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ABSTRACT

Kepler will monitor a sufficient number of stars that it is likely to detect single transits of planets with periods
longer than the mission lifetime. We show that by combining the exquisiteKepler photometry of such transits with
precise radial velocity observations taken over a reasonable timescale (�6 months) after the transits and assuming
circular orbits, it is possible to estimate the periods of these transiting planets to better than 20%, for planets with radii
greater than that of Neptune, and the masses to within a factor of 2, for planets with masses larger than or about equal
to the mass of Jupiter. Using a Fisher matrix analysis, we derive analytic estimates for the uncertainties in the velocity
of the planet and the acceleration of the star at the time of transit, which we then use to derive the uncertainties for the
planet mass, radius, period, semimajor axis, and orbital inclination. Finally, we explore the impact of orbital eccentric-
ity on the estimates of these quantities.

Subject headinggs: methods: analytical — planetary systems — planets and satellites: general
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1. INTRODUCTION

Planets that transit their stars offer us the opportunity to study
the physics of planetary atmospheres and interiors, which may
help constrain theories of planet formation. From the photomet-
ric light curve, we can measure the planetary radius and also the
orbital inclination, which when combined with radial velocity
(RV) observations, allows us to measure the mass and density
of the planet. Infrared observations of planets during secondary
eclipse can be used to measure the planet’s thermal spectrum
(Charbonneau et al. 2005; Deming et al. 2005), and spectroscopic
observations around the time of transit can constrain the compo-
sition of the planet’s atmosphere through transmission spectros-
copy (Charbonneau et al. 2002). In addition, optical observations
of the secondary eclipse can probe a planet’s albedo (Rowe et al.
2008). All of the known transiting planets are hot Jupiters or hot
Neptunes, which orbit so close to their parent stars that the stellar
flux plays a major role in heating these planets. In contrast, the
detection of transiting planets with longer periods (P > 1 yr) and
consequently lower equilibrium temperatures would allow us to
probe a completely different regime of stellar insolation, onemore
like that of Jupiter and Saturn whose energy budgets are domi-
nated by their internal heat.

Currently, it is not feasible to find long-period, transiting plan-
ets from the ground.While RV surveys have found�110 planets
with periodsk1 yr, it is unlikely that any of these transit their
parent star, given that for a solar-type host, the transit probability
is very small,}tr ’ 0:5%[P /(1 yr)]�2=3. Thus, the sample of long-
period planets detected by RV will need to at least double before
a transiting planet is expected. Given the long lead time neces-
sary to detect long-period planets with RVobservations, this is
unlikely to happen in the near future. Furthermore, the expected
transit times for long-period systems are relatively uncertain, which
makes the coordination and execution of photometric follow-up
observations difficult. Putting all this together, RVsurveys are clearly
an inefficient means to search for long-period, transiting planets.

Ground-based photometric transit surveys are similarly prob-
lematic. A long-period systemmust be monitored for a long time,
because typically, at least two transits must be observed in order

to measure the period of the system. Furthermore, if there are a
couple of days of bad weather at the wrong time, the transit event
will be missed entirely, rendering years of data worthless. Thus,
transit surveys for long-period planets require many years of
nearly uninterrupted observations. In addition, many thousands
of suitable stars must be monitored to find a single favorably in-
clined system.
Because of its long mission lifetime (L ¼ 3:5 yr), nearly con-

tinuous observations, and large number of target stars (N ’ 105),
the Kepler satellite (Borucki et al. 2004; Basri et al. 2005) has a
unique opportunity to discover long-period transiting systems.
Not only will Kepler observe multiple transits of planets with
periods up to the mission lifetime, but it is also likely to observe
single transits of planets with periods longer than the mission
lifetime. As the period of a system increases beyond L/2, the prob-
ability of observing more than one transit decreases until, for
periods longer than L, only one transit will ever be observed. For
periods longer than L, the probability of seeing a single transit
diminishes as P�5=3. Even with only a single-transit observation
from Kepler, these long-period planets are invaluable.
We show that planets with periods longer than the mission

lifetime will likely be detected and can be characterized using the
Kepler photometry and precise RV observations. Furthermore,
this technique can be applied to planets that will transit more than
once during the Kepler mission, so that targeted increases in the
time-sampling rate can bemade at the times of subsequent transits.
In x 2 we calculate the number of one- and two-transit systems

Kepler is expected to observe. We give a general overview of
how theKepler photometry and RV follow-up observations can
be combined to characterize a planet in x 3. We discuss in x 4
the expected uncertainties in the light-curve observables, and we
relate these to uncertainties in physical quantities, such as the
period, that can be derived from the transit light curve. Section 5
describes the expected uncertainties associated with the RV curve
and how they influence the uncertainty in the mass of the planet.
Section 6 discusses the potential impact of eccentricity on the
ability to characterize long-period planets. We summarize our
conclusions in x 7. Details of the derivations are reserved for an
appendix (Appendix A).
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2. EXPECTED NUMBER OF PLANETS

The number of single-transit events Kepler can expect to find
is the integral of the probability that a given system will be fa-
vorably inclined to produce a transit, multiplied by the probabil-
ity that a transit will occur during the mission, convolved with a
distribution of semimajor axes, and normalized by the expected
frequency of planets and the number of stars that Kepler will
observe,

Ntot ¼ N?

Z
}tr}L f (a)da: ð1Þ

Here, Ntot is the total number of transiting systems expected, N?

is the number of stars being monitored, }tr is the probability that
the system is favorably inclined to produce a transit (the transit
probability), }L is the probability that a transit will occur during
the mission, and f (a) is some distribution of the planet semimajor
axis a, normalized to the expected frequency of planets.

Assuming a circular orbit, the transit probability is simply

}tr ¼
R?

a
¼ 4�2

G

� �1=3
M�1=3

? R?P
�2=3; ð2Þ

where R? and M? are the radius and mass of the parent star, re-
spectively, and P is the period of the system.

We consider both the probability of observing exactly one tran-
sit, }L;1, and the probability of observing exactly two transits,
}L;2. These probabilities are

}L;1 ¼

2P

L
� 1;

L

2
� P � L;

L

P
; P � L;

8><
>: ð3Þ

}L;2 ¼

4P

L
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L

4
� P � L

2
;

2� 2P

L
;

L

2
� P � L:

8><
>: ð4Þ

Thus, there will be a range in periods from L/2 to L where it is
possible to get either one or two transits during the mission. If
we assume amission lifetime1 of L ¼ 3:5 yr and a solar-type star
(R? ¼ R�, M? ¼ M�), we can find the total probability (}tr}L)
of observing a planet that transits and exhibits exactly one or ex-
actly two transits as a function of period or semimajor axis. These
probability distributions as functions of a are shown in the mid-
dle panel of Figure 1.

For P � L, the total probability, }tot, of observing a single
transit is

}tot � }tr}L

¼ 0:002
R?

R�

� �
M?

M�

� ��1=3
P

3:5 yr

� ��5=3
L

3:5 yr

� �
: ð5Þ

Thus, the probability that the planet will transit and that a single
transit will occur during the mission is generally small for periods
at the mission lifetime, and beyond this is a strongly decreasing
function of the period, /P�5=3 or /a�5=2.

The observed distribution of semimajor axes for planets with
minimum masses mp sin i � 0:3MJup is shown in the top panel
of Figure 1, where mp is the mass of the planet, i is the orbital

1 Here and throughout this paper, we use the characteristics of the Kepler
mission provided by the Web site http://kepler.nasa.gov/.

Fig. 1.—Top: Observed distribution of semimajor axes for planets with mini-
mum massesmp sin i � 0:3 MJup. The shaded region indicates a � 100:5 AU �
3 AU, where we expect the sample to suffer from incompleteness. The dashed
line indicates our extrapolation of the distribution, found by assuming the con-
stant distribution in log a fromCumming et al. (2008).Middle: Total transit prob-
ability. The solid line shows the probability that a planet transits and exhibits a
single transit during the Keplermission lifetime. The dotted line shows the same
probability for two transits. Bottom: Expected number of one- and two-transit
events. The probability distribution has been convolved with the observed frac-
tion of planets andmultiplied by the number of starsKeplerwill observe (100,000)
to give the number of single-transit systems (solid line) and two-transit systems
(dotted line) that can be expected. The dashed line shows the convolution of the
single-transit probability distribution with the extrapolation to larger semimajor
axes.
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inclination, and the data are taken from the ‘‘Catalog of Nearby
Exoplanets’’ of Butler et al. (2006).2 Note that we have included
multiple-planet systems. We normalized the distribution by as-
suming that 8.5% of all stars have planets withmp sin i � 0:3MJup

and a � 3 AU (Cumming et al. 2008). We can extrapolate this
distribution to larger semimajor axes by observing that it is approx-
imately constant as a function of log a and adopting the value found
by Cumming et al. (2008), dN /d log a ¼ 4:3%. Using this extrap-
olation, we predict that 13.4% and 16.4% of stars have amp sin i �
0:3MJup planet within 10 and 20 AU, respectively, in agreement
with Cumming et al. (2008).

We find the number of planets expected forKepler by convolv-
ing this normalized distribution with the probability distribution
and multiplying by N? ¼ 100;000. We convolve the distribution
of semimajor axes with the total transit probability distribution by
weighting the probability of observing a transit for each mem-
ber of the bin to determine an overall probability for the bin. The
bottom panel of Figure 1 shows the resulting distribution of one-
and two-transit systems. Integrating this distribution over all semi-
major axes out to the limit of current RVobservations predicts
thatKeplerwill observe a total of 4.0 single-transit systems and
5.6 two-transit systems during the mission lifetime of L ¼ 3:5 yr.
If we include the extrapolation of the observed distribution to larger
semimajor axes, the integrated number of single-transit systems
increases to 5.7; the effect is modest because the probability of
observing a transit declines rapidly with increasing semimajor axis
(}tot / a�5=2).

Thus, Kepler is likely to detect at least handful of single-transit
events. It is important to bear in mind that this is a lower limit.
First, our estimate does not include planetswithmp sin iP0:3MJup,
primarily because RV surveys are substantially incomplete for low-
mass, long-period planets. As we show, Keplerwill be able to con-
strain the periods of planets with radii as small as that of Neptune
with the detection of a single transit. Indeed, microlensing surveys
indicate that cool, Neptune-mass planets are common (Beaulieu
et al. 2006; Gould et al. 2006). Second, Barnes (2007) and Burke
(2008) showed that a distribution in eccentricity increases the
probability that a planet will transit its parent star. Finally, if the
Kepler survey lifetime is extended, the number of detections of
long-period transiting planets will also increase.

One might assume that a single-transit event must simply be
discarded from the sample, because the event is not confirmed by
a second transit and the period cannot be constrained by the time
between successive transits. Although we do not expect to see
many of them, long-period transiting planets are precious, as the
information we could potentially gain by observing these systems
when they transit in the future would allow us to greatly enhance
our understanding of the physical properties of outer giant planets
and, in particular, would allow us to compare them directly to our
own solar system giants. Thus, these single transit events should
be saved, if at all possible.

3. CHARACTERIZING A PLANET

With a few basic assumptions,Kepler photometry of a transit-
ing planet can provide a period for the system that can be com-
bined with precise RV measurements to estimate a mass for the
planet. Here we briefly sketch the basics of how these properties
can be estimated andwhat their uncertainties are, and we provide
details in the following sections. We assume the planet is much
less massive than the star,mpTM?, and circular orbits. We con-
sider the impact of eccentricity on our conclusions in x 6.

Assuming no limb darkening and assuming the out-of-transit
flux is known perfectly,3 a transit can be characterized by four
observables, namely, the fractional depth of the transit �, the full-
width at half-maximum of the transit T, the ingress/egress du-
ration � , and the time of the center of transit tc. These can be
combined to estimate the instantaneous velocity of the planet at
the time of transit,

vtr; p ¼ 2R?

ffiffiffi
�

p

T�

 !1=2
: ð6Þ

For a circular orbit, vtr; p can be used to estimate the period of the
planet

P ¼ 2�a

vtr; p
¼ G�2

3
�?

T�ffiffiffi
�

p
� �3=2

; ð7Þ

where we have employed Kepler’s third law assuming that the
planet’s mass is much smaller than the star’s mass. Thus, if the
stellar density �? is known, then the planet’s period can be esti-
mated from the photometry of a single transit (Seager &Mallén-
Ornelas 2003). Note that there is a degeneracy between �? and P,
so with a single transit �? must be determined by other means in
order to derive an estimate of P; �? can be estimated via spectros-
copy combinedwith theoretical isochrones, or asteroseismology.
The total uncertainty in the period is the quadrature sum of the
contribution from the estimate of �? and the contribution from the
Kepler photometry (i.e., the uncertainty at fixed �?),

�P

P

� �2
tot

¼ ��?

�?

� �2
þ �P

P

� �2
Kep

: ð8Þ

The contribution from Kepler is dominated by the uncertainty in
the ingress/egress time � ,

�P

P

� �2
Kep

� 9

4

��

�

� �2
� Q�2 27T

2�

� �
; ð9Þ

where we have assumed �TT and that the number of points
taken out of transit is much larger than the number taken during
the transit (and thus, the out-of-transit flux is known essentially
perfectly). Here, Q is approximately equal to the total signal-to-
noise ratio of the transit,

Q � (�phT )1=2�; ð10Þ

where �ph is the photon collection rate. For Kepler we assume

�ph ¼ 7:8 ; 108 hr�1 10�0:4(V�12); ð11Þ

and thus,Keplerwill detect a single transit with a signal-to-noise
ratio of

Q ’ 1300
R?

R�

� ��3=2
M?

M�

� ��1=6

;
rp

RJup

� �2
P

3:5 yr

� �1=6
10�0:2(V�12); ð12Þ

2 The catalog is available from http://exoplanets.org /planets.shtml. It was ac-
cessed 2008 May 9.

3 Aswe show, including limb darkening and the uncertainty in the out-of-transit
flux does not change the following discussion qualitatively.
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where rp is the radius of the planet. For a Neptune-size planet
with these fiducial parameters, Q ’ 150.

Kepler’s contribution to the uncertainty in the period is

�P

P

� �2
Kep

¼ 7:7 ; 10�5100:4(V�12) R?

R�

� �4

;
M?

M�

� �1=3
RJup

rp

� �5
3:5 yr

P

� �1=3
; ð13Þ

where we have assumed the impact parameter b ¼ 0. Because of
the strong scaling with rp and relatively weak scaling with P,
there are essentially two regimes. For rpkRNep, the uncertainty
in P is dominated by uncertainties in the estimate of �?, which is
expected to beO(10%), whereas for rp < RNep, it is very difficult
to estimate the period due to the uncertainty in � from theKepler
photometry.

Once the period is known from the photometry, the mass of the
planet, mp, can be measured with RVobservations. For a circular
orbit and for observations spread out over a time that is short
compared to P, the RVof the star can be expanded about the time
of transit, and so approximated by the velocity at the time of tran-
sit v0, plus a constant acceleration A?,

v? � v0 � A?(t � tc); ð14Þ

where A? ¼ 2�K? /P and

K? ¼
2�G

PM 2
?

� �1=3
mp sin i ð15Þ

is the stellar RV semiamplitude. Thus,

mp ¼ A?
M 2

?

G

� �1=3
P

2�

� �4=3
¼ 1

16G
g2
?A?

T�ffiffiffi
�

p
� �2

; ð16Þ

where g? is the surface gravity of the star, and we have assumed
sin i ¼ 1.

The uncertainty in the planet mass has contributions from three
distinct sources: the uncertainty in g?, which can be estimated
from spectroscopy; the uncertainty in A?, which is derived from
RVobservations after the transit; and the uncertainties in T, � , and
�, which are derived from Kepler photometry. In fact, the uncer-
tainty in � dominates over the uncertainties in Tand �. Therefore,
we may write

�mp

mp

� �2
¼ 4

�g?

g?

� �2
þ �A?

A?

� �2
þ 4

��

�

� �2
: ð17Þ

For reasonable assumptions and long-period planets (Pk1 yr),
we find that the uncertainty in A? dominates over the uncertainty
in � .

Assuming that N equally spaced RV measurements with pre-
cision �RV are taken over a time period Ttot after the transit, the
uncertainty in A? is

�A?

A?

� �2
’ 12�2

RV

A2
?T

2
totN

;

’ 0:85
�RV

10 m s�1

� �2
3 months

Ttot

� �2

;
20

N

� �
MJup

mp

� �2
M?

M�

� �4=3
P

3:5 yr

� �8=3
; ð18Þ

wherewe have assumedN 3 1. Thus, RVobservations combined
with Kepler photometry can confirm the planetary nature of a
Jupiter-sized planet in a relatively short time span. An accurate
(P10%) measurement of the mass for a Jupiter-mass planet, or
even a rough characterization of the mass for a Neptune-mass
planet, will require either moremeasurements or measurements
with substantially higher RV precision. Of course, additional
RVobservations over a time span comparable to P will further
constrain the mass and period. In xx 4 and 5 we derive the above
expressions for the uncertainty in the mass and the period of the
planet using a Fisher information analysis.

4. ESTIMATING THE UNCERTAINTY IN P

4.1. Uncertainties in the Light-Curve Observables

In the absence of significant limb darkening, a transit light curve
can be approximated by a trapezoid that is described by the five
parameters tc, T, � , �, and F0, where F0 is the out-of-transit flux.
Figure 2 shows this simple trapezoidal model and labels the rel-
evant parameters. Mathematically, the flux F as a function of
time t is given by

F(t) ¼

F0; t < t1;

F0 � � t � tc � T=2� �=2ð Þ½ �=�; t1 � t � t2;

F0 � �; t2 < t < t3;

F0 � � 1� t � tc � T=2� �=2ð Þ½ �=�f g; t3 � t � t4;

F0; t4 < t;

8>>>>>><
>>>>>>:

ð19Þ

where t1Yt4 are the points of contact. We also define D to be the
total duration of the observations. This model is fully differen-
tiable and can be used with the Fisher matrix formalism to derive
exact expressions for the uncertainties in the parameters tc, T, � ,
�, and F0. We note that the definition for � we use here differs
slightly from the definition we adopted in x 3. Here, � is the depth
of the transit (e.g., in units of flux), rather than the fractional depth.
These two definitions differ by a factor of F0 such that �frac ¼
�Cux /F0. However, when D3T (as will be the case for Kepler),
the uncertainty inF0 is negligible, and so onemay defineF0 ¼ 1,
thus making these two parameterizations equivalent.

Fig. 2.—Simplified model of a transit light curve showing the points of con-
tact (t1; t2; t3; t4), the transit depth (� ), the ingress/egress time (�), the FWHM
duration of the transit (T ), the total duration of observations (D), and the time of
the transit center (tc).
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Figure 3 compares this simple model with the exact model
computed using the formalism of Mandel & Agol (2002), in this
case for a transit of the Sun by Neptune with a 3.5 yr period and
an impact parameter of b ¼ 0:2.We see that the trapezoidalmodel
provides an excellent approximation to the exact light curve,
and as we show, the analytic parameter uncertainties are quite ac-
curate. We also show the case of significant limb darkening as
expected for a Sun-like star observed in the R band (similar to the
Kepler bandpass). In this case, the match is considerably poorer,
but nevertheless we show the analytic parameter uncertainties
we derive assuming the simple trapezoidal model still provides
useful estimates (see Carter et al. 2008 for a more thorough
discussion).

We derive exact expressions for the uncertainties in tc , T, � , �,
and F0 by applying the Fisher matrix formalism to the simple
light-curve model (a detailed explanation of the Fisher matrix is
given byGould 2003). The full details of the derivation are given
in Appendix A. In the case of the long-period transiting planets
that will be observed by Kepler, we can simplify the full expres-
sions bymaking a couple of assumptions.We assume that the flux
out of transit, F0, is known to infinite precision and that �T
TTD. The uncertainties in the remaining parameters are

�tc ¼ Q�1

ffiffiffiffiffiffiffi
T�

2

r
; ð20Þ

�T

T
¼ Q�1

ffiffiffiffiffiffi
2�

T

r
; ð21Þ

��

�
¼ Q�1

ffiffiffiffiffiffiffi
6T

�

r
; ð22Þ

��

�
¼ Q�1: ð23Þ

We tested the accuracy of these expressions using Monte
Carlo simulations. We generate 1000 light curves for a given set
of orbital parameters. We assume that the planet orbits a solar-
type star in a circular orbit with an impact parameter of 0.2. We
repeat the analysis for four of the solar system planets: Jupiter,
Saturn, Neptune, and Earth. We assume the expected photomet-
ric precision for Kepler for a stellar apparent magnitude of V ¼
12 (a representative magnitude for Kepler’s stellar sample), a
sampling rate of one per 30 minutes, and a total duration for the
observations of D ¼ 200 hr. Then we fit for the parameters tc, T,
� , �, and F0 using a downhill simplex method. The uncertainty
in each parameter is taken to be the standard deviation in the dis-
tribution of the fits for that parameter. A comparison of the an-
alytic expressions and the Monte Carlo simulations is shown in
Figure 4, where we have plotted the uncertainties as a function of
period for a planet with radius 1RNep crossing a star with radius
1 R� at an impact parameter b ¼ 0:2. We find that the Fisher
matrix approximation breaks down as the number of points dur-
ing ingress/egress becomes small.
We also considered expected uncertainties for the exact uni-

form source and limb-darkenedmodels for the transit light curve.
Mandel & Agol (2002) give the full solution for a transit involv-
ing two spherical bodies and provide code for calculating the
transit light curve. They also include a limb-darkened solution.
These models may be parameterized by the same observables
described in our simplified model. The full and limb-darkened
light curves are plotted in Figure 3 as the dotted and dashed lines,
respectively. We use the limb-darkening coefficients from Claret
(2000) closest to observations of theSun (TeA ¼ 5750 K, log (g?) ¼
4:5 cm s�1, ½M/H� ¼ 0:0) in the R band. We apply the Fisher

Fig. 3.—Three different models of a transit light curve. The solid line shows
the simplified trapezoidal model, the dotted line (barely visible) shows the ex-
act, uniform-source light curve, and the dashed line includes the effects of limb
darkening. The exact uniform-source and limb-darkened light curves are cal-
culated using Mandel & Agol (2002). These light curves were generated for a
Neptune analog orbiting a solar analog at a period of P ¼ 3:5 yr and with an im-
pact parameter b ¼ 0:2. Typical error bars for Kepler assuming V ¼ 12:0 and
30 minute sampling (solid line) or 20 minute sampling (dotted line) are indicated.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 4.—Uncertainty in observables as a function of period. The uncertain-
ties in tc, T, � , and � are plotted vs. period for Neptune orbiting the Sun with an
impact parameter of 0.2. The different line styles indicate the trapezoidal transit
model (solid lines), the full solution (dotted lines), and a model including the ef-
fects of limb darkening (dashed lines). Monte Carlo simulations of the trape-
zoidal model using 30 minute sampling are shown as crosses. The gray crosses
show simulations for 20 minute sampling. The dotted line in the bottom panel is
not visible because it is nearly identical to the solid line. The vertical dotted lines
mark where the ingress/egress duration � is equal to the sampling rate dt, as well
as where � ¼ 2dt for 30 minute sampling.
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matrix method to numerical derivatives of these model light
curves to compare the uncertainties for the full and limb-darkened
solutions with the analytic uncertainties for the trapezoidal model.
A comparison of the uncertainties from the different models
is shown in Figure 4. We find that the simplified model is a
good approximation for the exact, uniform-source transit model.
While the comparison is less favorable with the limb-darkening
model, the uncertainties do not differ by more than a factor of a
few.

We also compared how the uncertainties in the transit observ-
ables variedwith impact parameter b for the threemodels, because
varying b will affect the relative sizes of T and � . These com-
parisons are shown in Figure 5 for Neptune in a circular orbit
around the Sun with a 3.5 yr period. As can be seen from the
figure, variations in b have little impact on the uncertainties in
the observables for bP 0:8.

4.2. Uncertainties in Quantities Derived from the Light Curve

Assuming the planet is in a circular orbit and assuming the
stellar density, �? , is estimated from independent information,
Seager & Mallén-Ornelas (2003) demonstrated that the planet
period, P, and impact parameter, b, can be derived from a single
observed transit, with sufficiently precise photometry. In fact,
provided independent estimates ofM? and R? are available, then
it is also possible to derive the planet radius, rp, semimajor axis,
a, and instantaneous velocity at the time of transit, vtr; p.

The uncertainties in these physical parameters can be calcu-
lated through standard error propagation. Equations for these quan-

tities and their uncertainties are given in equations (24)Y(28) (note
thatwe calculate b2 instead of b, because numericalmethods have
difficulty when T

ffiffiffi
�

p
/� � 1). In each case below, the second

approximate uncertainty equation is calculated by substituting
the variances and covariances of the observables � , T , and � and
simplifying under the assumption that �TTTD,

rp ¼ R?

ffiffiffi
�

p
;

�2
rp
¼ r 2p

1

R?
�2
R?
þ 1

4� 2
�2
�

� �

’ r 2p
1

R?
�2
R?
þ 1

4
Q�2

� �
; ð24Þ

b2 ¼ 1� T
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p

�
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b 2 ¼

�
�

� 2
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�2
�

� 2T�

� 3
�2
T� þ
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� 2
�2
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�2
��

�

’ T�Q�2 6T 2
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� �
; ð25Þ
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vtr; p ¼ 2R?
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; ð27Þ
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: ð28Þ

Of course, the quantities R?, g?, and �? and their uncertainties
must be estimated from some other external source of informa-
tion, such as spectroscopy or theoretical isochrones. We can gen-
erally expect that the fractional uncertainties on these quantities
will be of order 10%. For long-period (PkL ¼ 3:5 yr), Jupiter-
sized planets, Q31, and thus the variances and covariances of

Fig. 5.—Uncertainty in observables as a function of impact parameter. The
uncertainties in tc, T, � , and � are plotted vs. impact parameter for Neptune or-
biting the Sun with a period of 3.5 yr. The line styles are the same as for Fig. 4.
As in Fig. 4, the dotted line in the bottom panel is not visible because it is nearly
identical to the solid line.
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the transit observables will be small in comparison to the ex-
pected uncertainties on R?, �?, and g?.

The fractional uncertainties in these derived parameters are
plotted in Figure 6.We compared the analytic uncertainties given
in equations (24)Y(28) to the Monte Carlo simulations described
in x 4.1. The fractional uncertainty in each parameter from the
Monte Carlo simulations is one-half the range of themiddle 68%
of the data divided by the median. Notice that as � decreases from
2dt to dt, the simulations become increasingly disparate from the
theoretical expectations; �rp /rp does not show this behavior be-
cause it does not depend on � . In this regime, as � decreases, it
becomes increasingly probable that only one point will be taken
during ingress, leaving � relatively unconstrained and increas-
ing its uncertainty and the uncertainty of quantities that depend
on it.

We now consider in detail the uncertainty in the estimated pe-
riod. Given that Q / T 1=2�, we have that Q�2(T /�) / (� 2�)�1.
Since � / rp P1=3 and � / r 2p , the contribution to the uncertainty
in the period due to the Kepler photometry is a much stronger
function of the planet’s radius than its period, Q�2(27T /2�) /
r�5
p P�1=3. As a result, for a fixed stellar radius R?, the ability to
accurately estimate P depends almost entirely on rp. Furthermore,
because the scaling with rp is so strong, there are essentially two
distinct regimes; for large rp, the uncertainty inP is dominated by
the uncertainty in �?, whereas for small rp, the period cannot be
estimated. The boundary between these two regimes is where the
contribution to the uncertainty in the period from �? is equal to
the contribution from the Kepler photometry, i.e., where the two

terms in the square brackets in equation (28) are equal. This oc-
curs at a radius of

rp; crit ’ RNep

"
100:4(V�12) ��?=�?

0:1

� ��2

;
R?

R�

� �4
M?

M�

� �1=3
3:5 yr

P

� �1=3#1=5
; ð29Þ

assuming b ¼ 0. Note that rp; crit is a weak or extremely weak
function of all of the parameters except R?.
Figure 7 illustrates this point by showing contours of constant

uncertainty in the period as a function of the radius and period of
the planet. The calculations are for systemswithR? ¼ R�, b ¼ 0:2,
and V ¼ 12:0. This figure shows that for planets larger than the
radius of Neptune, the uncertainty in the period will be dominated
by the uncertainty in the inferred stellar density, whereas for plan-
ets much smaller than Neptune, an accurate estimate of the pe-
riod from the Kepler light curve will be impossible.
As shown above, the uncertainty in P is dominated by the un-

certainty in �? and � . Our ability to determine � , and its uncer-
tainty, depends both on its length and how many points we have
during the ingress or egress. The length of � depends on vtr; p (which
is a proxy for P in the circular case), b, and rp. These properties

Fig. 6.—Uncertainty in derived quantities as a function of period. The uncer-
tainties in rp, a,P, vtr;p, and b

2 are plotted vs. period for Neptune orbiting the Sun
with an impact parameter of 0.2. The line styles are the same as for Fig. 4. The
vertical dotted lines mark where the ingress/egress duration � is equal to the
sampling rate dt, as well as where � ¼ 2dt for 30 minute sampling.

Fig. 7.—Contours of constant fractional uncertainty in the period as a func-
tion of the period and the planet radius. The model is for a solar-type star with a
Vmagnitude of 12.0 and an impact parameter for the system of 0.2. The dashed
line indicates how the fractional uncertainty in P changes with V magnitude; it
shows the 0.20 contour for V ¼ 14:0 and b ¼ 0:2. The diagonal black dotted
line represents the boundary below which the assumptions of Fisher matrix
break down (the ingress/egress time � is roughly equal to the sampling rate of
1 per 30 minutes). Thus, the contours below this boundary are shown as dash-
dotted lines. The region between � ¼ 2dt and dt is shaded to indicate the increas-
ing probability of obtaining only one point during ingress or egress leading to an
uncertainty in P that is larger than theoretical expectations. The diagonal gray
dotted line indicates the � ¼ dt boundary for 20 minute sampling. The vertical
dotted line shows the mission lifetime of Kepler (L ¼ 3:5 yr). Solar system
planets are indicated.
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are intrinsic to the system, butmay be derived from the observables.
We can explore how the contours shown in Figure 7 vary with
impact parameter. Figure 5 shows that a system with a larger
impact parameter will have a smaller fractional uncertainty in
� . Thus, a system with a larger impact parameter would have
a smaller fractional uncertainty in P at fixed period and planet
radius.

The other effect that influences the contours is the sampling of
� . As the number of points taken during the ingress/egress be-
comes small, the fractional uncertainty in � , and hence in P, in-
creases. In particular, if only one point is taken during the ingress,
then the duration is relatively unconstrained. The probability of
taking only one point during the ingress increases linearly from 0
to 1 as � decreases from 2dt to dt. In Figure 6, the Monte Carlo
simulations for the fractional uncertainty in P diverge from the
simplemodel over this range.We indicate this region by the shaded
portion of Figure 7. Where � ¼ dt, the fractional uncertainty in
P can be several times that predicted by the theoretical calcula-
tions, but these uncertainties converge as the shading gets lighter
toward � ¼ 2dt. Below the line where � ¼ dt, the uncertainty in
� increases rapidly, but fortunately, in much of this regimeKepler
will observe multiple transits, and this analysis will be unneces-
sary. As shown in the figure, a faster sampling rate, such as 1 per
20minutes, significantly expands the parameter space over which
our theoretical uncertainties are valid.

5. ESTIMATING THE UNCERTAINTY IN mp

The mass of the planet comes from sampling the stellar RV
curve soon after the transit is observed. Near the time of transit
we can expand the stellar RV,

v? ¼ v0 � K? sin
2�

P
(t � tc)

� �
� v0 � A?(t � tc); ð30Þ

where v0 is the systemic velocity, K? is the stellar RV semi-
amplitude, and A? � 2�K? /P is the stellar acceleration. Because
the planet is known to transit and has a long period, we assume
sin i ¼ 1. A Fisher matrix analysis of the linear form of equa-
tion (30) gives the estimated uncertainty in A? to be

�2
A?

’ 12�2
RV

T 2
totN

; ð31Þ

where �RV is the RV precision, Ttot is the total time span of the
RV observations, and N is the number of observations, and we
have assumed N 31 and that the observations are evenly spaced
in time. The details of this derivation are given in Appendix A.

Equations for the mass of the planet and the uncertainty are

mp ¼
1

16G
g2
?A?

T�ffiffiffi
�

p
� �2

;

�2
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¼ m2
p

�
4
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T 2
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T� �

4

T�
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��
�2
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�
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p

4
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�2
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þ 1

A2
?

�2
A?

þ Q�2 24T

�

� �� �
: ð32Þ

The approximate expression for the uncertainty in the mass is
taken in the limit �TTTD. Furthermore, theQ�2 (24T /� ) term
can be neglected in most cases, because as we showed for the
corresponding term in uncertainty in the period, it will be very
small for planets with radii larger than that of Neptune. The scal-
ing for the (�A?

/A? )
2 term is given in equation (18).

Contours of constant fractional uncertainty in the mass of the
planet are shown in Figure 8 as a function of P andmp, assuming
N ¼ 20 RVmeasurements are taken over Ttot ¼ 3 months with a
precision �RV ¼ 10 m s�1. It shows that the planet mass can be
estimated to within a factor of 2 over this time period, thus es-
tablishing the planetary nature of the transiting object. By dou-
bling the length of observations, one can put stronger constraints
on the mass of the planet.

There are two points to bear in mind when applying this esti-
mate for the uncertainty in the mass of the planet. First, for rpP
RNep, theQ

�2(24T /�) term is no longer small. The second consid-
eration is that as time progresses away from the time of transit,
the straight line approximation to the RV curve will break down.
In that case, the period will begin to be constrained by the RV
curve itself, and the uncertainties should be calculated from a
Fisher matrix analysis of the full expression for the RV curve
with three parameters, v0, K?, and P.

6. ECCENTRICITY

The results presented in the previous sections assumed cir-
cular orbits. Given that the average eccentricity e of planets with
P � 1 yr is e ’ 0:3, this is not necessarily a good assumption. In
this section we assess the effects of nonzero eccentricities on the
ability to characterize single-transit events detected by Kepler.
We note that our discussion has some commonality with the study
of Ford et al. (2008), who discuss the possibility of characterizing
the orbital eccentricities of transiting planets with photometric

Fig. 8.—Contours of constant uncertainty inmp as a function of mp andP. The
solid lines show the result for 20 RV measurements with precision of 10 m s�1

taken over a period of 3 months after the transit. The dashed line shows the con-
tour for �mp

/mp ¼ 0:50 for 40 observations taken over 6 months. The dotted line
indicates the mission lifetime of 3.5 yr. The positions of Jupiter and Saturn are
indicated.
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observations. However, our study addresses this topic from a very
different perspective.

In x 3 we demonstrated that, under the assumption that e ¼ 0,
the planet period P and mass mp can be inferred from two ob-
servables: the velocity of the planet at the time of transit vtr and
the projected acceleration of the star A?. In the case of a non-
zero eccentricity, there are two additional unknown parameters:
the eccentricity e and the argument of periastron of the planet
!p. Thus, with only two observables (vtr and A?) and four un-
knowns (P, mp, e, and !p), it is not possible to obtain a unique
solution.

Although a unique solution to the planet parameters does not
exist using the observable parameters alone, it may nevertheless
be possible to obtain an interesting constraint on P and/or mp by
adopting reasonable priors on e and !p. From the transit observ-
ables, one can estimate the velocity of the planet at the time of
transit (eq. [6]). In the case of e 6¼ 0, this is given by

vtr; p ¼
2�a

P

1þ e sin !p

(1� e2)1=2
; ð33Þ

where here and throughout this section we assume sin i ¼ 1.
Solving for P,

P ¼ 2�GM?

v3tr; p

1þ e sin !p

(1� e2)1=2

� � 3
: ð34Þ

For a fixed value of e, the inferred period relative to the assump-
tion of a circular orbit has extremes due to the unknown value of
!p of

�P

P

� �
min=max

¼ 1þ e

1� e

� �	3=2

: ð35Þ

Taking a typical value for the eccentricity of e ¼ 0:3, this gives a
range of inferred periods of 0.4Y2.5 relative to the assumption of
a circular orbit. In fact, because the probability that a planet with
a given a transits its parent star depends on e and!p (Barnes 2007;
Burke 2008), a proper Bayesian estimate, accounting for these
selection effects, might reduce the range of inferred values for
P significantly.

What can be learned from RVobservations immediately after
the transit? Expanding the stellar projected velocity around the
time of transit, we can write

v? ¼ v0 þ eK
 cos !p � A?(t � tc)þ
1

2
J?(t � tc)

2: ð36Þ

The projected acceleration of the star at the time of transit is

A? ¼
Gmp

a2

1þ e sin !p

1� e2

� �2
: ð37Þ

This can be combined with vtr; p to derive the mass of the planet,

mp ¼
GM 2

?

v4tr; p
A?(1þ e sin !p)

2: ð38Þ

Thus, for a fixed eccentricity, the inferred mass relative to the
assumption of a circular orbit has extremes of

�mp

mp

� �
min=max

¼ (1	 e) 2; ð39Þ

which for e ¼ 0:3 yields a range of 0.5Y1.7, which is generally
smaller than the contribution to the uncertainty in mp due to the
measurement uncertainty inA? for our fiducial case ofmp ¼ MJup

and P ¼ 3:5 yr (see eq. [18]).
Wemay also consider what can be learned if it is possiblemea-

sure the curvature of the stellar RV variations immediately after
transit. The projected stellar jerk is given by

J? ¼
4�Gmp

Pa2

(1þ e sin !p)
3e cos !p

(1� e2)7=2
: ð40Þ

This can be combined with vtr and A? to provide an independent
constraint on a combination of the eccentricity and argument of
periastron,

e cos !p

(1þ e sin !p)
2
¼ GM? J?

2A?v
3
tr

: ð41Þ

Unfortunately, it will be quite difficult to measure J?. Using the
same Fisher formalism as we used to estimate the uncertainty in
A? (Appendix A), assuming N evenly spaced RV measurements
with precision �RV, taken over time span Ttot after the transit, the
uncertainty in J? is

�2
J?
’ 720�2

RV

NT 4
tot

; ð42Þ

where we have assumed N 31. For our fiducial parameters, the
fractional uncertainty in J? is

�J?

J?

� �2
’ 710

�RV

10 m s�1

� �2
3 months

Ttot

� �4
20

N

� �

;
MJup

mp

� �2
M?

M�

� �4=3
P

3:5 yr

� �10=3
e cos !p

0:3

� ��2

; ð43Þ

wherewehave approximated e cos !p(1þe sin !p)
3(1� e2)�7=2�

e cos !p. We conclude that, in order to obtain interesting con-
straints on the eccentricity of long-period planets detected by
Kepler, higher precision RV measurements taken over a base-
line comparable to �P will be needed.

7. SUMMARY

The discovery of long-period transiting planets along with
subsequent follow-up observations would greatly enhance our
understanding of the physics of planetary atmospheres and in-
teriors. Such planets would allow us to gather constraints in a
regime of parameter space currently only occupied by our own
giant planets, namely, planets whose energy budgets are domi-
nated by their residual internal heat, rather than by stellar insola-
tion. These constraints, in turn, might provide new insights into
planet formation. In this paper we demonstrated that it will be pos-
sible to detect and characterize such long-period planets using
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observations of single transits by the Kepler satellite, combined
with precise RV measurements taken immediately after the tran-
sit. Indeed, these results can be generalized to any transiting planet
survey using the scaling relations we provide, and it may be par-
ticularly interesting to apply them to theCOROT mission (Baglin
2003).

We calculated that Kepler will see a few long-period, single-
transit events and showed that, for circular orbits, the period of
the system can be derived from the Kepler light curve of a single
event.We derived an expression for the uncertainty in this period
and showed that it is dominated by the uncertainty in the stellar
density derived from spectroscopy (which we assume is �10%)
for planets with radii larger than the radius of Neptune, rather
than being dependent on the properties of the transit itself. This
method can also be applied to planets that Kepler will observe
more than once, so that the second time a planet is expected to
transit, Kepler can make a selective improvement to its time
sampling to better characterize the transit.

We have also shown how the mass of the planet can be con-
strained by acquiring precise (�10 m s�1) RV measurements
beginning shortly after the transit occurs. We have shown that
20measurements over 3 months can measure the mass of a Jupiter-
sized object to within a factor of a few and that extending those
observations to 40 measurements over 6 months significantly re-
duces the uncertainty in the mass. Knowing the mass to within a
factor of a few in such a short time can distinguish between brown

dwarfs and planets rapidly and allow us to maximize our use of
RV resources.

We explored the effect of eccentricity on the ability to estimate
the planet mass and period. Allowing for a nonzero eccentricity
adds two additional parameters, and as a result, it is not possible
to obtain a unique solution for the planet mass, period, eccentric-
ity, and argument of periastron. However, by adopting a reason-
able prior on the eccentricity of the planet, the period andmass of
the planet can still be estimated to within a factor of a few. De-
tailed characterization of the planet properties will require pre-
cision RV measurements obtained over a duration comparable
to the period of the planet.

Thus, in the interest of ‘‘getting the most for your money,’’ we
have shown that the sensitivity of Kepler extends to planets with
periods beyond its nominal mission lifetime. With the launch of
the Kepler satellite, we are poised to discover and characterize
several long-period transiting systems, provided that we are pre-
pared to look for them.

We are grateful to Josh Carter, Jason Eastman, Eric Ford,
Andy Gould, Matt Holman, Yoram Lithwick, Josh Winn, and
Andrew Youdin for helpful discussions. We thank the referee
Ron Gilliland for constructive comments. J. C. Y. is supported
by a Distinguished University Fellowship from The Ohio State
University.

APPENDIX A

DETAILED DERIVATIONS

A1. DERIVATION OF THE UNCERTAINTIES IN THE LIGHT-CURVE OBSERVABLES

The Fisher matrix formalism is a simple way to estimate the uncertainties in the parameters, a, of a model F(x), that is being fit to a
series of measurements xk with measurement uncertainties �k . The covariance of �i with�j is given by the element cij of the covariance
matrix c, where c ¼ b�1 and the entries of b are given by

bij �
XNd

k¼1

@F(xk)

@�i

@F(xk )

@�j

1

�2
k

; ðA1Þ

where Nd is the number of data points. In the limit of infinite sampling (Nd ! 1) and fixed precision, �k ¼ �,

bij !
1

D�2

Z D

0

@F(x)

@�i

@F(x)

@�j

dx; ðA2Þ

where the interval of interest is given by x ¼ ½0;D� and, in this case, D is the total duration of observations. Thus, if the partial deriva-
tives of a model with respect to its parameters are known, then the uncertainties in those parameters can be estimated (Gould 2003).

For the simplified transit model described in x 4.1, the observable parameters are a ¼ (tc; T ; �; �;F0). For a sampling rate �, the b
matrix is

b ¼ �

�2

2� 2

�
0 0 0 0

0
� 2

2�
0

�

2
��

0 0
� 2

6�
� �

6
0

0
�

2
� �

6
T � �

3
�T

0 �� 0 �T D

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ðA3Þ
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The covariance matrix is

c ¼ b�1 ¼ �2

�T� 2

� �

�T

2
0 0 0 0

0 � �T D� � 2DT þ 2T 2ð Þ
touttf

� � 2T (D� 2T )

touttf
� �T�(D� 2T )

touttf

�T�

tout

0 � � 2T (D� 2T )

touttf
� �T 5D� � 4� 2 � 6DT þ 6T 2ð Þ

touttf

�T�(D� 2�)

touttf

�T�

tout

0 � �T�(D� 2T )

touttf

�T�(D� 2�)

touttf

T� 2(D� 2�)

touttf

T� 2
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0
�T�

tout

�T�

tout

T� 2
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T� 2
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0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

; ðA4Þ

where tf � T � � is the duration of the flat part of the eclipse and tout � D� � � T is the time spent out of eclipse. Thus, the uncertainty
on the ingress/egress time, �� , is given by

�� ¼
ffiffiffiffiffiffi
c33

p ¼ �ffiffiffi
�

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 5D� � 4� 2 � 6DT þ 6T 2ð Þ

� 2touttf

s
: ðA5Þ

Define Q �
ffiffiffiffiffiffi
�T

p
(� /�). Then, in the limit �TT , the uncertainties in the observable parameters are given by

�tc ¼ Q�1

ffiffiffiffiffiffiffi
T�

2

r
; ðA6Þ

�T

T
¼ Q�1

ffiffiffiffiffiffi
2�

T

r
; ðA7Þ

��

�
¼ Q�1

ffiffiffiffiffiffiffi
6T

�

r
; ðA8Þ

��

�
¼ Q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� T=Dð Þ

s
; ðA9Þ

�F0

F0

¼ 0; since in general; �TF0: ðA10Þ

Note thatQ is approximately the total signal-to-noise ratio of the transit. Assuming that the photometric uncertainties are limited by pho-
ton noise, we have that � /�2 ¼ �ph, where �ph is the photon collection rate. This recovers the expression for Q in x 3. A more detailed
analysis of the variances and covariances of the transit observables can be found in Carter et al. (2008).

A2. DERIVATION OF THE UNCERTAINTIES FROM THE RADIAL VELOCITY CURVE

A similar analysis can be done for the RV curve, except that we use equation (A1) and consider discrete observations. The RV for a
circular orbit is

v? ¼ v0 � K? sin
2�

P
(t � tc)

� �
: ðA11Þ

Expanding about tc gives

v? ¼ v0 � K?
2�

P
(t � tc) ¼ v0 � A?(t � tc); ðA12Þ

where A? is the stellar projected acceleration at the time of the transit,

A? ¼
2�K?

P
: ðA13Þ

Consider N measurements of v?, each with precision �RV, taken at times tk . Fitting these measurements to the linear model in equa-
tion (A12), we can estimate the uncertainties in the parameters v0 and A? using the Fisher matrix formalism,

b ¼ 1

�2

N �
PN

k¼1 (tk � tc)

�
PN

k¼1 (tk � tc)
PN

k¼1 (tk � tc)
2

" #
: ðA14Þ
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The covariance matrix is the inverse of b,

c ¼ �2

PN
k¼1 (tk � tc)

2
h i

�
PN

k¼1 (tk � tc)
h i2

PN
k¼1 (tk � tc)

2
PN

k¼1 (tk � tc)PN
k¼1 (tk � tc) N

" #
: ðA15Þ

If the points are evenly spaced by �t,

XN
k¼1

(tk � tc) ¼
XN
k¼1

k�t ¼ N (N þ 1)

2
�t; ðA16Þ

XN
k¼1

(tk � tc)
2 ¼

XN
k¼1

(k�t) 2 ¼ N (N þ 1)(2N þ 1)

6
�t 2; ðA17Þ

and thus,

c ¼ �2

N (N � 1)�t 2

2(2N þ 1)�t 2 6�t

6�t
12

(N þ 1)

2
4

3
5: ðA18Þ

The uncertainty in the projected stellar acceleration is

�2
A?

¼ �2
RV

N (N � 1)(N þ 1)(�t)2
: ðA19Þ

In the limit as N ! 1, the covariance matrix reduces to

c ¼ �2
RV

�t 2

4�t 2

N

6�t

N 2

6�t

N 2

12

N 3

2
664

3
775: ðA20Þ

Defining the total length of observations as Ttot � N�t, we can also write

c ¼ �2
RV

T 2
tot

4
Ttot

N
6
Ttot

N

6
Ttot

N

12

N

2
64

3
75; ðA21Þ

and so the uncertainty A? in the limit of N ! 1 becomes

�2
A?

¼ 12�2
RV

T 2
totN

: ðA22Þ
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