ratios. We use the emission-line fluxes with 5%
uncertainties, which is probably conservative. The best color information comes from gri data by Inada et al. (2003), which are
consistent with no differential extinction.

SDSS 1004+4112.—This lens is produced by a cluster rather than a single galaxy (Oguri et al. 2004), but we can still treat it with our
formalism. We use ground-based griz data from Oguri et al. (2004), and HST/I data from Inada et al. (2005). There is no evidence for
differential extinction. Richards et al. (2004) claimed to observe microlensing of the broad emission lines in image A, but the level of
variability in the continuum is not yet known.

PG 1115+080.—We use the HST astrometry and photometry from CASTLES, and the mid-infrared flux ratios from Chiba et al.
(2005). Falco et al. (1999) find that the VIH data are consistent with no differential extinction. In the lens models, we explicitly include
the group of galaxies surrounding the lens (see Keeton & Kochanek 1997; Impey et al. 1998).

RX J1131�1231.—We use the ground-based astrometry and photometry from Sluse et al. (2003). They report two epochs of V data
and one epoch of R. The colors are consistent with no differential extinction. The total flux varied between the two epochs, but the flux
ratios remained constant.

HST 12531�2914.—We use theHST astrometry and photometry from Ratnatunga et al. (1995) and CASTLES. Falco et al. (1999)
find that the V � I colors are consistent with no extinction (within the noise).

HST 14113+5211.—We use the HST astrometry and photometry from Fischer et al. (1998) and CASTLES. There is some scatter
among the values of Rfold obtained from V-, R-, and I-band data, but the scatter is within the (fairly large) measurement uncertainties.

H1413+117.—We use theHST astrometry from CASTLES. For the optical fluxes, we use the extinction-corrected flux ratios from
Falco et al. (1999).

HST 14176+5226.—We use the HST astrometry and photometry from Ratnatunga et al. (1995). Falco et al. (1999) find that the
colors are consistent with no differential extinction.

B1422+231.—We use the radio data from Patnaik et al. (1999). The radio fluxes are basically constant in time (Patnaik &
Narasimha 2001). For the optical fluxes, we use the extinction-corrected flux ratios from Falco et al. (1999). We also use the mid-
infrared flux ratios between images A, B, and C (image D was not detected) from Chiba et al. (2005).

B1555+375.—We use the radio data fromMarlow et al. (1999). The data from radio monitoring by Koopmans et al. (2003a) yield
similar results, but have larger formal errors.

B1608+656.—Fassnacht et al. (2002) monitored the radio fluxes, measured the time delays, and determined the delay-corrected
magnification ratios; we take the mean and scatter in Rfold from their three seasons of data. There are two lens galaxies; we model the
system using data from Koopmans et al. (2003b).

B1933+503.—There are ten lensed images associated with three different sources. We use all of the images in lens modeling,
following Cohn et al. (2001). However, for the fold analysis we use only the fold quad consisting of images 1/3/4/6. For the radio
fluxes, we first take the mean and scatter from 8.4 GHz monitoring by Biggs et al. (2000), and then combine that in weighted average
with measurements at other wavelengths by Sykes et al. (1998).

WFI 2026�4536.—We use the optical data from Morgan et al. (2004). We use all available data in which the images are resolved:
ugriHKs plus HST F160W for images B and C; and iHKs plus HST F160W for images A1 and A2. There is some wavelength

18 See http://cfa-www.harvard.edu/castles.
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dependence that may suggest differential extinction or microlensing; the current data are inconclusive. We simply take the mean and
scatter in Rfold from all of the data.

WFI 2033�4723.—We use the optical data from Morgan et al. (2004). For the optical broadband flux ratios, we use all available
data in which the images are resolved: ugri for images B and C; and ri for images A1 and A2. Morgan et al. also report emission-line
flux ratios; we take the weighted average of Rfold from the C iv, C iii], and Mg ii lines.

B2045+265.—We use the radio positions from Fassnacht et al. (1999). For the radio fluxes, we combine various measurements by
Fassnacht et al. (1999) and monitoring by Koopmans et al. (2003a), and take the mean and scatter in Rfold. For the optical fluxes, we
use HST data from CASTLES for images A, B, and C (image D was not detected). The VIH colors are consistent with no differential
extinction.

Q2237+0305.—We use HST astrometry from CASTLES. For the broadband optical fluxes, we use the microlensing light curves
from Woźniak et al. (2000). We correct for differential extinction using the reddening deduced by Falco et al. (1999). For the radio
fluxes, we use the data from Falco et al. (1996). In addition, Agol et al. (2000) report mid-infrared flux ratios measured at 8.9 and
11.7 �m.
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