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ABSTRACT

We study the local behavior of gravitational lensing near fold catastrophes. Using a generic form for the
lensing map near a fold, we determine the observable properties of the lensed images, focusing on the case in
which the individual images are unresolved, i.e., microlensing. Allowing for images not associated with the
fold, we derive analytic expressions for the photometric and astrometric behavior near a generic fold caustic.
We show how this form reduces to the more familiar linear caustic, which lenses a nearby source into two
images that have equal magnification, opposite parity, and are equidistant from the critical curve. In this
case, the simplicity and high degree of symmetry allow for the derivation of semianalytic expressions for the
photometric and astrometric deviations in the presence of finite sources with arbitrary surface brightness pro-
files. We use our results to derive some basic properties of astrometric microlensing near folds; in particular,
we predict, for finite sources with uniform and limb-darkening profiles, the detailed shape of the astrometric
curve as the source crosses a fold. We find that the astrometric effects of limb darkening will be difficult to
detect with the currently planned accuracy of the Space Interferometry Mission for Galactic bulge sources;
however, this also implies that astrometric measurements of other parameters, such as the size of the source,
should not be compromised by an unknown amount of limb darkening. We verify our results by numerically
calculating the expected astrometric shift for the photometrically well-covered Galactic binary lensing event
OGLE-1999-BUL-23, finding excellent agreement with our analytic expressions. Our results can be applied
to any lensing system with fold caustics, including Galactic binary lenses and quasar microlensing.

Subject headings: astrometry — binaries: general — gravitational lensing —
stars: fundamental parameters

1. INTRODUCTION

Gravitational lensing has proven to be an exceptional
tool for studying a diverse set of astrophysical phenomena.
Its utility is due, at least in part, to the fact that it operates in
a number of qualitatively different regimes. The term strong
lensing, or macrolensing, is usually applied when a distant
source (typically cosmological) is lensed into multiple, re-
solved images by an intervening mass, such as a foreground
cluster or a galaxy. Weak lensing is used to refer to the case
in which multiple images are not created and the gravita-
tional field of the intervening matter serves only to slightly
distort the image of the source. For most applications of
both strong and weak lensing, the source, lens, and observer
can be considered static. The termmicrolensing is often used
to describe the case in which multiple images are created but
are not resolved. Typically, the separation of the images cre-
ated by a gravitational microlens is of order the Einstein
ring radius,

�E ¼
ffiffiffiffiffiffiffiffiffiffiffi
4GM

Dc2

r
: ð1Þ

Here M is the mass of the lens, D is defined by
D � DosDol=Dls, and Dos, Dol, and Dls are the distances
between the observer source, observer lens, and lens source,
respectively. In cosmological contexts, angular diameter

distances should be used. When hE is less than the resolu-
tion, individual images in general cannot be distinguished.
Because of the small scale of hE, it is typically not a good
approximation to assume that the source, lens, and observer
are static. Therefore, the lensing properties can be expected
to change on timescales of order the Einstein ring crossing
time,

tE ¼ �EDol

v?
; ð2Þ

where v? is the transverse speed of the lens relative to the
observer source line of sight. The standard observables in
gravitational microlensing are therefore the time rate of
change of the total magnification and the center of light
(centroid) of all the microimages. There are two different
regimes where microlensing has been discussed: quasar
microlensing (Wambsganss 2001) and microlensing in the
Local Group (Paczynski 1996).

In the Local Group, gravitational microlensing occurs
whenever a massive, compact object passes close to our line
of sight to a more distant star. Microlensing was originally
suggested as a method to detect baryonic dark matter in the
halo of our Galaxy (Paczyński 1986) but has been developed
and applied as an important tool in studying a number of
astrophysical topics, including the stellar mass function
(Gould 1996), extrasolar planets (Mao & Paczyński 1991),
stellar atmospheres (Gould 2001), and stellar multiplicity
(Alcock et al. 2000; Udalski et al. 2000). The only microlens-
ing effect currently observable is the magnification of the
background source as function of time. This is because, for
typical distances in the Local Group, the angular Einstein
ring radius is �E ’ 1 masðM=M�Þ1=2 and therefore too
small to be resolved with current instruments. The timescale
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for a microlensing event is tE � 40 days. In general, it is
much easier to determine the center of light of an image than
it is to resolve it. Thus, future interferometers, such as the
Space Interferometry Mission (SIM), although still not able
to resolve separations of O(mas), should be able to measure
the centroid of all the images to much better than this, per-
haps even down to 10 las in the case of SIM. Such accuracy
is sufficient to easily detect the motion of the centroid of the
images created in a microlensing event, which is also of
order hE. This regime is typically referred to as astrometric
microlensing, as opposed to photometric microlensing when
only the total magnification is observable.

Astrometric microlensing has a number of important
applications. By combining ground-based photometry of
microlensing events with photometry and astrometry from
an astrometric satellite on an Earth-like orbit, the masses of
microlenses can routinely be measured (Paczyński 1998;
Boden, Shao, & van Buren 1998; Gould & Salim 1999),
allowing for the determination of the compact object mass
function in the bulge, including stellar remnants (Gould
2000). Astrometric information alone allows for the precise
(few percent) measurement of the masses of nearby stars
(Paczyński 1995). Finally, for a subset of events, it will be
possible to obtain precision measurements of angular diam-
eters of stars in the Galactic bulge using astrometric infor-
mation (Paczyński 1998; B. S. Gaudi, D. S. Graff, & C. Han
2002, in preparation).

Binary microlenses have proven to be enormously useful
in photometric microlensing studies. This is primarily
because binary lenses exhibit caustics: closed curves on
which the mapping from the lens plane to light source plane
becomes critical and the point-source magnification
becomes formally infinite. Regions near caustics exhibit
large, rapidly changing (with respect to source position)
magnification and are therefore useful for providing not
only a large source flux but also high angular resolution.
However, binary lenses have also proven to be difficult to
study both theoretically and observationally. This is parti-
ally because the lens equation, which describes the mapping
from the lens plane to the light source plane, is equivalent to
a fifth-order complex polynomial in the source position
(Witt 1990) and therefore is not analytically solvable in gen-
eral. Furthermore, care must be taken when considering
finite source effects near caustics due to the divergent magni-
fication. However, considerable progress can be made when
one realizes that the smooth arcs (away from cusps) of caus-
tics that arise in nearly equal-mass binary lenses are well
approximated as simple linear fold catastrophes, which
have generic, simple, and most importantly, analytic behav-
ior. Thus, the caustics of binary lenses can be analyzed
analytically or semianalytically without reference to the
global (and nonanalytic) topology of the general binary
lens. In particular, a simple equation for the magnification
of a source near a fold exists (Schneider, Ehlers, & Falco
1992), which has been used in a number of important appli-
cations including binary lens fitting (Albrow et al. 1999),
stellar atmospheres (Gaudi & Gould 1999), and caustic
crossing predictions (Jaroszyński &Mao 2001).

In contrast to the astrometric behavior of single lenses,
which is analytic and has been quite well studied (Walker
1995; Jeong, Han, & Park 1999), there have been only a few
preliminary studies of the astrometric properties of binary
gravitational lenses (Han, Chun, & Chang 1999; Chang &
Han 1999; Gould &Han 2000). It is known that astrometric

binary lens curves exhibit complex behavior, including
instantaneous O(hE) jumps in the image centroid trajectory
that occur when a point source crosses a binary lens caustic
and two highly magnified images appear in a position unre-
lated to the position of the centroid of the other three binary
lens images. The generic behavior of these centroid jumps,
or how they are altered by finite source effects, is not under-
stood. As is the case for photometric microlensing, the
astrometric behavior of binary lenses will likely prove quite
useful for several applications. The usefulness of binary
lenses is primarily related to the complex image centroid tra-
jectories and the large centroid jumps. Although, in general,
these properties do not allow one to measure any additional
parameters over the single lens case, they do allow one to
measure these parameters much more easily. In particular,
Graff & Gould (2002) have shown that lens mass measure-
ments can be made to a given accuracy with 1–3 orders of
magnitude fewer photons with caustic crossing binary lens
events than with single lens events, thus greatly reducing the
resources required to achieve one of the primary proposed
science goals of astrometric microlensing. Caustic crossing
binary lens events are also enormously useful for measuring
the angular radii of microlensing source stars in the bulge
for two reasons. First, the expected ratio of binary to single
lens events for which the source star is resolved is a factor of
e4 for giant sources and e10 for main-sequence sources.
Furthermore, the large and complex centroid shifts
expected for caustic crossing binary lens events make the
requisite astrometric measurements easier. B. S. Gaudi et al.
(2002, in preparation) have shown that, by combining accu-
rate ground-based photometry with a handful of precise
astrometric measurements, caustic crossing binary lens
events should yield �5% stellar radius measurements with a
reasonable expenditure of resources.5 Thus, given the
importance of caustic crossing binary lens events, an ana-
lytic study of the generic behavior of astrometric microlens-
ing near folds would prove quite useful.

In quasar microlensing, the separate macroimages of a
quasar that is multiply imaged by a intervening galaxy or
cluster also feel the combined, nonlinear effect of individual
point masses (i.e., stars) in the macrolensing object that is
near the macroimage position. The individual macroimages
are in fact composed of many unresolved microimages with
separations of order of the Einstein radius of an M � M�
object at cosmological distances, �E ’ 1 lasðM=M�Þ1=2.
The typical timescale for the source to cross an angle of hE is
tE ’ 15 yr; however, microlensing light curves should show
structure on much smaller timescales because of the com-
bined effects of many individual microlenses. Since it was
first discussed by Chang & Refsdal (1979), cosmological
microlensing has been studied theoretically by numerous
authors (see Wambsganss 2001 and references therein) and
detected in at least two systems (Q2237+0305: Irwin et al.
1989; Corrigan et al. 1991; Woźniak et al. 2000;
B1600+434: Koopmans & de Bruyn 2000). Observations
have been used to place constraints on, e.g., the size of the
emitting region of quasars (Wambsganss, Schneider, &
Paczynski 1990; Wyithe et al. 2000b) and the mass function

5 Although it is possible to measure stellar angular sizes using
astrometric information alone, this generally requires very densely sampled
measurements since the source is resolved only for a short time.
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of microlenses (Schmidt & Wambsganss 1998; Wyithe,
Webster, & Turner 2000a; Koopmans & de Bruyn 2000).

Quasar microlensing differs markedly from microlensing
in the Local Group in that the surface mass density in units
of the critical density for lensing (the ‘‘ optical depth ’’) is of
order of unity, rather than O(10�6) for the Local Group. In
the high optical depth regime the lensing effects of the indi-
vidual microlenses add nonlinearly, resulting in a complex
caustic network. Because of this nonlinear behavior and the
large number of lenses typically involved, calculation of the
observable properties of such a lensing system is difficult
and time consuming. Although in the high optical depth
regime the caustics often exhibit considerably more compli-
cated global behavior than the caustics of binary lenses in
the Local Group, it is still the case that the smooth arcs
(away from cusps) of the caustics are locally well approxi-
mated by generic fold catastrophes. This fact, combined
with a simple formula for the magnification near folds, has
been exploited by numerous authors to quickly and effi-
ciently calculate various observable properties of quasar
microlensing (Wambsganss & Paczynski 1991; Lewis &
Ibata 1998; Wyithe & Webster 1999; Fluke & Webster
1999).

The observable effects of quasar microlensing have been
limited to the relative magnifications of the various macroi-
mages as a function of time. As with Local Group micro-
lensing, astrometric effects should also be present. The
centroid of the individual macroimages should vary as a
function of time, particularly when new images are created
or destroyed when the source crosses a caustic. This effect
has been studied by Williams & Saha (1995) and Lewis &
Ibata (1998). In particular, Lewis & Ibata (1998) predict
that the magnitude of the centroid shift for the Q2237+0305
system (apparent magnitude Rd18:5) can be as large as
�50 las and thus potentially observable with SIM. They
also note that the magnitude of the centroid shift is often
correlated with the magnitude of the change in total magni-
fication. The analytic results presented in this paper may
prove useful for this application.

Here we study the generic, local behavior of microlensing
near fold catastrophes. In x 2 we present an analytic study of
the photometric and astrometric behavior near folds. We
begin with the equations that describe the mapping near a
fold caustic in x 2.1 and use these to derive the behavior of a
point source near a fold. We extend this analysis to finite
sources in x 2.2 and limb-darkened sources in x 2.3. In x 2.4
we show how and when our generic parabolic fold form
reduces to the more familiar linear caustic. In x 2.5 we use
our analytic results to derive some generic results about the
astrometric behavior near folds. We verify the applicability
of our results in x 3 by numerically calculating the photo-
metric and astrometric behavior of one well-observed
binary lens event. We find excellent agreement with our ana-
lytic formulae. Finally, we summarize and conclude in x 4.

Our goal is to provide a thorough, comprehensive study
of gravitational microlensing near fold caustics. Although
our study is interesting in its own right, the primary utility
of the results presented here is their potential application to
the topics mentioned in the previous paragraphs. A pre-
scription for how specifically our results can be applied to
these topics is beyond the scope of this paper, but we will
make general comments along these lines over the course of
the paper and more specific comments in x 2.5. We are cur-
rently preparing a complementary, similarly detailed study

of microlensing near cusps. Combined with this study, we
will have a reasonably thorough and complete understand-
ing of the local behavior of microlensing observables near
all stable gravitational lensing singularities. We note that
some of the results derived here, particularly the results on
the photometric behavior near folds, have been presented
elsewhere (see, e.g., Schneider et al. 1992; Petters, Levine, &
Wambsganss 2001; Fluke & Webster 1999). We include
those results here for the sake of completeness.

2. ANALYTIC CONSIDERATIONS

2.1. Lensing near Fold Caustics

2.1.1. Global LensingMap

For a general gravitational lens, the lensed images h of a
source u are given by the solutions of the lens equation,
which is the mapping u ! h:

u ¼ �ðhÞ � h � �ðhÞ ; ð3Þ

where � ¼

D

 and  is the projected Newtonian potential
of the lens,

 ðhÞ ¼ 1

�

Z
R2

dh0�ðh0Þ ln jh � h0j ; ð4Þ

where � ¼ �ðhÞ=�cr, �(h) is the surface density of the lens,
and

�cr �
c2

4�G

Dos

DolDls
ð5Þ

is the critical surface density for lensing. Note thatD2 ¼ 2�. We are assuming that h ¼ r=ð�EDolÞ and
u ¼ s=ð�EDosÞ, where r and s are the proper vector positions
in the lens and light source planes, respectively. The map-
ping � can produce multiple images of the source u. The
magnification of lensed image hi is

lðhiÞ ¼
1

j det A�ðhiÞ
� �

j
; ð6Þ

where A� is the Jacobian matrix of the lensing map �. The
critical curve is the set of positions hc such that the determi-
nant of the Jacobian matrix vanishes, i.e., where

J � det A�ðhcÞ
� �

¼ 0 ; ð7Þ

and the caustics are uc ¼ �ðhcÞ. In the case of microlensing,
the individual images are by definition unresolved, and thus
it is useful to define the total magnification

ltot ¼
X
i

lðhiÞ ; ð8Þ

where the sum is over all images. The center of light, or cent-
roid hcl(u) of the images, is simply the magnification
weighted sum of the image positions,

hclðuÞ ¼
P

i lðhiÞhi
ltot

: ð9Þ

For simplicity, we will focus primarily on the quantity hcl.
However, it is important to note that, in general, centroid
measurements will be made with respect to the unlensed
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source position; thus, the observable is

�hclðuÞ ¼ hclðuÞ � u : ð10Þ

Also, while the angular variables we will be working with
will be in units of hE, the astrometric observables are in
physical units, such as arcseconds. To convert to observable
quantities, all angular quantities must be multiplied by hE.
For example, the observable centroid shift is given by
�ucl � �E�hcl.

2.1.2. LensingMap near Folds

We now derive the generic behavior of the photometric
and astrometric properties of gravitational lensing near
folds. We will present our derivations in some detail, in
order to document the approximations and simplifying
assumptions that are implicit in the final analytic expres-
sions. In Figure 1, we provide an illustrative example of the
basic properties of lensing near a fold. We will refer to this
figure repeatedly during the course of the derivations.

Suppose that the lensing map � sends the origin to itself
(which can always be accomplished by appropriate transla-
tions) and that a fold caustic curve passes through the ori-
gin. By Taylor expanding the gravitational potential  
about the origin, one can find an orthogonal change of coor-
dinates that is the same in the lens and light source planes
such that the lensing map � can be approximated by the fol-
lowing mapping in a neighborhood of the origin (Petters et
al. 2001, pp. 341–353; Schneider et al. 1992, p. 187):

u1 ¼ a�1 þ
b

2
�22 þ c�1�2 ;

u2 ¼
c

2
�21 þ b�1�2 þ

d

2
�22 ; ð11Þ

where (h1, h2) and (u1, u2) denote the respective coordinates
in the lens and light source planes and

a ¼ 1�  11ð0Þ 6¼ 0 ; b ¼ � 122ð0Þ ;
c ¼ � 112ð0Þ ; d ¼ � 222ð0Þ 6¼ 0 : ð12Þ

Here the subscripts refer to the partial derivatives of  with
respect to the original global Cartesian coordinates of the
lensing map. For the example in Figure 1, we have adopted
a ¼ 5, b ¼ 1, and c ¼ �d ¼ �0:5.

The Jacobian matrix of equation (11) is

A ¼
aþ c�2 c�1 þ b�2

c�1 þ b�2 b�1 þ d�2

�
: ð13Þ

The critical curve is given by

J � detA ¼ ðaþ c�2Þðb�1 þ d�2Þ � ðc�1 þ b�2Þ2 ¼ 0 : ð14Þ

The tangent line to the critical curve at the origin is given by

0 ¼ h x

D

Jð0Þ ¼ ab�1 þ ad�2 ; ð15Þ

that is,

�2 ¼ � b

d
�1 ð16Þ

since a 6¼ 0 and d 6¼ 0. Substituting �2 ¼ �b�1=d into equa-

tion (11) yields

u1 ¼ a�1 þ
b

d2

1

2
b2 � cd

� �
�21 ’ a�1 ;

u2 ¼
1

2d
ðcd � b2Þ�21 : ð17Þ

Note that in the expression for u1, the term h1 dominates �21
near the origin. Inserting �1 ¼ u1=a into u2 above, we see
that the tangent line at the origin of the critical curve is
mapped into a parabola (Schneider et al. 1992; Fluke &

Fig. 1.—Illustration of the basic properties of astrometric and photo-
metric microlensing near folds. (a) Filled circles represent the source at vari-
ous times. The solid line is the fold. The source crosses the caustic at uc. (b)
The elongated shapes are the images corresponding to the source at the
positions in (a). The point hf, c is the image of uc and is where the two extra
images appear. The third image on the nearly horizontal trajectory repre-
sents the centroid of all images unassociated with the fold. (c) The magnifi-
cation as a function of time for a point source. The solid line is the total
magnification ltot, the dotted line is the magnification of all images unasso-
ciated with the caustic l0, and the dashed line is the magnification lf of the
two images created in the fold crossing. (d ) Same as (c), except for a finite
uniform source. The dot-dashed line shows the total magnification for a
source size that is 2 times larger. (e) The hcl, 1-component of the centroid
shift as a function of time. The dotted line is for a point-source and the solid
line for a finite uniform-source size. The dot-dashed line is for a source size
that is 2 times larger. ( f ) The hcl, 2-component of the centroid shift. (g) The
path of the centroid of light of all the images, hcl. Line types are as in (e)
and ( f ).
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Webster 1999):

Cðu1; u2Þ � 2a2dðu2 � eu21Þ ¼ 0 ; ð18Þ

where we have introduced the combination of local deriva-
tives of  :

e � cd � b2

2a2d
: ð19Þ

We show in x 2.4 that jej is one-half the curvature of the
caustic at the origin. Thus, when jej5 1, the caustic can be
approximated as 2a2du2 ¼ 0, i.e., the u1-axis. For the exam-
ple shown in Figure 1, jej ¼ 0:05.

Since the tangent line (eq. [16]) approximates the critical
curve near the origin, the parabola (eq. [18]) approximates
the caustic near the origin. See Figures 1a and 1b. Now mul-
tiplying u2 in equation (11) by 2a2 and substituting
�1 ¼ u1=a yields

Cðu1; u2Þ ¼ ðbu1 þ ad�2Þ2 : ð20Þ

Hence, if a light source is located at a position (u1, u2), where
Cðu1; u2Þ < 0, then there is no lensed image locally, while a
source withCðu1; u2Þ � 0 has at least one image.

For an n-point mass lens, we have c ¼ �d. Consequently,
if d > 0, the parabolic caustic lies in the lower-half plane
locally. In addition, the region above the parabola is such
that sources lying there have double images locally (Fig. 1a).
If d < 0, then the parabola is in the upper-half plane with
the region below the parabola yielding double images
locally. In other words, the caustic is locally convex (see
x 9.3 of Petters et al. 2001 for a detailed treatment).

2.1.3. Image Positions of Sources near Folds

Let us determine the images for Cðu1; u2Þ � 0. Equation
(20) is equivalent to a quadratic equation in h2,

0 ¼ a2d2
� �

�22 þ 2abdu1ð Þ�2 þ b2u21 � Cðu1; u2Þ
� �

: ð21Þ

The solutions are6

�2 ¼
�bu1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðu1; u2Þ

p
ad

: ð22Þ

The expression for u1 in equation (11) yields

�1 ¼
1

aþ c�2
u1 �

b

2
�22

� �
: ð23Þ

Ignoring terms of order 3 or higher, we obtain

�1 ¼
u1
a
� c

a2
u1�2 �

b

2a
�22 ; ð24Þ

where the approximation ðaþ c�2Þ�1 ’ a�1ð1� c�2=aÞ was
employed. Substituting equation (22) into equation (24) and
keeping only terms that are linear in u1 and u2, it follows
that

�1 ¼
du1 � bu2

ad
: ð25Þ

Hence, a source with Cðu1; u2Þ > 0 has two (opposite

parity) images given by

h� � ð��; 1; ��; 2Þ

¼ 1

ad

�
du1 � bu2; �bu1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðu1; u2Þ

p �
: ð26Þ

Figures 1a and 1b illustrate the mapping from source to
images near a fold.

Consider a point uc on the caustic, i.e., CðucÞ ¼ 0.
Locally, there is one image of uc, located on the critical
curve7 at the position

hc ¼
1

ad
ðduc; 1 � buc; 2; �buc; 1Þ : ð27Þ

Now consider a source at u ¼ ðu1; u2Þ inside the caustic
[i.e., CðuÞ > 0] and let u�c ¼ ðu�c; 1; u�c; 2Þ be the point on the
caustic with the same horizontal position as u, i.e., u�c; 1 ¼ u1
and u�c; 2 6¼ u2. The vertical separation of the source from the
caustic is then the difference between the u2-coordinates of u
and u�c :

Du2;? � u2 � eðu�c; 1Þ
2 ¼ Cðu1; u2Þ

2a2d
: ð28Þ

Note that Du2;? > 0 if and only if d > 0 [since the source is
located where Cðu1; u2Þ > 0]. Using equations (26) and
(27), we find that the distances of the images h�ðu1; u2Þ
from the point hc on the critical line are the same,

D�2;? ¼ h�ðu1; u2Þ � hcj j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Du2;?

d

r
1þ b2

2a2d
Du2;?

� �1=2

: ð29Þ

Near the origin, the first term in parentheses dominates over
the last term in parentheses, and thus,

D�2;? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Du2;?

d

r
: ð30Þ

2.1.4. Magnification of Sources near Folds

Using the earlier tangent line approximation to the crit-
ical curve at the origin, we Taylor expand the Jacobian
determinant J about the origin to first order:

Jð�1; �2Þ ¼ J�1ð0Þ�1 þ J�2ð0Þ�2 ¼ ab�1 þ ad�2 ; ð31Þ

which is equal to the right-hand side of equation (15).
Inserting the expressions for h1 and h2 from equation (26),
we obtain

Jð�1; �2Þ ¼ � b2

d
u2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðu1; u2Þ

p
: ð32Þ

Keeping only the lowest order terms in u1 and u2 gives

jJðh�Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðu1; u2Þ

p
: ð33Þ

In terms of the vertical separation between the source and
the caustic (eq. [28]), the magnification of the images are

6 Note that we do not need to include singðadÞ in front of the square root
since�singðadÞ ¼ �1.

7 That the image position in eq. (27) corresponds to a point on the crit-
ical curve can be seen by noting that on the caustic uc; 2 ¼ eu2c; 1, and close to
the origin u1 dominates u21, and thus the image position is
hc ¼ ðduc; 1; �buc; 1Þ=ðadÞ, which is indeed a point on the critical line (see
eq. [16]).
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given locally by

l� � lðh�Þ ¼
1

jJðh�Þj
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
uf

Du2;?

r
; ð34Þ

where uf ¼ 2=ða2dÞ. Thus, the two images have the same
magnification if the source is sufficiently close to the caustic.
The total magnification lf � 2l� of the two images is
simply

lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
uf

Du2;?

r
; ð35Þ

which agrees with the expressions derived by both Schneider
et al. (1992, p. 190) and Fluke & Webster (1999). Equation
(35) is the well-known result that the magnification varies
inversely as the square root of the distance of the source
from the caustic. It is not often appreciated, however, that
this property holds for the general parabolic fold form as
well, provided that the vertical distance is used rather than,
for example, the minimum distance between the source and
the fold caustic. Rigorously, the vertical distance is the dis-
tance between the source and the caustic in the direction
perpendicular to the tangent line of the caustic at the origin,
where the origin is defined as the point around which the
potential  is Taylor expanded. In the limit of a straight fold
(jej5 1), the vertical distance and the minimum distance are
equivalent.

2.1.5. Image Centroid of Sources near Folds

Write the source position u in terms of the fold local coor-
dinates, i.e., u ¼ ðu1; u2Þ. There are no local images for a
source position withCðuÞ < 0. From equations (9) and (26),
and since lþ ¼ l�, for sources inside the caustic, the cent-
roid is given locally as

hf ðuÞ ¼
1

2
hþ þ h�ð Þ ¼ 1

ad
ðdu1 � bu2; �bu1Þ ;

for CðuÞ � 0 : ð36Þ

We express the rectilinear motion of the source as follows:

uðtÞ ¼ uc þ ðt� tcÞ _uu ; ð37Þ

where uc is the position at which the source intersects the
caustic at time t ¼ tc and _uu is the constant angular velocity
vector of the source,

_uu ¼ cos�

tE
;
sin�

tE

� �
: ð38Þ

Recall that tE ¼ �EDol=v?, where v? is the transverse speed
of the lens relative to the observer source line of sight. Here
� is the angle of the source’s trajectory with respect to the
u1-axis. Note that the u1-axis does not necessarily coincide
with the caustic, and thus � is not necessarily the angle of
the trajectory with respect to the tangent to the caustic at uc.

We shall assume that t > tc corresponds to the source’s
trajectory lying in the double-image region. In that region,
the centroid follows a straight line locally:

hf ðtÞ ¼ hf ; c þ ðt� tcÞ _hhð f ; cÞ ; for t � tc ; ð39Þ

where hf ; c � hf ðucÞ and _hhð f ; cÞ � dhf =dtjt¼tc
¼ hf ð _uuÞ (both

constant vectors). Note that since the slope of the centroid
line hf is tan�c ¼ ð�b cos�Þ=ðd cos�� b sin�Þ, where �c is

the angle between the centroid line and the h1-axis, it follows
that _hhðf ; cÞ can be expressed as

_hhðf ; cÞ ¼
�b cos�

adtE
ðcot�c; 1Þ : ð40Þ

2.1.6. GlobalMagnification and Centroid

Fold caustics do not, of course, exist in isolation. They
are tied to the global properties of the lens in consideration.
For practical purposes, we therefore consider images cre-
ated by the lens that are not associated with the fold under
consideration. We define l0 to be the total magnification of
all the images not associated with the fold, and we define h0
as the centroid of all these images. We will assume that there
is locally only one fold caustic and that all the other image
magnifications and positions are only slowly varying func-
tions of the source position. The total magnification is then

ltot ¼ lf þ l0 ¼
uf

Du2;?

� �1=2

�ðDu2;?Þ þ l0 : ð41Þ

See Figure 1c. Here � is the Heaviside unit step function
[i.e., �ðxÞ ¼ 1 for x � 0 and �ðxÞ ¼ 0 if x < 0]; it accounts
for the fact that sources below the caustic (with Du2;? < 0)
have no images locally (i.e., near the critical curve). Since
lþ ¼ l� ¼ lf =2, we have

hcl ¼
1

ltot
lf hf þ l0h0

	 

; ð42Þ

where

hf ðuÞ ¼
1

ad
ðdu1 � bu2;�bu1Þ�ðDu2;?Þ : ð43Þ

We can calculate the dependence of the observables ltot
and hcl on time by assuming a rectilinear source trajectory
and replacing u in equations (41) and (42) by equation (37).
We first Taylor expand h0 and l0 about the time of the caus-
tic crossing, t ¼ tc, keeping terms of first order in t� tc:

h0 ¼ h0; c þ ðt� tcÞ _hhð0; cÞ ; ð44Þ
l0 ¼ l0; c þ ðt� tcÞ _llð0; cÞ ; ð45Þ

where _hhð0; cÞ � dh0=dtjt¼tc
and _llð0; cÞ � dl0=dtjt¼tc

. From
equations (28) and (37), Du2, ? is given by

Du2;? ¼ t� tc
tE

sin� 1� e cot� 2uc; 1 þ
t� tc
tE

cos�

� �� �
:

ð46Þ

Themagnification as a function of time is then

ltotðtÞ ¼
tf

t� tc

� �1=2

� 1� e cot� 2uc; 1 þ
t� tc
tf

uf cot�

� �� ��1=2

��ðt� tcÞ þ l0; c þ _llð0; cÞðt� tcÞ ; ð47Þ

where tf � ðuf tEÞ= sin� is the effective rise time of the caus-
tic crossing and uf ¼ 2=ða2dÞ defines the characteristic rise
length as before. Notice that when the curvature of the caus-
tic is small, i.e., when jej5 1, the magnification associated
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with the fold reduces to the more familiar form
lf ¼ ½ðt� tcÞ=tf 	�1=2�ðt� tcÞ. The centroid of all images is

hclðtÞ ¼
1

ltot

�
lf hf ; c�ðt� tcÞ þ l0h0; c

�
þ
�
lf

_hhðf ; cÞ�ðt� tcÞ þ l0
_hh0; c
�
ðt� tcÞ

�
; ð48Þ

where hf, c and _hhðf ; cÞ are defined below equation (39).
Figures 1e and 1f illustrate the behavior of the two compo-
nents of hcl(t) as a function of time, whereas Figure 1g shows
hcl, 1 versus hcl, 2.

2.2. Finite Sources

2.2.1. Finite SourceMagnification

The results of the previous section assumed a pointlike
source. This results in an astrometric curve that exhibits an
instantaneous jump from h0, c to hf, c at t ¼ tc. All real
sources will have a finite extent that will smooth out the dis-
continuous jump. For a finite source, the magnification is
the surface brightness–weighted magnification integrated
over the area of the source,

lfs ¼
R
D duSðuÞlðuÞR

D duSðuÞ ; ð49Þ

where D is the disk-shaped region of the source and S(u) is
the surface brightness of the source. Let �SS be the average
surface brightness of the source, �SS � ð��2�Þ

�1 R
D duSðuÞ.

Here �� � ��=�E is the angular source radius h* in units of
hE. The denominator in equation (49) is then simply ��2��SS.
Define SN � SðuÞ=�SS to be the normalized surface bright-
ness. Also define a new set of source plane coordinates such
that

u0 ¼ u� ucn
��

; ð50Þ

where ucn is the position of the center of the source. Then for
a point u inside the disk source D, we have ju0j 
 1.
Equation (49) becomes

lfs ¼ 1

�

Z
D

du0SNðu0Þlðu0Þ : ð51Þ

All of the preceding results apply to generic parabolic fold
catastrophes. However, in order to continue making signifi-
cant progress analytically, we must make the following sim-
plifying assumption: we furthermore assume that jej5 1,
and thus the caustic coincides with the u1-axis and
Du2;? ¼ u2. This considerably simplifies the form for the
fold magnification lf.

Let z be such that z�* is the vertical separation of the cen-
ter ucn of the source from the caustic, i.e., ucn; 2 ¼ z��. The
sourceD is in the upper-half plane (i.e., u2 � 0) if and only if
z � 1. If z ¼ 1, then D just touches the caustic, while for
0 < z < 1 a portion ofD is below the caustic with the center
of D on the caustic for z ¼ 0. The center of D lies below the
caustic for z < 0, with a portion of D still above the caustic
for �1 < z < 0, and D completely below the caustic for
z < �1. Since the fold magnification lf is nonzero only for
points u inD that lie in the upper half of the plane, we get

lf ðu0Þ ¼
uf
��

� �1=2�ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ z

p : ð52Þ

By equations (51) and (52), we find for a fold caustic and
arbitrary surface brightness profile

lfsf ðzÞ ¼
uf
��

� �1=2
"
1

�

Z 1

maxð�z; �1Þ
du02

�ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ z

p
�
Z ffiffiffiffiffiffiffiffiffiffiffiffi

1�ðu0
2
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

2
Þ2

p du01SNðu01; u02Þ
#
: ð53Þ

For a uniform source, i.e., SNðu0Þ ¼ 1, this simplifies to
(Schneider et al. 1992; Albrow et al. 1999)

lusf ðzÞ ¼
uf
��

� �1=2

G0ðzÞ ; ð54Þ

where

GnðzÞ � ��1=2 ðnþ 1Þ!
ðnþ 1=2Þ!

�
Z 1

maxð�z;�1Þ
dx

ð1� x2Þnþ1=2

ðxþ zÞ1=2
�ð1þ zÞ : ð55Þ

Note that G0 can be expressed as an elliptic integral.
Figure 2 shows G0(z) for �2 
 z 
 2. For small source sizes
��5 �E, the magnification l0 of the images not associated
with the fold is a slowly varying function of u over the
source and thus ��1

R
D du0SNðu0Þl0ðu0Þ ¼ l0ðucnÞ. There-
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Fig. 2.—Basic functions that describe the photometric and astrometric
behavior of finite sources near a fold, as a function of the distance z from
the fold in units of the dimensionless source size �*. (a) The basic functions
for the photometric behavior. The solid line shows G0, whereas the dotted
line shows G1=2. (b) The basic functions for the astrometric behavior. The
solid line shows K0, whereas the dotted line shows K1=2. (c) The photo-
metric (G1=2 � G0) and astrometric (K1=2 �K0) limb-darkening functions.
See text.
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fore, the total finite source magnification is just

lustot ¼ lusf þ l0; cn ; ð56Þ

where l0; cn � l0ðucnÞ. In analogy to the point-source case
(x 2.1), we can expand l0 about the time of the second caus-
tic crossing. For a source with rectilinear motion, the total
finite source magnification in the time domain is then

lustotðtÞ ¼
tf
Dt

	 
1=2
G0

t� tc
Dt

	 

þ l0; c þ _llð0; cÞðt� tcÞ ; ð57Þ

where tf � ðuf tEÞ= sin� (effective rise time of the caustic
crossing) and Dt � ð��tEÞ= sin� is the timescale of the caus-
tic crossing, i.e., the time between when the source first
touches the caustic and when it straddles the caustic. Note
that tf =Dt ¼ uf =��. Figure 1d illustrates the behavior of
lustotðtÞ.

2.2.2. Finite Source Image Centroid

For an extended source, the image centroid is the position
of the images weighted by both the surface brightness and
magnification, integrated over the area of the source:

hfscl ¼
P

i

R
D duSðuÞhiðuÞliðuÞP
i

R
D duSðuÞliðuÞ

; ð58Þ

where the sum is over all the microimages. The denominator
is simply the total flux, �SS��2�lfstot. Again, for ��5 �E, the
centroid h0(u) of the images not associated with the fold
varies slowly over the source. This yields
��1

R
D du0SNðu0Þl0ðu0Þh0ðu0Þ ¼ l0ðucnÞh0ðucnÞ [since l0(u) is

also slowly varying over the source]. Equation (58) then
separates into two terms:

hfscl ¼
lfsf

lfstot

1

��2��SSlfsf

Z
D

duSðuÞhf ðuÞlf ðuÞ
" #

þ
l0; cn

lfstot
h0; cn ;

ð59Þ

hfscl ¼
lfsf

lfstot
hfsf þ

l0; cn

lfstot
h0; cn ; ð60Þ

where h0; cn � h0ðucnÞ. The first term in equation (60) is the
contribution from the two images associated with the fold
caustic, while the second term is the contribution from all
unrelated images. For convenience, we defined hfsf to be the
factor within the brackets in equation (59).

The term hfsf will now be evaluated. Since u ¼ ��u0 þ ucn,
we obtain

hf ðuÞ ¼ hf ðucnÞ þ ��hf ðu0Þ : ð61Þ

Define hf ; cn � hf ðucnÞ�ð1þ zÞ, so hf, cn vanishes when the
disk source lies completely below the fold caustic.8 Using
equation (52), we find a simple formula for the finite source
image centroid,

hfsf ðtÞ ¼ hf ; cn þ
ffiffiffiffiffiffiffiffiffiffi
uf ��

p

lfsf
hf HSN

;KSN
ð Þ ; ð62Þ

where we have defined

HSN
ðzÞ ¼ 1

�

Z 1

maxð�z;�1Þ
du02

�ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ z

p Z ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

2
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

2
Þ2

p
� du01 u

0
1SN u01; u

0
2ð Þ ; ð63Þ

KSN
ðzÞ ¼ 1

�

Z 1

maxð�z;�1Þ
du02 u

0
2

�ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ z

p Z ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

2
Þ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�ðu0

2
Þ2

p
� du01 SN u01; u

0
2ð Þ : ð64Þ

In the case of a uniform source, we obtain9 HSN
ðzÞ ¼ 0

andKSN
¼ K0, where

KnðzÞ � ��1=2 ðnþ 1Þ!
ðnþ 1=2Þ!

�
Z 1

maxð�z;�1Þ
dx x

ð1� x2Þnþ1=2

ðxþ zÞ1=2
�ð1þ zÞ : ð65Þ

For a uniform source, the finite source centroid of the two
images associated with the fold is then

husf ¼ hf ; cn �
b
ffiffiffiffiffiffiffiffiffiffi
uf ��

p

adlfsf
K0ðzÞ̂ii ; ð66Þ

where îi � ð1; 0Þ. Inserting the definition of lusf , this can also
be written in the alternate form

husf ¼ hf ; cn �
b��
ad

K0ðZÞ
G0ðzÞ

îi : ð67Þ

Figure 2 shows the functions K0(z) and G0(z), while
Figure 3 depicts K0ðzÞ=G0ðzÞ. Figure 1g illustrates the
behavior of the image centroid (eq. [60]) for a finite source.

2.3. Limb Darkening

In this section we consider the effect of nonuniform sour-
ces on the magnification and centroid shift near folds. The
effect of generic surface brightnesses can be evaluated using
the general integral forms for the magnification (eq. [53])
and the two components of the centroid shift (eqs. [63] and
[64]). We will concentrate on a specific form for S(u) appli-
cable to stellar sources, namely,

SNðuÞ ¼ 1� � 1� 3

2
1� ju� ucnj2

�2�

 !1=2
2
4

3
5 ; ð68Þ

where ucn is the center of the source. Here C is the limb-
darkening parameter, which may be wavelength-dependent.
This form was originally introduced by Albrow et al. (1999),
and it has the desirable property that there is no net flux
associated with the limb-darkening term.

Inserting this form for the surface brightness into equa-
tion (53), we recover the result of Albrow et al. (1999) for

8 Technically, the fold produces no images locally of ucn when z < 0, and
thus hf(ucn) is not defined for z < 0. This apparent discrepancy can be allevi-
ated by simply assuming that hf(u1, u2) is a function that is defined for all u1,
u2, i.e., hf ðu1; u2Þ ¼ ðdu1 � bu2; �bu1Þ=ðadÞ for all u1, u2.

9 In fact, HSN
ðzÞ ¼ 0 for any profile with the symmetry

SNðu01; u02Þ ¼ SNð�u01; u
0
2Þ.
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the limb-darkened magnification,

lldf ¼ lusf þ �
uf
��

� �1=2

G1=2ðzÞ � G0ðzÞ
� �

; ð69Þ

where Gn(z) is defined in equation (55) and G0(z), G1=2ðzÞ,
andG1=2ðzÞ � G0ðzÞ are shown in Figure 2.

Since this form of the surface brightness profile is
symmetric, SNðu01; u02Þ ¼ SNð�u01; u

0
2Þ, the integral HSN

vanishes. Inserting equation (68) into the general form for
KSN

, we findKSN
¼ K0 þ �ðK1=2 �K0Þ and thus

hldf ¼ hf ; cn �
b
ffiffiffiffiffiffiffiffiffiffi
uf ��

p

adlldf
K0ðzÞ þ � K1=2 �K0

� �� �̂
ii ; ð70Þ

which can also be written

hldf ¼ hf ; cn �
b��
ad

K0ðZÞ þ � K1=2 �K0

� �
G0ðzÞ þ � G1=2 � G0

� �
" #̂

ii: ð71Þ

Figure 2 shows the functions K0(z), K1=2ðzÞ, and
K1=2ðzÞ �K0ðzÞ, while Figure 3 depicts the term in
brackets above for several values of C.

2.4. Simple Linear Folds

The majority of the results presented in x 2 (with the
exception of the assumption made in xx 2.2 and 2.3 that the
caustic is coincident with the u1-axis) are applicable for the
general case of a parabolic fold catastrophe. In some cases,
however, it is possible to simplify the expressions consider-
ably and recover the more familiar linear fold form.

To see how this limit may be reached, consider the form
for the general fold mapping in equation (11). In this form,
the source and image plane coordinates have all been nor-
malized by hE and thus are dimensionless, as are the coeffi-
cients a, b, c, and d (since  is dimensionless). It is clear that
the caustic will (in general) be appreciably curved when one
considers order-of-unity variations in u1, u2 (i.e., on abso-
lute angular scales of order hE). In other words, in the gen-
eral case one can expect all of the coefficients (a, b, c, d ) to
be of the same order of magnitude. Now consider variations
on some smaller scale �	5 �E. Renormalizing the angular
source and image plane variables such that ûu ¼ ð�E=�	Þu
and ĥh ¼ ð�E=�	Þh, the fold mapping can be recast in the
form

ûu1 ¼ A�̂�1 þ
B

2
�̂�22 þ C�̂�1�̂�2; ûu2 ¼

C

2
�̂�21 þ B�̂�1�̂�2 þ

D

2
�̂�22 ;

ð72Þ

where the relations between the coefficients are A ¼ a,
B ¼ bð�	=�EÞ, C ¼ cð�	=�EÞ, and D ¼ dð�	=�EÞ. Therefore,
on scales of the order of h	, we can expectA to be larger than
B, C, and D by a factor of �E=�	. In the Galactic microlens-
ing case, for example, one is typically concerned with varia-
tions on the scale of the source, i.e., scales of order �	 � ��.
In this case �E=�	e100.

Let us consider the curvature of the fold caustic on scales
of O(h	). In general, for a twice continuously differentiable
function f ¼ f ðxÞ on an open interval of R2, the magnitude
of the curvature at a point [x0, f(x0)] on the graph of f is
given by

jk̂kðx0Þj ¼
f 00ðx0Þ

f1þ ½ f 0ðx0Þ	2g3=2
: ð73Þ

In the coordinates of equation (72), i.e., on scales of O(h	),
equation (18) yields that the fold caustic can be expressed as
a graph ûu1; f ðûu1Þ½ 	, where

f ðûu1Þ ¼ êeûu21 ; êe � CD� B2

2A2D
: ð74Þ

By equation (73),

jk̂kðûu1Þj ¼
2jêej

ð1þ 4êe2ûu21Þ
3=2

; ð75Þ

but

êe ¼ �	
�E

� �
e ; ûu1 ¼

�E
�	

� �
u1 : ð76Þ

Hence, the magnitude of the curvature of the fold caustic
can be expressed as

jk̂kðûu1Þj ¼
�	
�E

� �
2jej

ð1þ 4e2u21Þ
3=2

: ð77Þ

Equation (77) yields that, at the origin and on scales compa-
rable to h	, the magnitude of curvature scales as �	=�E and is
given by jk̂kð0Þj ¼ 2ð�	=�EÞe. Note that the radius of curva-
ture at the origin is jk̂kð0Þj�1. In Galactic microlensing
�	 � �� and ��=�E5 1. Therefore, it is generally the case
that jk̂kj5 1; i.e., the curvature of the fold caustic is negligible
on scales of order h*, and the fold can be treated as linear.

Fig. 3.—(a) Function ½K0 þ �ðK1=2 �K0Þ	=½G0 þ �ðG1=2 � G0Þ	 as a
function of z, for � ¼ 0, 0.5, and 1.0, where G0, G1=2, K0, and K1=2 are
shown in Fig. 2, andC is a limb-darkening parameter. (b) The fractional dif-
ference �lld between the limb-darkened and uniform-source magnifica-
tions, normalized by C, for several source sizes �*. We have assumed a
caustic scale uf ¼ 1 and magnification outside the caustic of l0; cn ¼ 4.
(c) The absolute magnitude of the difference in the centroid shift due to limb
darkening Dhldcl, normalized by CDhjump, where Dhjump is magnitude of the
point-source astrometric ‘‘ jump ’’ when the source crosses the caustic. See
text.
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We therefore ask what happens to the expressions derived
in the previous sections in the limit that a4ðb; c; dÞ. We
find that Cðu1; u2Þ ’ 2a2du2, and thus the caustic, which is
defined by Cðu1; u2Þ ¼ 0, collapses to the u1-axis (linear
fold). The critical curve is still given by �2 ¼ �ðb=dÞ�1.
There are images whenever u2 � 0, which are located at

h� ¼ u1
a
; �

ffiffiffiffiffiffiffi
2u2
d

r !
; ð78Þ

with magnifications

l� ¼ 1

2

ffiffiffiffiffi
uf
u2

r
: ð79Þ

The centroid of the two images therefore takes on the simple
form

hf ¼
u1
a
; 0

	 

: ð80Þ

Including the additional images, and assuming a rectilin-
ear trajectory, the total magnification can be written

ltotðtÞ ¼
tf

t� tc

� �1=2

�ðt� tcÞ þ l0; c þ _llð0; cÞðt� tcÞ ; ð81Þ

The centroid of all the images has the same form as before
(eq. [48]), with

hf ; c ¼
uc; 1
a
; 0

	 

; _hhðf ; cÞ ¼

cos�

atE
; 0

� �
: ð82Þ

For finite sources, the centroid in equation (66) reduces to
hfsf ¼ hf ; cn: The finite source centroid then becomes

hfscl ¼
lfsf

lfstot
hf ; cn þ

l0; cn

lfstot
h0; cn ; ð83Þ

This is the same result as for point sources (see eq. [42]) if
the point-source magnification is replaced with the finite
source magnification.

Equations (78)–(83) should hold whenever (1)
a4ðb; c; dÞ, (2) one is not too close to a higher order catas-
trophe, i.e., a cusp, and (3) there are no other nearby folds.

2.5. Some Applications

We can use the results from the previous sections to derive
some generic results about the astrometric behavior near
folds. We first consider the magnitude of the astrometric
jump when the source crosses a caustic. It is clear that for a
point source, the maximum centroid shift is
D�jump � jhf ; c � h0; cj, where hf, c is the point on the critical
curve where the images merge. Although Dhjump ultimately
depends on the source trajectory and the topology of the
lens, we can typically expect that Dhjump is O(hE). For the
finite source case, the difference between the centroid posi-
tion just before (z � �1) and just after (z � 1) the caustic
crossing is D�fsjump ’ ðlfsf =lfstotÞD�jump. For a uniform source,
this is

D�usjump ’ 1þ
ffiffiffiffiffiffi
��
uf

r
l0; cn

G0

� ��1

D�jump : ð84Þ

Adopting typical parameters, l0; cn � 1, uf � 1, and G0 � 1,

we find the fractional change from the point-source case to
be ðD�fsjump � D�jumpÞ=D�jump � �3%ð��=10�3Þ1=2.

We now consider the magnitude of limb-darkening effect
on the magnification and centroid shift relative to the
uniform-source case. From equations (56) and (69), the
fractional difference between the limb-darkened and
uniform-source magnification is

�lld � lldtot � lustot
lustot

¼ �
G1=2 � G0

G0
1þ

ffiffiffiffiffiffi
��
uf

r
l0; cn

G0

� ��1

: ð85Þ

Early in the caustic crossing (z < 1), the factor
��=uf
� �1=2ðl0; cn=G0Þ is small compared to unity, and thus
�lld � �ðG1=2 � G0Þ=G0. The magnitude of ðG1=2 � G0Þ=G0

is 
20% for the majority (zd0:8) of the caustic crossing.
Near the end of the caustic crossing (z � 1) the term in
parentheses begins to dominate as G0 ! 0, and thus
�lld � �l�1

0; cn uf =��
� �1=2ðG1=2 � G0Þ, which goes to zero as

z ! 1. Thus, for typical values of uf, �*, and l0, cn, the frac-
tional difference from a uniform source is d0.2C for the
majority of the caustic crossing. See Figure 3.

The difference in the centroid due to limb darkening is

Dhldcl ¼ hldcl � huscl ¼ �lld
l0; cn

lldtot
ðhf � h0Þ : ð86Þ

Figure 3c shows the prefactor �lldl0; cn=l
ld
tot for l0; cn ¼ 4,

uf ¼ 1, and several values of �*. To assess the detectability
of the deviation of the centroid shift from the uniform-
source case due to limb darkening in Galactic bulge micro-
lensing events, we now make a crude estimate for the maxi-
mum magnitude of Dhldcl by adopting typical parameters. At
t ¼ tc, we have that jhf � h0j ¼ D�jump and is maximized.
We will assume that D�jump � �E � 300 las. We have just
argued that �lldd0:2�. Near the end of the caustic crossing
(where �lld is maximized), lldtot � l0. Inserting these values
into equation (86), we find

jDhldcl jmax � ð60�Þ las ðbulge lensesÞ : ð87Þ

For typical values of � � 0:5 in the optical, jDhldcl jmaxd30
las, which is only a factor of�3–6 larger than the sensitivity
expected from SIM. Note that this is the maximum centroid
shift; inspection of Figure 3c reveals that jDhldcl j is consider-
ably smaller than this maximum for the majority of the
caustic crossing. Therefore, detection of the astrometric
effects of limb darkening will likely be challenging, at least
for Galactic bulge lensing events, with the currently planned
accuracy for SIM. On the other hand, the fact that the astro-
metric effects of limb darkening are small implies that limb
darkening can generally be ignored. Thus, predictions for
the signatures of other effects, such as the finite source effect
itself, are robust. In other words, measurements generally
should not be compromised by an unknown amount of limb
darkening.

Consider two observers that are not spatially coincident.
The source trajectories as seen by the two observers will be
displaced relative to each other by an amount �u, the magni-
tude of which is j�uj ¼ a�s=~rrE, where a�s is the component
of the separation between the two observers perpendicular
to the line of sight, and ~rrE ¼ �ED is the Einstein ring radius
projected to the observer plane. If �u is sufficiently large,
then both the photometric and astrometric behavior of the
event will be measurably different between the two observ-
ers, an effect commonly known as parallax. Since a�s is
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known, this observed difference can be used to infer ~rrE, pro-
viding additional physical constraints on the properties of
the lens. For example, when combined with a measurement
of hE from the astrometric centroid shift itself, the mass of
the lens can be determined, M ¼ ðc2=4GÞ~rrE�E. For a given
|�u|, parallax effects are typically largest near caustics
because the magnification and the centroid vary rapidly
with respect to source position. Thus, caustic crossings are
ideal for use in measuring parallax effects (Hardy & Walker
1995; Gould & Andronov 1999). If |�u| is sufficiently small
that the behavior near the fold caustic crossing for both
observers can be described by the same local expansion of
the lens mapping, then the results derived here can be used
to fit the astrometric and photometric behavior for both
observers and derive the parallax effects without regard to
the global behavior of the lens. We note that for generic fold
caustics, any significant displacement �u, regardless of its
orientation relative to the caustic, will result in a difference
in the observable behavior. However, for linear fold caustics
(x 2.4), only displacements perpendicular to the caustic will
result in significant differences in the magnification and
centroid. Thus, for generic linear fold caustics, only a pro-
jection of ~rrE is measurable from the local caustic behavior
(Graff &Gould 2002).

During a fold caustic crossing the source is resolved,
altering both the photometric and astrometric behavior
with respect to a point source (x 2.2). The photometric
behavior near a caustic crossing depends on �*, the source
size in units of hE, whereas the astrometric behavior depends
on actual angular size of the source �� ¼ ���E.10 Thus,
while fitting to the photometric data near a caustic crossing
does not yield the angular size of the source, fitting to the
astrometric data near a caustic crossing does. Therefore, it
is possible, in principle, to measure the angular radius of the
source star of a caustic crossing binary lens event by fitting a
few astrometric measurements taken during the caustic
crossing to the expressions we have derived for the local
astrometric behavior (see x 2.2.2 and eq. [60]). In practice,
however, this is complicated by the fact that, for linear fold
caustics, only the degenerate combination ��= sin� can be
measured, where � is the angle of the trajectory with respect
to the caustic. For general fold caustics, the degeneracy
between h* and sin� is broken (see x 2.2.2 and eq. [67]);
however, for many cases, the simple linear fold will be appli-
cable. Thus, in order to determine h* separately, the global
geometry must be generally specified, which can be accom-
plished using the global photometric light curve.

3. A WORKED EXAMPLE: BINARY LENSING EVENT
OGLE-1999-BUL-23

In this section we numerically calculate the expected
astrometric behavior for a binary lens fold caustic crossing
and compare this with the analytic results from the previous
sections. We do this in order to verify our expressions and
also to explore the accuracy with which our (necessarily)
approximate results reproduce the exact behavior. For defi-
niteness, we will calculate the expected astrometric behavior

for the photometrically well-observed caustic crossing
binary lens event OGLE-1999-BUL-23 (Albrow et al. 2001).
This has the advantage that, up to an orientation on the sky
and subject to small errors in the inferred parameters, the
astrometric behavior can be essentially completely deter-
mined from the photometric solution, including the size of
hE and the effects of limb darkening.

3.1. Formalism and Procedures

For a system of Nl point masses located at positions hl, j
and no external shear, the lens equation (3) takes the form

u ¼ h �
XNl

j¼1

mj
h � hl; j

jh � hl; j j2
; ð88Þ

wheremj is the mass of the jth lens in units of the total mass.
Note that angles in equation (88) are normalized to the hE
for the total mass of the system. For Nl ¼ 2, the lens equa-
tion is equivalent to a fifth-order polynomial in h, thus yield-
ing a maximum of five images. All of the image positions for
a given point on the source plane can be found numerically
using any standard root-finding algorithm. Then the indi-
vidual magnifications, total magnification, and centroid of
these images can be found using equations (6), (8), and (9).

For a finite source size, it is necessary to integrate over the
area of the source (eq. [49]). This can be difficult to do
numerically in the source place near the caustics because of
the divergent magnification. A more robust method is
inverse ray shooting. This works as follows: The image
plane is sampled uniformly and densely, and at each h, equa-
tion (88) is used to find the corresponding u(h). The local
ratio of the density of rays in h to the density of rays in u is
the local magnification. Thus, one can create a map of l(u),
the magnification as a function of u. Similarly, one can
determine the astrometric deviation by sampling in h, using
equation (88) to determine u(h), and then summing at each u
the values of h(u). The astrometric deviation at u is then the
summed values of h(u), weighted by the local magnification.
Thus, one creates two astrometric maps, for each direction.
In practice, inverse ray shooting requires one to bin the rays
in the source plane, with the resolution of the maps being
determined by the size of the bin and the accuracy deter-
mined by surface density of rays in the image plane relative
to the (unlensed) surface density of rays in the source plane.
The advantage of inverse ray shooting is that the procedure
conserves flux; therefore, the maps can be convolved with
any source profile to produce the finite source photometric
and astrometric behavior for arbitrary source size and sur-
face brightness profile.

To apply this method to predict the detailed photometric
and astrometric behavior of the caustic crossings for
OGLE-1999-BUL-23, it is essential that the resolution of
the astrometric and photometric maps be considerably
smaller than the source size �*. We will be using resolutions
of 10�4hE, which corresponds to 0.034�* for OGLE-1999-
BUL-23. This is sufficient to accurately resolve the source.
We sample the image plane with a density of 5� 109��2

E ,
corresponding to a Poisson error per resolution element of
�14%l�1. Since there are �2700 resolution elements per
source size, the total Poisson error is always less than 1%,
considerably smaller than any of the effects we will be
considering.

10 Recall that in order to covert to astrometric observables, all angular
variables must be multiplied by hE.

980 GAUDI & PETTERS Vol. 574



3.2. Global Astrometric Behavior

Before studying the detailed behavior near the photomet-
rically well-covered (second) caustic crossing of OGLE-
1999-BUL-23, we first analyze the global astrometric
behavior of the entire event. We specify the binary lens top-
ology and source trajectory using the parameters of the
best-fit solution with limb darkening (see Table 2 of Albrow
et al. 2001). In Figure 4 we show various aspects of the
inferred lensing system and the event itself. The best-fit lens
system has a wide topology, with two well-separated caustic
curves, one near the position of each lens. The mass ratio of
the two lenses is q � m1=m2 ¼ 0:39, and they are separated
by 2.42hE. The solution has the source crossing the caustic
associated with the least massive lens, which we will call the
secondary caustic.

Figure 4a shows the photometric light curve centered on
the event. There are two fold caustic crossings, separated by
�10 days; the second crossing was densely covered photo-
metrically by Albrow et al. (2001), allowing them to deter-
mine not only the source size �* but also limb-darkening
coefficients C in each of two different photometric bands:

�I ¼ 0:534 (I band) and �V ¼ 0:711 (V band). This allows
us to predict the astrometric behavior including finite source
and limb-darkening effects. Furthermore, by combining a
measurement of �� � ��=�E with a determination of the
angular size of the source h* from its color and magnitude,
Albrow et al. (2001) measured the angular Einstein ring
radius of the lens to be �E ¼ ð634� 43Þ las. Therefore, we
can determine the absolute scale of the astrometric features
and assess their detectability by comparing them with the
expected accuracy of upcoming interferometers.

Figure 4b shows the caustics and critical curves as well
as the trajectory of the images of the source. One image
is always near the most massive lens; this image has little
effect on the resulting astrometric deviation other than a
small net offset along the binary axis. Figure 4c shows a
close-up of the region near the secondary caustic along
with the image centroid hcl. The components parallel and
perpendicular to the binary axis are shown in Figures 4e
and 4d. Finally, Figure 4f shows �hcl, the centroid relative
to the unlensed source position u. In Figures 4c–4f, the
large O(hE) jumps that occur when the source crosses the
caustic are evident.

Fig. 4.—Global photometric and astrometric behavior of the binary lens event OGLE-1999-BUL-23. (a) The light curve (magnification as a function of
time) for the best-fit model. The solid line is for the finite source, whereas the dotted line is for a point source. The insets show detail near the two caustic cross-
ings. (b) The critical curves (ovals), caustics (cuspy curves), images (circles), and source trajectory (dashed line). The crosses denote the position of the two
masses, the arrows give the directions of motion of the images, and the sizes of the circles are proportional to the magnification of the image. (c) Detail near the
caustic crossing. The gray line shows the position of the centroid hcl of the five images relative to the lens. (d ) and (e) The two components of hcl as a function of
time. ( f ) The solid line shows the centroid relative to the source position �hcl. The crosses show �hcl at fixed intervals of 20 days.
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3.3. The Second Fold Crossing

We now focus on the photometric and astrometric
behavior near the second caustic crossing for OGLE-1999-
BUL-23. In Figure 5a we show the caustic geometry and
source trajectory near this crossing. The source passed
�0.02 mas from a cusp. On the scale of the source size,
�� ¼ 1:86 las, the curvature of the caustic can be neglected.

In Figure 5 we show the behavior near the second caustic
crossing. Figure 5c shows the photometric behavior for 2
days centered on the caustic crossing, for the assumption of
a uniform source, and a limb-darkened source with surface
brightness profile given in equation (68), with �I ¼ 0:534
and �V ¼ 0:711. Note the similarity of the shapes of the uni-
form source and limb-darkened light curves with the ana-
lytic formsG0 andG1=2 presented in Figure 2a. We show our
prediction for the astrometric behavior as a function of time
for the components parallel and perpendicular to the binary
axis in Figures 5d and 5e, respectively (compare with
Figs. 1e and 1f). We show both the instantaneous discontin-
uous jumps for a point-source centroid, along with the con-

tinuous centroid curves for finite sources. The limb-
darkened and uniform-source astrometric curves are
extremely similar. In Figure 5f we show the predicted total
astrometric behavior for the same time span. Notice how
well the form of Figure 5f compares with Figure 1g, which
was obtained from our analytic forms. Figure 6 shows the
same curve as Figure 5f, except that we have rotated the axes
by �55, shifted the origin to the image of the caustic cross-
ing, and stretched the axes for visibility. In Figure 6 notice
how the predicted shapes for the finite source centroids are
smoothly rounded off near the bottom and have a sharp
turn near the top.

Although the difference between the finite source and
point-source curves is quite substantial, the difference
between the uniform-source and limb-darkened sources is
very small. This is more clearly illustrated in Figures 7a and
7b, where we show the two components of this difference,
Dhldcl ¼ hldcl � huscl , for about four source radius crossing times
centered on the crossing, i.e., jzj < 2. The form of Dhldcl is
very similar to the analytic expectation (see eq. [86] and
Fig. 3c). Furthermore, the two components of Dhldcl are
essentially perfectly (anti-)correlated, implying that the dif-
ference is essentially one-dimensional. This can be seen best
in Figure 7c, where we plot D�ldcl; 1 versus D�

ld
cl; 2. Figure 7d is

u

u

Fig. 5.—Photometric and astrometric behavior near the second caustic
crossing of OGLE-1999-BUL-23. (a) The heavy solid line shows the caus-
tic, while the dashed line shows the source trajectory. The interior of the
caustic is shaded. The inset shows the detail near the caustic crossing, in
units of the source size, shown as a circle. (b) The heavy solid line is the crit-
ical curve, and the circles show the positions of the two images associated
with the caustic crossing at fixed intervals of 4.8 hr. The size of the circles is
proportional to the logarithm of the magnification. (c) The magnification
near the second caustic crossing as a function of time. The solid lines is for a
uniform source, the dotted line is for a limb-darkened source in the I band,
the dashed line is for the V band, and the dot-dashed line is for a point
source. (d ) and (e) The two components of the centroid hcl in mas as a func-
tion of time. Line types are the same as (c). ( f ) The centroid hcl.

Fig. 6.—Detail of the centroid shift hcl near the second caustic crossing
of OGLE-1999-BUL-23 in las. This is the same as Fig. 5f, except the axes
have been rotated by �55 and the origin has been translated to the image
position of the caustic crossing point. Note the extreme asymmetry in the
scales of the two axes. The solid line is for a uniform source, the dotted line
for a limb-darkened source in the I band, the dashed line for the V band,
and the dot-dashed line for a point source.
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the same as Figure 7c, except we have rotated and stretched
the axes. The maximum deviation is �(60C) las, in agree-
ment with the rough expectation (eq. [87]).

4. SUMMARY AND CONCLUSION

We have presented a detailed study of gravitational lens-
ing near fold catastrophes, concentrating on the regime
where the individual images are unresolved, i.e., microlens-
ing. By Taylor expanding the scalar potential  in the neigh-
borhood of a fold up to third order in the image position,
one can obtain a generic form for the lensing map near a
fold. Beginning with this mapping, we derive the local lens-
ing properties of a source in the vicinity of the fold caustic.
Approximating the critical curve by its tangent line at the
origin, we find that the caustic is locally a parabola. On one
side of the parabola, the fold lenses a nearby source into two
images; on the other side of the parabola, there are no
images. We derive the image positions and magnifications
as a function of the position of the source. We find that the
magnifications of the two images are equal and recover the
well-known result that the magnification is inversely pro-
portional to the square root of the distance to the caustic.
We show how this holds for parabolic caustics (as well as

linear caustics), provided that the ‘‘ vertical ’’ distance from
the caustic is used.

Assuming a rectilinear source trajectory and allowing for
the existence of slowly and smoothly varying images not
associated with the fold caustic, we derive analytic expres-
sions for the total magnification and image centroid (center
of light) as a function of time.

We then consider how the photometric and astrometric
behavior is altered in the presence of a finite source size. We
derive semianalytic expressions for the magnification and
centroid as a function of time for both a uniform-source
and limb-darkened source. Along the way we derived
expressions that can be used to evaluate the photometric
and astrometric behavior near a fold for a source with arbi-
trary surface brightness profile.

We then show how and under what conditions the generic
parabolic fold reduces to the more familiar linear fold. We
derive simplified expressions for the individual and total
image positions and magnifications near a linear fold.

We used some of our analytic results to derive a few
generic properties of microlensing near folds. In particular,
we derive and evaluate expressions for the magnitude of the
centroid jump that occurs when a finite source crosses a fold
relative to the point-source jump and the magnitude of the
effect of limb darkening on both the photometric and astro-
metric behavior. Notably, we predict, for Galactic bulge
lensing events, the shape of the centroid due to finite sources
with uniform and limb-darkening surface brightness pro-
files. We also find for Galactic bulge lensing that the effect
of limb darkening on the image centroid near a fold is quite
similar to the uniform-source case, making the limb-
darkening effect difficult to detect by the currently planned
accuracy for the instrumentation of SIM. We discussed how
our formulae can be used to fit both photometric and astro-
metric data sets near fold caustic crossings and thus used to
derive such properties as the angular size of the source and
the microlensing parallax.

Finally, we numerically calculate expected astrometric
behavior of the photometrically well-observed Galactic
bulge binary lensing event OGLE-1999-BUL-23 (Albrow et
al. 2001), finding excellent agreement with our analytic pre-
dictions.

Caustics are ubiquitous in gravitational lenses, and the
most common type of caustic is the fold. Caustics play an
especially important role in microlensing since the rapid
time variability of the total image magnification allows the
possibility of detailed studies of the source and lens. In the
future, we can expect that time series photometric measure-
ments will be supplemented by time series astrometricmeas-
urements of the center of light of microlens systems. This
paper presents the most thorough and comprehensive study
of the photometric and astrometric behavior of gravita-
tional microlensing near fold caustics to date. The results
should prove useful to those studying microlens systems
with caustics: The analytic expressions derived here can be
used to fit fold caustic crossings observed both photo-
metrically and astrometrically, gain some insight into more
complicated numerical studies, and establish predictions for
the feasibility of future observations.
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Fig. 7.—(a) and (b) Two components of the astrometric offset due to
limb darkening Dhldcl relative to a uniform source as a function of time. The
dotted line is for the I band, whereas the dashed line is for the V band. The
two components are (a) parallel and (b) perpendicular to the binary axis.
The vertical lines show (from left to right) the time when the source first
touches, straddles, and last touches the caustic. The solid lines are the offset
from a point source. (c) The astrometric offset Dhldcl . Line types are as in (a)
and (b). The deviations from the uniform source are essentially one-dimen-
sional. (d ) The same as (c), except that the axes have been scaled and
rotated by�55. Note the extreme asymmetry in the scales of the axes. The
maximum absolute deviation due to limb darkening is small,d50 las.
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