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ABSTRACT

We present the results of a deep (15 � r � 23), 20 night survey for transiting planets in the intermediate-age open
cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5 m MMT. We do not detect
any transiting planets among the ∼1450 observed cluster members. We do, however, identify a ∼1RJ candidate
planet transiting a ∼0.8 M� Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag)
and has an expected velocity semiamplitude of K∼220 m s−1 (M/MJ ). We conduct Monte Carlo transit injection
and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field
stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution
in the orbital period, we find that <1.1%, <2.7%, and <8.3% of cluster members have 1.0RJ planets within
extremely hot Jupiter (EHJ; 0.4 < P < 1.0 day), very hot Jupiter (VHJ; 1.0 < P < 3.0 day), and hot Jupiter
(HJ; 3.0 < P < 5.0 day) period ranges, respectively. For 0.5RJ planets, the limits are less than 3.2% and less
than 21% for EHJ and VHJ period ranges, respectively, while for 0.35RJ planets we can only place an upper
limit of less than 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of
FGKM dwarfs, we place 95% upper limits of <0.3%, <0.8%, and <2.7% on the fraction of stars with a 1.0RJ

EHJ, VHJ, and HJ, respectively, assuming that the candidate planet is not genuine. If the candidate is genuine,
the frequency of ∼1.0RJ planets in the EHJ period range is 0.002% < fEHJ < 0.5% with 95% confidence. We
place limits of <1.4%, <8.8%, and <47% for 0.5RJ planets, and a limit of <16% on 0.3RJ planets in the
EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as
Neptune.

Key words: open clusters and associations: individual (M37) – planetary systems – surveys

1. INTRODUCTION

The discovery by Mayor & Queloz (1995) of a planet with
half the mass of Jupiter orbiting the solarlike star 51 Pegasi with
a period of only 4.23 days shocked the astronomical community.
The existence of such a “hot Jupiter” (HJ) defied the prevailing
theories of planet formation, which had been tailored to explain
the architecture of the solar system. Since then, radial velocity
(RV) surveys for planets orbiting nearby F, G, and K main-
sequence stars have determined that 1.2% ± 0.2% of these stars
host a HJ (Marcy et al. 2005, where a HJ is defined as a planet
roughly the size of Jupiter that orbits within 0.1 AU of its star),
with indications that this frequency depends on the metallicity
of the host star (such that the frequency is roughly proportional
to 102[Fe/H]; Fischer & Valenti 2005).

Over the last decade, there have been numerous surveys for
extrasolar planets following a variety of techniques (e.g., Butler
et al. 2006) with the goal of determining the planet occurrence
rate in new regions of parameter space. A successful technique
has been to conduct photometric searches for planets that
transit their host stars. This technique is particularly sensitive
to planets on close-in orbits. To date, more than 50 planets

∗ Observations reported here were obtained at the MMT Observatory, a joint
facility of the Smithsonian Institution and the University of Arizona.
5 Hubble Fellow.

have been discovered by this technique,6 including numerous
very hot Jupiters (VHJs) with orbital periods between one
and three days. Gaudi et al. (2005) used the four transiting
planets discovered at the time by the Optical Gravitational
Lensing Experiment (OGLE) collaboration (Udalski et al. 2002;
Konacki et al. 2003, 2004; Bouchy et al. 2004; Pont et al.
2004) to determine that only 0.1%–0.2% of FGK stars host
a VHJ. Gould et al. (2006) conducted a thorough analysis of
the OGLE survey to determine that the frequency of VHJs
is fVHJ = (1/710)(1+1.10

−0.54) and fHJ = (1/320)(1+1.37
−0.59), while

Fressin et al. (2007) found fVHJ = (1/560) and fHJ = (1/320).
The Sagittarius Window Eclipsing Extrasolar Planet Search
(SWEEPS) survey for transiting planets in the Galactic bulge
conducted with the Hubble Space Telescope (HST) (Sahu et al.
2006) identified a putative class of ultrashort-period planets or
extremely hot Jupiters (EHJs) with periods less than one day
orbiting stars lighter than 0.88 M�. They concluded that ∼0.4%
of bulge stars more massive than ∼0.44 M� are orbited by a
Jupiter-sized planet with a period less than 4.2 days, though
they estimated that this fraction is uncertain by a factor of 2.
Note that due to their faintness, the majority of the SWEEPS
candidates are unconfirmed with RV follow up. In addition
to these two surveys, the Trans-Atlantic Exoplanet Survey
(TrES) (e.g, Alonso et al. 2004), Hungarian-made Automatic

6 http://exoplanet.eu
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Telescope Network (HATNet) (e.g., Bakos et al. 2007), XO (e.g.,
McCullough et al. 2006), and Wide Area Search for Planets
(WASP) (e.g., Collier-Cameron et al. 2007) surveys have all
discovered planets orbiting relatively bright stars in the Galactic
field, though to date these surveys have not been used to calculate
the planet occurrence frequency.

While photometric surveys of Galactic field stars have been
quite successful at finding transiting planets over the last few
years, it is generally difficult to measure the planet occurrence
frequency with these surveys (for discussions of how this
can be done despite the difficulties, see Gould et al. 2006;
Fressin et al. 2007; Gaudi 2007; Beatty & Gaudi 2008). The
difficulty arises from the uncertainty in the parameters (mass,
radius, metallicity) of the surveyed stars. Moreover, typical field
surveys yield numerous false positives that are often culled in
part by eye; these culling procedures are generally difficult to
model in determining the detection efficiency of the survey.
In contrast to field surveys, surveys of globular and open star
clusters observe a population of stars with parameters that
are relatively easy to determine en masse; moreover, many
of the false positive scenarios are less common for this type
of survey. Significant work has been invested in developing
optimum strategies to search for planets in stellar clusters
(Janes 1996; von Braun et al. 2005; Pepper & Gaudi 2005).
A number of groups have completed transit surveys of open
clusters, including the UStAPS (Street et al. 2003; Bramich
et al. 2005; Hood et al. 2005), EXPLORE-OC (von Braun et al.
2005), PISCES (Mochejska et al. 2005, 2006), STEPSS (Burke
et al. 2006, hereafter B06), and MONITOR (Aigrain et al. 2007)
projects, and a survey by Montalto et al. (2007). There have also
been several surveys of globular clusters (Gilliland et al. 2000;
Weldrake et al. 2005; Weldrake et al. 2008).

While to date no confirmed transiting planet has been found
in a stellar cluster, many of these surveys have placed limits on
the frequency of hot transiting planets, typically as functions of
planetary radius as well as period. The globular cluster surveys
have placed the most stringent constraints; the null result for the
core of 47 Tucanae by Gilliland et al. (2000) suggests that the
frequency of an HJ in this environment is at least an order of
magnitude less than for the solar neighborhood, while the null
result for the outskirts of the same cluster by Weldrake et al.
(2005) is inconsistent with the planet frequency in the solar
neighborhood at the 3.3σ level and suggests that the dearth of
planets in this globular cluster is due to low metallicity rather
than crowding effects. The open cluster surveys, on the other
hand, have typically placed limits on the occurrence frequency
that are well above the 1.2% measured by the RV surveys.
Notably, B06 conducted a thorough Monte Carlo simulation of
their transit survey of the open cluster NGC 1245 to limit the
frequency of an EHJ, VHJ, and HJ with radii of 1.5RJ to <1.5%,
<6.4%, and <52%, respectively. The fundamental limit on the
ability of open cluster surveys to place meaningful limits on
the occurrence frequency of Jupiter-sized planets appears to be
due to the relatively small number of stars in an open cluster.
B06 found that for their survey strategy, ∼7400 dwarf stars
would have to be observed for at least a month to put a limit
of less than 2% on the planet frequency, which is significantly
larger than the typical size of an open cluster. One open cluster
that has been a popular target is NGC 6791. This cluster is old
(t ∼ 8 Gyr, Carraro et al. 2006, Kalirai et al. 2007), metal rich
([M/H ] ∼ +0.4; Gratton et al. 2006; Origlia et al. 2006) and
contains a large number of stars (M > 4000 M�; Kaluzny &
Udalski 1992), though it is also very distant ((m − M)0 ∼ 12.8;

Stetson et al. 2003) so that lower main-sequence stars in the
cluster are quite faint. It has been the target of three transit
searches (Bruntt et al. 2003; Mochejska et al. 2005; Montalto
et al. 2007), the most recent of which found that their null result
is inconsistent at the ∼95% level with the RV HJ frequency at
high metallicity.

The paucity of stars in open clusters appears to limit their use-
fulness as probes of the HJ frequency (excluding, perhaps, the
result from Montalto et al. 2007). They may, however, be useful
for probing smaller planet radii (see Pepper & Gaudi 2006). In
the last several years, RV surveys have discovered a number of
Neptune and super-Earth-mass planets (HN, M<0.1MJ ; Butler
et al. 2004; Endl et al. 2008; Fischer et al. 2008; Lovis et al.
2006; Melo et al. 2007; Rivera et al. 2005; Santos et al. 2004;
Udry et al. 2006, 2007; Vogt et al. 2005). One of these planets,
GJ 436 b, has been discovered to transit its host star (Gillon
et al. 2007). Little, however, is known about the frequency of
these planets. Determining or placing meaningful limits on this
frequency would provide a powerful test of planet formation
models. The theoretical predictions of the frequency of these
objects run the gamut from a steep decline in the frequency of
HN relative to the HJ (Ida & Lin 2004), except perhaps for M-
dwarfs (Ida & Lin 2005), to HN being ubiquitous (Brunini &
Cionco 2005).

In this paper, the fourth and final in a series, we present the
results of a survey for transiting hot planets as small as Neptune
in the intermediate-age open cluster M37 (NGC 2099) using
the MMT. We were motivated to conduct this transit survey
by Pepper & Gaudi (2005, 2006), who suggested that it may
be possible to find Neptune-sized planets transiting solarlike
stars by surveying an open cluster with a large telescope. The
Megacam mosaic imager on the MMT (McLeod et al. 2000) is
an ideal facility for conducting such a survey due to its wide field
of view (FOV) and deep pixel wells that oversample the stellar
point-spread function (PSF). Preliminary observations of NGC
6791 suggested that finding Neptune-sized planets was indeed
technically feasible using this facility (Hartman et al. 2005).
Using the formalism developed by Pepper & Gaudi (2005), we
found that M37 is the optimum target for MMT/Megacam to
maximize the number of stars to which we would be sensitive to
Neptune-sized planets. We note that a drawback of this type of
survey is that any identified candidates will be quite faint making
follow-up RV confirmation difficult. For planets significantly
smaller than 1.0RJ , false positives where the transiting object
is a small star or brown dwarf are no longer applicable. Given
the depth of the survey very few giants will be included in the
sample, and those that are can easily be rejected based on their
colors. Low-precision spectroscopy may be sufficient to rule
out various blended binary scenarios. Therefore, it is reasonable
to suppose that for a given small-radius candidate one could
make a strong argument that the object is a real planet without
obtaining a RV determination of its mass. Also note that similar
difficulties will be faced by the Corot and Kepler space missions
(albeit for even smaller planets), so our experiment may provide
a useful analogy to these missions.

We conducted the survey over 20 nights between 2005
December and 2006 January, accumulating more than 4000
quality images of the cluster. This is easily the largest telescope
ever utilized for such a survey. In the first paper in the series
(Hartman et al. 2008a, Paper I), we describe the observations
and data reduction, combine photometric and spectroscopic data
to refine estimates for the cluster fundamental parameters (t =
550 ± 30 Myr with overshooting, [M/H ] = +0.045 ± 0.044,
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(m − M)V = 11.57 ± 0.13 mag and E(B − V ) = 0.227 ±
0.038 mag), and determine the cluster mass function down to
0.3 M�. In the second paper (Hartman et al. 2008b, Paper II)
we analyze the light curves of ∼23000 stars observed by
this survey to discover 1430 variable stars. In the third paper
(Hartman et al. 2009, Paper III), we use the light curves to
measure the rotation periods of 575 probable cluster members.
This is the largest sample of rotation periods for a cluster older
than a few hundred Myr, and thus provides a unique window
on the late time rotation evolution of low-mass main-sequence
stars.

In the following section, we will summarize our observations
and data reduction. In Section 3 we discuss the pipeline used
to remove systematic variations from light curves and identify
candidate transiting planets. In Section 4 we describe the
candidate transiting planets identified by this survey, finding
no candidates that are probable cluster members. In Section 5,
we conduct Monte Carlo simulations to determine the transit
detection efficiency of our survey. In Section 6, we present our
results on the limit of stars with planets for various planetary
radii and orbital periods. Finally, we conclude in Section 7.

2. SUMMARY OF OBSERVATIONS AND DATA
REDUCTION

The observations and data reduction procedure were de-
scribed in detail in Papers I and II; we provide a brief overview
here. The photometric observations consist of gri photometry
for ∼16, 000 stars, gri photometry for stars in a field located 2◦
from the primary M37 field and at the same Galactic latitude, and
r time-series photometry for ∼23, 000 stars, all obtained with
the Megacam instrument (McLeod et al. 2000) on the 6.5 m
MMT. Megacam is a 24′ × 24′ mosaic imager consisting of
36 2k×4k, thinned, backside-illuminated CCDs that are each
read out by two amplifiers. The mosaic has an unbinned pixel
scale of 0.′′08, which allows for a well-sampled PSF even under
the best-seeing conditions. To decrease the read-out time, we
used 2 × 2 binning with the gain set so that the pixel sensi-
tivity became nonlinear before the analog-to-digital conversion
threshold of 65,536 counts. Because of the fine sampling and the
relatively deep pixel wells, one can collect 2×107 photons in 1′′
seeing from a single star prior to saturation, setting the photon
limit on the precision in a single exposure to ∼0.25 mmag.

The primary time-series photometric observations consist of
∼4000 high quality images obtained over 24 nights (includ-
ing eight half-nights) between 2005 December 21 and 2006
January 21. We obtained light curves for stars with 14.5 �
r � 23 using a reduction pipeline based on the image subtrac-
tion technique and software due to Alard & Lupton (1998) and
Alard (2000). The resulting light curves were passed through
the processing and transit detection pipeline that we describe
in Section 3. We used the Daophot 2 and Allstar PSF fit-
ting programs and the Daogrow program (Stetson 1987, 1990,
1992) to obtain the g, r, and i single-epoch photometry.

As described in Paper I we also take BV photometry for
stars in the field of this cluster from Kalirai et al. (2001), KS
photometry from the Two Micron All Sky Survey (2MASS)
(Skrutskie et al. 2006), and we transform our ri photometry
to IC using a transformation based on the IC photometry from
Nilakshi & Sagar (2002).

In addition to the photometry, we also obtained high-
resolution spectroscopy of 127 stars using the Hectochelle mul-
tifiber, high-dispersion spectrograph (Szentgyorgyi et al. 1998)
on the MMT. The spectra were obtained on four separate nights

between 2007 February 23 and 2007 March 12 and were used
to measure Teff , [Fe/H], v sin i, and the RV via crosscorrelation
against a grid of model stellar spectra computed using ATLAS 9
and SYNTHE (Kurucz 1993). The classification procedure was
developed by S. Meibom et al. (2009, in preparation), and made
use of the xcsao routine in the IRAF7 rvsao package (Kurtz &
Mink 1998) to perform crosscorrelation. We use these spectra
to provide stellar parameters and RV measurements for several
of the host stars to the candidate transiting planets.

3. TRANSIT SELECTION PIPELINE

In this section, we describe the pipelines used to remove
systematic variations from the light curves and select candi-
date transiting planets. We use these pipelines first to identify
candidates (Section 4) and then to calibrate the detection effi-
ciency by conducting transit injection and recovery simulations
(Section 5). The pipeline includes several steps: postprocessing
the light curves, devising transit selection criteria, and applying
the selection criteria to the data to find candidates. We have
devised three distinct pipelines, which we refer to as selection
criteria sets 1–3, that differ in the number of postprocessing rou-
tines applied and the manner in which candidates are selected.
We first discuss the postprocessing routines and the precision
of the resulting postprocessed light curves; we then discuss the
selection criteria.

3.1. Light-Curve Postprocessing

The raw light curves returned from the image subtraction
procedure exhibit substantial scatter due to instrumental artifacts
as well as astrophysical variations. Before searching these light
curves for low-amplitude transit signals we must take steps to
reduce the time-correlated noise. This process may reduce the
sensitivity to high signal-to-noise ratio (S/N) planets, so for
selection criteria set 3 we only apply a limited postprocessing
routine. Our postprocessing pipeline consists of the following
steps:

1. (Selection criteria sets 1–3) We first clip points from each
light curve that are more than five standard deviations from
the mean magnitude. We perform two iterations of this
procedure.

2. (Selection criteria sets 1–3) For each image i, we determine
fi, the fraction of light curves for which image i is at least
a 3σ outlier. Images with fi > fc, the cutoff fraction, are
removed from all the light curves. This process is performed
independently for each of the 36 chips. We choose fc for
each chip based on a visual inspection of the histogram
of fi values; we use values that range from 3% to 5%.
This process typically removes ∼500 images from the light
curves.

3. (Selection criteria sets 1 and 2 only) We then remove one
sidereal day or 0.9972696 day period signals from the light
curves. This is done to remove artifacts due to, for example,
rotating diffraction spikes that have a period of exactly one
sidereal day. Figure 1 shows an example of a light curve
that exhibits brightenings at a period of one sidereal day
as diffraction spikes from nearby bright stars sweep over
the star. The diffraction spikes rotate in the image due to
the need to rotate the camera with respect to the secondary

7 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.
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Figure 1. Example of a star with a light curve that shows repeated brightenings
due to diffraction spikes from a neighboring bright star. The upper two panels
show the star in question on a 0.′5 × 0.′5 FOV, when a diffraction spike is over
the star (left) and when no spike is over the star (right). The two images were
taken 100 minutes apart. The bottom panel shows the light curve of the star
phased at a one sidereal day; note the two periodic brightenings caused by the
rotation of diffraction spikes in the images over the course of each night.

mirror supports to keep stars on the same pixels throughout
the night on the alt-az MMT. The number, width, depth,
and shape of the brightenings seen in the light curves vary
from star to star; moreover, additional artifacts such as
color-dependent atmospheric extinction will also give rise
to apparent variability with a period of one sidereal day. We
remove these signals by binning the light curves in phase,
using 200 bins, and then adjusting the points in a bin by an
offset so that the average of the bin is equal to the average
of the light curve.

4. (Selection criteria sets 1 and 2 only) As discussed in
Paper III, we found that ∼1/3 of the probable cluster
members that we observed show quasi-periodic variations
with amplitudes of ∼1% and periods ranging from 0.3
to 15 days. These variations are due to the presence
of large spots on the surfaces of these relatively young
(550 Myr), rapidly rotating stars. While it may be possible
to identify a ∼1% transit on top of such a signal, it would be
increasingly difficult to identify shallower transits without
taking steps to remove these variations. Using the Lomb–
Scargle algorithm (Lomb 1976; Scargle 1982; Press &
Rybicki 1989), we identify the period P of the best-fit sine
curve to each light curve. We then fit to the poststep-3 light
curve a signal of the form

m = A0 + A1 sin(2P t/2π + φ1) + A2 sin(P t/2π + φ2)

+ A3 sin(0.5P t/2π + φ3), (1)

where Ai and φi are free parameters and we calculate
Δχ2

Harm, the reduction in χ2 after subtracting the best-
fit model from the light curve. Note that we adopt the
convention that a more negative value of Δχ2 indicates a
better fit of the model to the data. This process increases the
sensitivity to shallow transits but decreases the sensitivity to

Figure 2. Transit recovery results for model light curves including both transits
and photometric variations due to starspots. (Top) Comparison between the
ratio of the model transit strength to the model spot strength, measured as a
contribution to χ2 for each simulated signal, and the ratio of the best boxcar fit
to the best harmonic series fit at the peak L−S period. We divide the data into
two classes: those with Δχ2

BLS,fix/Δχ2
Harm > 1 (i.e., a transit model fits the light

curve better than a spot model) and those with Δχ2
BLS,fix/Δχ2

Harm<1 (i.e., a spot
model fits the light curve better than a transit model). (Bottom) Comparison
between the best-fit BLS transit model, using a full-period search, and the
strength of the injected transit. We show the results separately for simulations
with Δχ2

BLS,fix/Δχ2
Harm > 1 (left) and simulations with Δχ2

BLS,fix/Δχ2
Harm<1

(right). In each plot, we show the results for both removing and not removing a
best-fit harmonic series from the light curve before running the full BLS search.
The solid lines show the ideal relation where Δχ2

BLS,full = Δχ2
transit. When the

transit model fits the light curve better than a harmonic series (left), the harmonic
series should not be removed from the light curve; when the harmonic series fits
the light curve better (right), it should be removed before searching for transits.

deep transits. We therefore fit a box-car transit signal to the
poststep-3 light curve, without subtracting the sine curve,
phased at period P using the box-fitting least squares (BLS)
algorithm (Kovács et al. 2002) and calculate Δχ2

BLS,fix, the
reduction in χ2 after subtracting the box-car transit model
from the light curve. We subtract Equation (1) from light
curves with Δχ2

Harm < Δχ2
BLS,fix, that is, we only apply the

correction to light curves for which a harmonic series fits the
phased light curve better than a transit signal. To test this
technique, we simulate light curves including variability
due to spots as well as transits. We use the Dorren (1987)
spot model and the Mandel & Agol (2002) transit model.
Figure 2 compares the results of a full BLS search on
light curves with deep transits relative to spots and vice
versa for the two cases of removing and not removing a
harmonic signal before running BLS. We see that removing
a harmonic series from light curves with Δχ2

Harm<Δχ2
BLS,fix

yields BLS results that are consistent with the injected
transit signal, while not removing the harmonic signal from
light curves with Δχ2

Harm > Δχ2
BLS,fix yields better results

than removing the signal.

5. (Selection criteria sets 1 and 2 only) Finally, we attempt
to remove any remaining instrumental or weather-related
trends from the poststep-4 light curves using the Trend Fil-
tering Algorithm (TFA; Kovács et al. 2005). This algorithm
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Figure 3. Light curve rms vs. r magnitude for ∼22, 000 stars after completing
steps 1–2 (top panels) and steps 1–5 (bottom panels) in the light-curve processing
pipeline. We show both the point-to-point rms (left) and the rms after binning
the light curves by 2 hr in time (right), which is approximately the timescale of
a transit by an HJ. The solid lines show the median relation for the data plotted
in each panel, while the dashed lines in the bottom two panels show the median
relations from the top two panels. The dotted lines show the expected median
relation for the binned light curves if the rms for each light curve were reduced
by N−0.5

b , where Nb is the average number of points in a time bin.

linearly decorrelates each light curve against a representa-
tive sample of other light curves. The trend list for each
light curve consists of other stars on the chip with more
than 2500 points, rms <0.1 mag, and that are well outside
the photometric radius of the star in question. There are
typically ∼250 stars in the trend list for each chip.

3.1.1. Light-Curve Precision

In Figure 3, we show the rms as a function of magnitude
for the stars after stages 2 and 5 in the light-curve processing
pipeline. We plot both the point-to-point rms and the rms after
binning the light curves by 2 hr in time.

As discussed by Pont et al. (2006), the limiting factor for
detecting low-amplitude transits around bright stars for many
transit surveys is the presence of time-correlated systematic
variations in the light curves (called red noise; noise that is
uncorrelated in time will be referred to as white noise). We can
estimate the degree of red noise in our light curves by fitting a
noise model to the median rms–r relation. We use a model of
the form:

rms =
√(

2.5

ln(10.0)

)2
f + s

f 2
+ σ 2

r , (2)

where f = 10−0.4(m−z) is the effective number of photoelectrons
per image for a source of magnitude m with zero point z,
s = 10−0.4(ms−z) is the effective number of photoelectrons per
image due to the sky that contaminate a given source and
corresponds to a magnitude ms, and σr is the effective red
noise in magnitudes. Note that z depends on the aperture and
efficiencies of the optics and detector, the exposure time, the

Table 1
Parameters from Fitting the Noise Model in Equation (2) to the Median rms–r

Relations after Binning the Light Curves on Several Timescales

Binning Timescale (minutes) z (mag) σr (mmag) mσr (mag)a

5.0 32.45 1.35 17.57
10.0 32.81 1.21 17.68
30.0 33.46 1.04 17.90
60.0 33.95 1.00 18.21
120.0 34.44 0.92 18.43
180.0 34.64 0.90 18.53
240.0 34.63 0.93 18.58
1440.0 35.28 0.85 18.88
2880.0 37.38 0.47 19.37
7200.0 37.91 0.33 19.23

ms = 18.63 mag

Note. a The r-magnitude of a source that has equal red noise and white
noise when the light curve is binned at the specified timescale.

atmospheric extinction, and the photometric procedure. Also
note that ms is the magnitude of a source, which has a flux
equal to that of the total sky background through the effective
photometric aperture. We bin the light curves on timescales of
5, 10, 30, 60, 120, 180, 240, 1440, 2880, and 7200 minutes
and calculate the median rms–r relation for each binning. We
then fit Equation (2) simultaneously to all 10 relations using the
free parameters zT , ms and σr,T where zT and σr,T depend on
the timescale, while ms is independent of the timescale. Table 1
gives the parameters from the model fit to the median rms–r
relations. We also list in Table 1 the r-magnitude of a source for
which the red noise on a given timescale is equal to the Poisson
noise, that is,

2.5

ln(10)

√
fT + sT

fT

= σr,T . (3)

As expected, σr,T decreases with increasing T. At the timescales
relavent for a transit (1–3 hr), the red noise is ∼0.9 mmag. We
also note that the values of zT are consistent with the expected
values given the gain of the detector and the measured zero point
for the reference image, assuming that the effective exposure
time for the “average” image in the light curve is ∼1.0 minute.

An alternative method to determine the degree of red noise
in the data is to examine the autocorrelation function of
the light curves. We find that stars fainter than r∼18.0 are
effectively uncorrelated in time while brighter stars appear to be
uncorrelated on timescales longer than ∼200 minutes.

3.2. Transit Selection

To identify the best-fit transit signal in each light curve, we
use the BLS algorithm. We apply two slight modifications to the
algorithm.

1. Rather than searching over a fixed range of fractional
transit width q = τ/P values (where τ is the duration
of the transit and P is the orbital period), we allow the
q range to vary with the trial frequency. We do this
by assuming a stellar radius range of Rmin to Rmax and
taking qmin,max = 0.076

(
Rmin,maxf

)2/3
, where f is the trial

frequency in days−1, and assuming that M/M� ≈ R/R�
for lower main-sequence stars.

2. While the postprocessing described above substantially re-
duces the systematic variations in the light curves, some
variations remain (see Figure 3). These variations give rise
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to increased power at low frequencies in the BLS peri-
odogram of each light curve. As a result, long-period tran-
sits should be treated with greater caution than short-period
transits. To account for this, we subtract a mean-filtered pe-
riodogram from the raw periodogram for each light curve
before selecting the peak frequency. To mean filter the pe-
riodogram we replace each point in the periodogram by the
mean value of the 200 points closest in frequency to the
given point after applying an iterative 3σ clipping. Test-
ing this modification on light curves with injected transits
shows a very slight improvement (less than 1%) in the frac-
tion of light curves for which the recovered period agrees
with the injected period.

We conduct both a high-resolution and a low-resolution
BLS search on the light curves. The low-resolution search is
needed for the transit recovery simulations (Section 5.1.1) to
finish in a reasonable amount of time. For the high-resolution
search we examine 20,000 frequency values over a period
range from 0.2 to 5.0 days using 200 phase bins at each trial
frequency, using Rmin = 0.4 R� and Rmax = 1.3 R�. For the
low resolution search we examine 3072 frequency values over
the same period range, using the same number of phase bins.
In searching for candidates with the low-resolution search, we
use parameters identical to those used in conducting the transit
recovery simulations (Section 5.1.1). We use slightly different
parameters for possible cluster members and for field stars
(see the selections of these stars in Sections 5.1.2 and 5.2).
For candidate cluster members, we take Rmin = 0.1 R� and
Rmax = 1.1×Rphot, where Rphot is the radius of the star estimated
from its photometry assuming that it is a cluster member. For
the field stars, we take Rmin = 0.1 R� and Rmax = 1.3 R�.

As discussed by B06, a simple selection on the Signal
Residue (Equation (5) in Kovács et al. 2002) or the Signal
Detection Efficiency (Equation (6) in Kovács et al. 2002)
generally yields a large number of false positive detections
that must then be removed by eye. However, because it is very
difficult to accurately include by eye selections in a Monte Carlo
simulation of the transit selection process, it is necessary to
devise automatic selection criteria that minimize the number
of false positive detections to calculate a robust limit on the
frequency of stars with planets. We discuss the three distinct
selection criteria that we have devised in turn.

3.2.1. Selection Criteria Set 1

To devise the first set of selection criteria we inject fake
transit signals into the light curves of 1366 stars that lie near the
cluster main sequence on a color–magnitude diagram (CMD)
and choose criteria that maximize the selection of high signal-
to-noise-simulated transits, while minimizing the selection of
false positives. The simulated transits have radii of 0.35, 0.71
and 1.0 RJ , and inclinations of 90◦. For each star/radius, we
simulate 10 transits with periods ranging from 0.5 to 5.0 days
and random phases. We use the relations between r-magnitude
and mass, and r-magnitude and radius for the cluster that were
determined in Paper I to estimate the mass and radius of each star.
The light curves including injected transits are passed through
the pipeline described in the previous subsection before running
the BLS algorithm on them.

To calibrate the selection criteria, we first must define the set
of injected transits that we consider to be recoverable; we then
adopt selection criteria that maximize the selection of these
light curves while minimizing the selection of all other light
curves. Note that we use information from the injected transits

to define the recoverable sample, while we cannot use any of this
information when defining the selection criteria. We consider
the transit to be recoverable if Δχ2

BLS − Δχ2
BLS,0< − 100, where

Δχ2
BLS is the reduction in χ2 for the best-fit BLS model to the

light curve with the injected transit and Δχ2
BLS,0 is for the light

curve prior to injecting the transit. When a light curve satisfies
this criterion, the best-fit BLS model is strongly influenced
by the transit signal. This can happen even if the identified
period does not match the injected period, or a harmonic of
the injected period, however, in these cases, detailed follow up
may eventually yield the correct period. Note that for transit
selection criteria sets 2 and 3, we adopt the more conservative
recoverability criterion that the recovered period must match the
injected period, or one of its harmonics, to within 10%.

We find that the following selection criteria accurately distin-
guish between the recoverable and nonrecoverable transits.

1. Following B06, we use BLS to identify both the best-fit
transit signal and the best-fit inverse transit signal for each
light curve. For the best-fit transit signal, we calculate the
signal-to-pink-noise (SN ) ratio (Pont et al. 2006) via

SN2 = δ2

σ 2
w

/
nt + σ 2

r

/
Nt

, (4)

where δ is the depth of the transit, nt is the number of points
in the transit, Nt is the number of distinct transits sampled,
σw is the white noise, and σr is the red noise at the timescale
of the transit. To calculate the white noise for a light curve,
we subtract the best-fit BLS model from the light curve and
set σw equal to the standard deviation of the residual. To
calculate the red noise, we bin the residual light curve in
time with a bin size equal to the duration of the transit and
set σr equal to its standard deviation. Note that while this
technique provides a convenient method to determine an
individual red and white noise estimate for each light curve,
it overestimates the noise for an uncorrelated signal by a
factor of ∼√

2. We select candidates that have SN > 10.0.
Figure 4 shows this selection.

2. As shown in Figure 4, some of the transit signals that are not
expected to be detectable pass the selection from the previ-
ous step. We can further reduce these potential false alarms
with negligible loss of detectable transits by the following
selection. Let Δχ2

BLS refer to the reduction in χ2 for the
best-fit transit signal and Δχ2

BLS,2 refer to the reduction in
χ2 for the second noninverse transit peak in the BLS spec-
trum. The light curves passing selection 1 are then selected
if they have P > 2.0 days and Δχ2

BLS − Δχ2
BLS,2 < −60 or

P � 2.0 days and Δχ2
BLS − Δχ2

BLS,2 > −10.95P 2.45, as
shown in Figure 5.

When the above selections are applied to the actual data,
more than 100 light curves are selected. Many of these are
obvious false positives that can be eliminated by applying a few
additional selections.

3. We reject stars with fewer than 1000 points in their light
curves; most of these are near saturation and show strong
systematic variations even after applying the TFA.

4. Many of the false positives are faint stars located near much
brighter stars; these can be rejected by only considering
stars with an average instrumental magnitude brighter than
17.0 (corresponding roughly to r<22.0).
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Figure 4. Histograms of the SN of light curves with injected transit signals.
We show separate histograms for injected transits that should be recoverable
(Δχ2

BLS − Δχ2
BLS,0< − 100) and for those that may be unrecoverable. Light

curves with SN > 10.0 are selected.

Figure 5. Difference in χ2 reduction from the best-fit box-car transit model and
the second best-fit model vs. the period of the best-fit model for light curves that
pass the selection in Figure 4. Light curves below the dashed line are rejected.

5. Other false positives come from very noisy light curves
that can be rejected by requiring the standard deviation of
the residual light curve after subtracting the best-fit box-car
transit model to be less than 0.1 mag.

6. Many false positives show an anomalous faint set of points
that occur on only one night. Following B06, we require
that the fraction of Δχ2

BLS that comes from one night must
be less than 0.8.

7. We reject light curves for which the best-fit box-car transit
has a period between 0.99 and 1.02 days or less than
0.4 days.

Figure 6. χ2 per dof of the light curves without injected transits after subtracting
the best-fit box-car transit model. The solid line shows the median χ2 per dof
as a function of magnitude. Light curves above the dashed line (2.5 times the
solid line) are rejected as transit candidates. See the text for a discussion of why
χ2 per dof for stars between 18 � r � 23 approaches ∼0.5 rather than ∼1.0.

8. Finally, we require that χ2 per degree of freedom (dof) of
the light-curve residual after subtracting the best-fit box-car
transit model must be less than 2.5 times the expected χ2

per dof. The expected χ2 per dof is taken to be the median
value as a function of magnitude for the full ensemble
of light curves (Figure 6). Note that the values of χ2

per dof for stars between 18 � r � 23 approach ∼0.5
rather than ∼1.0. This is due to a bug in our differential
photometry routine whereby the formal differential flux
uncertainties returned are not set to the flux scale of the
reference image. We note that a similar bug is present in
the differential photometry routine of the ISIS 2.1 package
on which our photometry routine is based. The flux scale
for the reference image that we use is set to that of a
30 s exposure taken under good seeing conditions. The
formal errors are overestimated for longer exposures that
were taken under poor seeing conditions. We identified
this bug after completing most of the analysis presented in
this paper; we do not, however, expect it to significantly
affect the statistical results presented here. Note that since
the photometry that we are using is dominated by red
noise, rather than white noise, the formal photometric
errors, which assume Gaussian, uncorrelated noise, do
not accurately describe the uncertainties in the data. We
have therefore used a cut on the SN , which is determined
empirically from the light curve, rather than relying on the
formal uncertainties. The formal uncertainties do affect the
relative weightings of points; modifying them may thus
yield slight changes in the TFA fitting procedure as well
as in the periods that are identified by BLS. If the formally
correct weighting scheme had been adopted, the sample
of selected candidates may have been slightly different;
however, this is no different from making minor changes
to the rather arbitrary selection criteria. For our statistical
conclusions regarding the fraction of stars bearing planets,
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what is important is that we apply the same selections
and weighting scheme to the transit injection simulations
as we do to the actual data and that the postselection vetting
procedure that we apply to the actual data would not reject
any of the injected candidates. Making a uniform change
to the weighting scheme will affect the selection of real
candidates and injected transits in the same manner, so
the transit detection efficiency measured by the injection
simulations will accurately reflect the detection efficiency
for the survey.

3.2.2. Selection Criteria Set 2

The above selection criteria were developed by manually in-
specting the results of transit recovery simulations and defining
cuts that appeared, by eye, to distinguish between successful
recoveries and nonrecoveries. While this method has the advan-
tage that the criteria can be enumerated and easily visualized,
it has the disadvantage that the cuts are fairly subjective and
there is no guarantee that the selections optimally distinguish
between recoveries and nonrecoveries.

To complement the above selection criteria, we have devised
a set of selections using the Support Vector Machine (SVM)
classification algorithm, which has the advantage of being
much less subjective, but the disadvantage of being difficult to
visualize (Vapnik 1995; a discussion of the algorithm can also
be found in Press et al. 2007, which we summarize here). This
algorithm takes as input a set of training data, which consists
of m points, (xi , yi), where xi is an n-dimensional vector of
measurable parameters describing object i (called features) and
yi is either +1 or −1 and is used to divide the data into two
classes. The algorithm then searches for a real-valued function
f (x) such that f (xi) > 0 for yi > 0 and f (xi)<0 for yi<0. The
function is assumed to take the form

f (x) = W · φ(x) + B, (5)

where φ(x) is a fixed n-to-N-dimensional transformation with N
being typically larger than n, and W is an N-dimensional vector.
To optimize f, one looks for a vector W that is normal to a
hyperplane that separates φ(xi) with yi = +1 from φ(xi) with
yi = −1 and that has a maximum perpendicular distance from
the points nearest to it (called support vectors). In general, it is
not always possible to find such a hyperplane, so instead one
seeks to optimize f by minimizing

1

2
W · W + λ

∑
i

Ξi (6)

subject to the constraint

Ξi � 0, yif (xi) � 1 − Ξi , i = 1, . . . , m, (7)

where Ξi are free parameters that allow for discrepancies be-
tween the model and actual classes and λ is a fixed regulariza-
tion parameter used to control the tradeoff between accurately
classifying the training data and maximizing the perpendicu-
lar distance between the support vectors and the hyperplane.
In practice, the problem is recast in the Lagrangian formal-
ism so that one specifies a kernel matrix with the property
Kij = K(xi , xj ) = φ(xi) · φ(xj) rather than the transformation
φ(x).

To apply the SVM algorithm to our problem of devising transit
selection criteria we use the SVMlight package8 (Joachims 1999,

8 C source code for SVMlight is freely available at
http://svmlight.joachims.org.

2002). Before using the algorithm, we apply a set of simple cuts
which we found to be necessary to minimize the number of false
positives.

1. Reject stars with an average instrumental magnitude fainter
than 17.0 (corresponding roughly to r > 22.0).

2. Reject stars that have rms > 0.1 mag, where the rms here
is the standard deviation of the residual light curve after
subtracting the best-fit box-car transit model.

3. Reject stars with SN<10.0, where SN is the SN given by
Equation (4). Note for training the algorithm, we use a less
restrictive cut of SN<9.0.

4. Reject light curves for which the best-fit box-car transit has
a period between 0.99 and 1.02 days or less than 0.4 days.

We train the algorithm on the simulated transit data described
in Section 5.1.1. We use only ∼5000 of the ∼250 million simu-
lated transits to allow the algorithm to converge in a reasonable
amount of time. We take yi = +1 for simulated transits that have
0.95 < Precover/Pinject < 1.05, where Precover and Pinject are the re-
covered and injected transit periods, respectively, and yi = −1
for all other simulated transits. There are 15 features in the
xxi vectors including: the recovered period, the fractional tran-
sit width, the transit depth, SN , the white noise, the red noise,
Δχ2

BLS, Δχ2
BLS/Δχ2

BLS,inv, (Δχ2
BLS,2−Δχ2

BLS)/Δχ2
BLS, the fraction

of Δχ2
BLS that comes from one night, the number of points in

transit, the number of points observed less than τ minutes prior
to transit ingress (τ is the duration of the transit), the number
of points observed less than τ minutes after transit egress, the
number of distinct transits observed, and the ratio of χ2 per dof
of the light-curve residual after subtracting the best-fit box-car
transit model to the expected χ2 per dof. When applying the
algorithm, we consider a transit to be recovered if the estimated
value of y is greater than 0.1 as we found a number of false
positives for which the algorithm returned values between 0.0
and 0.1.

3.2.3. Selection Criteria Set 3

As described in Section 6, when the first two sets of selection
criteria are applied to transit recovery simulations the detection
efficiency for 1.5RJ and larger planets drops unexpectedly for
relatively bright stars. These large radius planets yield deep
transit signals in the light curves of bright stars, which are
then distorted by steps 3–5 of the processing routines described
in Section 3.1. To recover these large radii planets, we have
devised a third set of selection criteria. For this set of criteria,
we run BLS on light curves processed through steps 1 and 2
of Section 3.1 (i.e., we do not remove one sidereal day period
signals from the light curves, remove harmonic signals from
the light curves, or apply the TFA to the light curves). We then
apply the SVM classification algorithm to the BLS results using
the same training scheme and set of features as in Section 3.2.2.
We train only on 1.0, 1.5, and 2.0RJ simulations.

4. TRANSIT CANDIDATES

Out of a total of 10,899 light curves for sources that were
detected in g, r, and i have an average instrumental magnitude
brighter than 17 (r � 22), and more than 1000 points, we
select 16 transit candidates. Table 2 lists the candidates, their
coordinates, photometry and BLS parameters and the selection
criteria/resolutions that selected them. Phased light curves for
the candidates are displayed in Figure 7. As we discuss below,
12 of these candidates can be rejected as eclipsing binary stars

http://svmlight.joachims.org
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Table 2
Candidate Transiting Planets

ID R.A. decl. ga ra ia Bb Vb Ic Selectiond LCe Period MJD0 Depth q S/Nf

(J2000) (J2000) (days) (mag)

30137 05:52:53.99 +32:39:11.7 20.86 19.74 18.95 21.20 19.94 18.50 011000111 2 0.595950 53725.32142 0.0423 0.085 24.24
60161 05:53:18.26 +32:29:46.7 20.42 19.57 19.11 20.97 19.91 18.67 001000000 2 2.623233 53726.80688 0.0484 0.045 11.79
70127 05:53:18.46 +32:28:33.3 20.47 19.58 19.02 21.00 19.85 18.57 010000110 1 0.773530 53725.31696 0.0197 0.060 10.57
80009 05:53:02.04 +32:23:27.6 15.75 15.09 14.76 16.13 15.30 14.32 000000001 3 1.519846 53724.56637 0.0483 0.045 12.29
80014 05:53:12.12 +32:23:51.2 16.28 15.77 15.46 16.62 15.92 15.03 001001000 2 0.588375 53725.61226 0.0054 0.100 13.22
90279 05:52:53.06 +32:22:57.0 23.58 21.87 20.45 24.37 22.43 19.96 111000111 2 1.141717 53726.05590 0.3173 0.045 37.23
110021 05:52:26.24 +32:40:44.6 16.36 15.77 15.43 16.77 15.99 14.99 000010000 3 3.535574 53727.68767 0.1215 0.035 13.35
120050 05:52:46.14 +32:39:33.6 17.71 16.98 16.55 18.20 17.35 16.11 111111000 3 1.847414 53725.76532 0.0346 0.045 14.90
160017 05:52:23.89 +32:28:26.3 16.31 15.60 15.24 16.75 15.90 14.81 000110000 3 1.560626 53724.96524 0.0141 0.055 4.37
160311 05:52:19.64 +32:26:50.4 23.20 21.63 20.64 23.78 22.26 20.17 111000111 2 2.027186 53726.18244 0.1789 0.025 26.33
170049 05:52:44.65 +32:25:55.3 18.36 17.65 17.30 18.74 17.90 16.87 000000001 2 2.261081 53725.22479 0.0181 0.055 10.29
170100 05:52:38.44 +32:23:29.5 20.34 18.73 17.80 21.02 19.43 17.34 000001000 3 2.746378 53725.19817 0.2963 0.025 20.78
230082 05:52:01.32 +32:32:51.0 17.71 17.08 16.71 18.15 17.36 16.27 011000011 2 3.335057 53726.43670 0.0280 0.025 15.05
270149 05:51:59.04 +32:20:38.0 20.59 19.47 18.87 21.68 19.98 18.42 000000111 3 1.097491 53724.89160 0.2132 0.065 11.11
280287 05:51:37.41 +32:45:03.0 23.80 22.12 20.78 24.68 22.82 20.29 111000011 2 0.456034 53725.41220 0.1331 0.055 17.35
330224 05:51:30.37 +32:30:29.3 21.64 20.46 19.91 22.11 20.94 19.46 010000110 1 0.648749 53725.20636 0.0502 0.060 13.79

Notes.
a The magnitude of the source in the photometric catalog (Paper I).
b Value from Kalirai et al. (2001).
c Value from transforming ri photometry to the IC photometry of Nilakshi & Sagar (2002).
d 9 bit flag to indicate which selection criteria sets and resolutions selected the candidate. From the left, the first 3 bits indicate if the candidate was selected by criteria
sets 1, 2, and 3, respectively, using a high-resolution BLS search. The middle 3 bits are for the low-resolution BLS search applied to candidate cluster members, while
the last 3 bits are for the low-resolution BLS search applied to field stars.
e This integer indicates if the BLS parameters in this table were determined for (1) the fully processed, trend-filtered light curve, (2) the light curve processed through
steps 1 and 2 of Section 3.1 only, or (3) the unprocessed light curve.
f SN ratio (Equation (4)).

by their large transit depths or by noting that the primary and
secondary transit depths are unequal. Two of the candidates
detected on the unprocessed light curves result from artifacts in
the data, which are removed by the processing routines. One of
the candidates is a blend with a nearby deep eclipsing binary.
One candidate Jupiter-sized transiting planet remains.

As seen in Figure 8, several of the candidates (80014, 110021,
120050, 160017, and 170100) lie close enough to the cluster
main sequence on the g−r and g−i CMDs to be selected as
potential cluster members in Section 5.1; however, all of these
candidates can be rejected as either eclipsing binaries or a blend
with an eclipsing binary (see Section 4.1). We can therefore
only place an upper limit on the planet occurrence frequency of
cluster members.

4.1. Discussion of Individual Transit Candidates

30137. This source is an eclipsing binary as evidenced by
the secondary eclipse having an unequal depth to the primary
eclipse when phased at twice the period shown in Figure 7. This
source is V1187 in the catalog of variables presented in Paper II.
We reject this candidate.

60161. The transitlike variation in this light curve is com-
pletely removed by the TFA so this source only passes selection
criteria set 3. The transit feature is due primarily to two nights.
The images on these nights show a gradient in the background
counts near the corner of Chip 6 where this star is located.
The sense of the gradient is that points are fainter in the corner
than near the center of the image. The use of a single master
flat-field image for the entire run appears to have failed for these
two nights; the result is that many of the stars in the corner of
Chip 6 show dips in their raw light curves on the two nights in
question. This transit feature therefore appears to be spurious,

and we reject it as such. We note that this is the only candidate
that was selected by the high-resolution search but not by the
low-resolution search.

70127. This source is a promising transit candidate around a
field star. Crosscorrelation analysis of the Hectochelle spectrum
for the source yields Teff ∼ 5000 K though the uncertainty is
very high due to the faintness of the source. Note that there
is a nearby source to 70127 that may also contaminate this
spectrum. Combining the B, V, and IC photometry for the
source, we estimate that (B − V )0 ∼ 1.0, and E(B − V ) ∼ 0.16
so that the star has a radius of R	 ∼ 0.75R� and a mass of
M	 ∼ 0.8 M�. The light curve has Tingley & Sackett (2005)
parameters of ηp = 0.7 and η	 = 0.7, so it appears to be
consistent with the transiting planet hypothesis. The source is
located less than 2′′ from the edge of the chip; this appears
to add some scatter to the light curve that is correlated with
the seeing and removed by the TFA. Also note that there is
a 1.625 mag fainter source, 70181, that is located only 0.′′8
from 70127. The fainter source also shows a dip in its light
curve; however, the dip in flux appears to be greater for 70127
than 70181, and the centroid of 70181 on the residual image
appears to shift slightly in phase with the transit, whereas 70127
does not. Both of these factors suggest that 70127 is the real
variable. The “shoulder” just before transit is an artifact of
postprocessing the fairly high signal-to-noise light curve and
does not appear in the unprocessed light curve. Fitting a Mandel
& Agol (2002) transit model to the light curve with quadratic
limb darkening coefficients fixed to u1 = 0.54 and u2 = 0.2
from Claret (2004), which are appropriate for a ∼5000 K dwarf
star in the r filter, and fixing a/R	 = 4.38 assuming the stellar
mass, radius, and the orbital period of 0.77353 days, we find
RP ∼ 1.0RJ and sin i ∼ 0.99. The expected RV amplitude for
the star would be K ∼ 220 m s−1 (MP /MJ ), where MP is the
mass of the planet. To rule out astrophysical false positives, such
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Figure 7. Phased light curves for 16 candidate transiting planets selected by the pipeline discussed in Section 3.2. See Section 4.1 for a discussion of each candidate.
The ID is taken from the photometric catalog presented in Paper I. We list for each candidate the period in days, the fractional transit width q, and the transit depth in
magnitudes returned by BLS. We note whether the displayed light curve has been processed through the full pipeline (TFA), through steps 1 and 2 only of Section 3.1
(no detrend), or if no processing has been applied (raw). We show raw light curves for a handful of candidates where σ -clipping removes some of the in-transit points.
We also display a 9 bit flag to indicate which selection criteria sets and resolutions selected the candidate. From the left, the first 3 bits indicate if the candidate was
selected by selection criteria sets 1, 2, and 3, respectively, using a high-resolution BLS search. The middle 3 bits are for the low-resolution BLS search applied to
candidate cluster members, while the last 3 bits are for the low-resolution BLS search applied to field stars.

as an M-dwarf secondary, would require additional follow-up
spectroscopy which would be challenging given the faintness
of the source (r∼19.6, V = 19.85). Note that Sahu et al.
(2006) achieved a formal RV precision of ∼200 m s−1 for their
candidate SWEEPS-11, which has a comparable magnitude
(V = 19.83), so conducting spectroscopic follow up for 70127
is not beyond the realm of possibility.

80009. This source appears to be an eclipsing binary, though
there is not enough data to determine the period. There is a

significant amount of scatter in the light curve that results
from the source being nearly saturated. From the B, V, and
IC photometry, we estimate that the reddening to the source is
E(B−V ) ∼ 0.18 so that the source would have (B−V )0 ∼ 0.65
and M ∼ 1.0 M�. The primary eclipse depth appears to be
deeper than the value returned by BLS (closer to ∼0.1 mag);
the secondary source would have to be significantly larger than
2.0RJ to create such a deep eclipse for this star. We reject this
candidate.
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Figure 7. (Continued)

80014. This shallow transit-like signal is the result of a blend
with the r ∼ 18.3 mag eclipsing binary, V29, that is located ∼3′′
away. We reject this candidate.

90279. This is an eclipsing binary with a period of 2.283
days. Phasing the light curve at twice the period shown in
Figure 7 reveals that the secondary and primary eclipses are
slightly unequal in depth. It is V1182 in the catalog of variables
presented in Paper II. We reject this candidate.

110021. This source is a candidate cluster member with an
estimated mass of ∼1.2 M�. The secondary object must be
significantly larger than 2.0RJ to yield an eclipse deeper than
0.1 mag; the source is thus an eclipsing binary. The source
is V827 in the catalog of variables presented in Paper II. The
period displayed in Figure 7 and listed in Table 2 is the period
returned by BLS. When phased at a period of 6.7667 days the

presence of a secondary eclipse becomes apparent; it is also
apparent that the system has significant eccentricity as well as
an out-of-eclipse variation that phases with the proper orbital
period. We reject this candidate.

120050. This is an eclipsing binary; note the dual eclipse
depths at phase 0.0. When phased at twice the period shown
in Figure 7, it is clear that the light curve shows primary and
secondary eclipses of differing depths. This source is V140 in
the catalog of variables presented in Paper II. We reject this
candidate.

160017. This source is an eclipsing binary. Its position on
the CMD makes it a candidate cluster member with a mass
of ∼1.2 M�. For such a primary, the deep eclipse could not
be caused by a planetary-sized companion. There is an out-
of-eclipse variation that phases at 4.0989 days; however, the
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Figure 8. Location of 16 candidate transiting planets on g−r, g−i, B−V, and V − IC CMDs. The light points show all stars; the dark points show the transit candidates.
Five of the candidates lie near enough to the cluster main sequence on the g−r and g−i CMDs to be selected as potential cluster members (see Figure 9).

eclipses do not phase at this period. There is not enough data to
accurately determine the orbital period. In Figure 7, we show
the raw light curve phased at the period returned by BLS for the
light curve processed through the TFA. The parameters listed
in Table 2 for this system are for the raw light curve, the S/N
value is well below 10.0 in this case. The σ -clipping routine
clips much of the eclipse yielding a shallow transit that phases
roughly at the period shown and yields an S/N value above
10.0. This source is V791 in the catalog of variables presented
in Paper II. We reject this candidate.

160311. This is an eclipsing binary; there is a shallow
secondary eclipse with a depth of ∼0.05 mag visible at phase
0.5. This source is V716 in the catalog of variables presented in
Paper II. We reject this candidate.

170049. The transit feature seen in the noisy unprocessed
light curve is completely eliminated by TFA. The source lies
within 2′′ of the edge of the frame and the variations in the light
curve are strongly correlated with the image seeing. The transit
feature is removed when the light curve is decorrelated against
seeing. We reject this candidate as the variations appear to be
spurious.

170100. This source is an eclipsing binary. When phased at
twice the period displayed in Figure 7, it is clear that the primary
and secondary eclipses are of unequal depth. The out-of-eclipse
variations also phase at this period. This source is V1028 in
the catalog of variables presented in Paper II. We reject this
candidate.

230082. This source, V485, is most likely an F–M eclipsing
binary. Note that when phased at the period recovered by BLS
(as shown in Figure 7), there appears to be a secondary eclipse at

phase −0.5, when phased at a period of 1.6676 days; however,
the putative secondary matches to the primary eclipse. Also
note that the clipping procedure removes some points from
the bottom of the eclipse; the eclipse in the raw light curve
is ∼0.01 mag deeper. From the B, V, and IC photometry,
we estimate E(B − V ) ∼ 0.38, so (B − V )0 ∼ 0.41, which
corresponds to a ∼1.5 M�, and ∼1.4R�, primary star. For a
star of this size, a 0.034 mag transit requires that the companion
have a radius greater than 2RJ .

270149. This source, V457, is an eclipsing binary. Note the
deep, and distinct, primary and secondary eclipses. We plot the
raw light curve for this star in Figure 7; the clipping routine
removed many of the points in eclipse, which caused BLS to
identify the wrong period and underestimate the depth.

280287. This is a grazing eclipsing binary. When the raw light
curve is phased at twice the period found by BLS, it is clear that
the primary and secondary minima are of unequal depths. This
source is V226 in the catalog of variables presented in Paper II.
We reject this candidate.

330224. This source, V141 in the catalog of variables, is an
eclipsing binary given its depth. The raw light curve reveals a
strong out-of-eclipse variation with a peak-to-peak amplitude
of ∼0.1 mag that phases at the orbital period.

5. TRANSIT DETECTION EFFICIENCY CALCULATION

To calculate our planet detection efficiency, we follow the
procedure described by B06; we summarize the procedure here
and perform the calculation separately for cluster members and
field stars.
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Figure 9. Selection of stars near the cluster main sequence, which are used in
computing the planet detection probability, is plotted on g−r and g−i CMDs.
The bottom two panels show the CMDs for the field on the cluster, while the
top two panels show the CMDs for a field adjacent to the cluster with the same
Galactic latitude (see Paper I). The off-cluster field is used in determining the
membership probability as a function of magnitude (Figure 10). Stars falling
within the solid black lines on both CMDs are selected as stars near the cluster
main sequence.

5.1. Cluster Members

In Figure 9, we show the selection of stars near the cluster
main sequence on g−r and g−i CMDs. We select a total of
2475 stars that have an instrumental magnitude of less than
17, rms <0.1 mag, and that have at least 1000 points in their
light curves. Note that we expect ∼1450 of these stars to be
cluster members. We use these stars to place a limit on the
planet occurrence frequency for the cluster. The total number of
planets in the cluster that we expect to detect with our survey is
given by

Ndet = f

N∑
i=1

Pdet,i , (8)

where f is the planet occurrence frequency over a specified
planet radius and orbital period range, Pdet,i is the probability of
having detected such a planet for star i, and there are N candidate
cluster members in the survey. For a binomial distribution,
the detection of no planets is inconsistent at the ∼95% level
when Ndet � 3. The 95% confidence upper limit on the planet
occurrence frequency is then

f � 3

/( N∑
i=1

Pdet,i

)
. (9)

The planet detection probability for star i is given by

Pdet,i =
∫ ∫

d2p

dRpdP
Pε,i(P,Rp)PT,i(P,Rp)Pmem,idRpdP,

(10)
where Pε,i is the probability of detecting a transit of a planet
with the orbital period P and radius Rp for star i if it has an

orbital inclination that yields transits, PT,i is the probability that
the planet has an inclination that yields transits, Pmem,i is the
probability that star i is a cluster member, and d2p/dRpdP is
the joint probability distribution of Rp and P.

There are four terms that contribute to Equation (10) that
must be determined separately. Assuming random orientations,
the term PT,i is given analytically by PT = (R	 + Rp)/a, where
R	 is the radius of the star and a is the semimajor axis for an
orbital period P and stellar mass M	. For the term Pmem,i we
take the photometric membership probability of the star, which
we calculate by comparing the CMD of the cluster to a CMD of
a field off the cluster. The term d2p/dRpdP must be treated as a
prior, and the term Pε,i is calculated via Monte Carlo simulation
as discussed below.

5.1.1. Calculating Pε,i

We follow the procedure described by B06 to calculate Pε,i .
This involves injecting limb-darkened transits into the light
curves of potential cluster members and attempting to recover
them. Transits are injected into the raw light curves; we then
run each simulated light curve through the postprocessing and
transit selection routines described in Section 3. Note that we
only conduct simulations on light curves that are not selected
as transit candidates. Since there are only a few candidates,
not including their efficiencies should not change our results
significantly.

To simulate transit light curves, we use the Mandel & Agol
(2002) analytic model with r-band quadratic limb-darkening
coefficients from Claret (2004). Note that we assume circular
orbits for the short-period planets under consideration. We
estimate the mass, radius, and surface temperature of each star
using the best-fit YREC isochrone (An et al. 2007; also see
Paper I), we then estimate the limb-darkening coefficients for
each star via linear interpolation within the Claret (2004) grid,
assuming [M/H ] = 0.045 (Paper I) and vturb = 2 km s−1.

To determine the dependence of Pε,i on the orbital period, we
inject the transits in period bins ranging from 0.4 to 5.0 days
with a logarithmic step size of 0.022. For each period bin,
we inject Ntrial transits with periods distributed uniformly
in logarithm over the bin, random phases and inclinations
distributed uniformly in cos i over the range 0 � cos i �
(R	 + Rp)/a. Following B06, we estimate that the error in the
recovery fraction f = Nrecover/Ntrial is given by

σf =
√

f (1 − f )/Ntrial. (11)

For each period bin, we initially adopt Ntrial = 20 and continue
simulating transits until σf � 0.05 using selection criteria set 1.
We conduct simulations for planetary radii of 0.3, 0.35, 0.4,
0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, and 2.0RJ .

5.1.2. Calculating Pmem,i

To calculate the membership probability for each star, we use
the luminosity functions of the cluster and Galactic field along
a strip in the g−r and g−i CMDs enclosing the cluster main
sequence (see Figure 9; the determination of the luminosity
functions is described in Paper I). This gives the membership
probability as a function of r-magnitude only. In Figure 10, we
show the membership probability as a function of r. Since this
method ignores color information in assigning a probability to
stars, it tends to give too high a probability to stars lying away
from the cluster main sequence and too low a probability to
stars lying close to the main sequence. If the transit detection
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Figure 10. Histogram of stars in the field of the cluster selected in Figure 9 as a
function of r-magnitude (open histogram) compared to the histogram of cluster
members (filled histogram) taken to be the difference between the histogram
of the field on the cluster and the histogram of the field off the cluster. The
solid line shows the membership probability (calculated as the ratio of the filled
histogram to the open one) as a function of r. The histograms are taken from
Paper I and include a correction for photometric incompleteness, but do not
correct for spatial incompleteness. This figure is analogous to Figure 9 in B06.

probability depends only on the r-magnitude of the star, then this
simplification should not bias the result. However, as shown in
Paper II, cluster members have a higher probability of exhibiting
photometric variability than field stars of the same magnitude, so
we caution that it is possible that the transit detection probability
may be lower on average for cluster members than for field stars.
We consider this possibility in Section 6.3.

5.2. Field Stars

To calculate the detection efficiency for field stars, we follow
a procedure that is similar to what we use for cluster members.
In this case, however, the mass and radius of a star cannot be
determined simply from the magnitude of the star. Instead, we
use Galactic models to estimate the mass and radius for each
star.

First, we select a sample of observed field stars that includes
all stars with g, r, i, B, and V photometry that have more than
1000 points in their light curves, have a light-curve rms that is
less than 0.1 mag, an instrumental r-band magnitude less than
17 (corresponding roughly to r � 22), and were not selected
as candidate cluster members. The sample of stars is shown on
B−V and V − IC CMDs in Figure 11. A total of 7824 stars are
selected in this fashion. We then obtain simulated photometric
observations of a 24′×24′ field centered at the Galactic latitude/
longitude of the cluster using the Besançon model (Robin et al.
2003). We assume an interstellar extinction of 0.7 mag kpc−1.
We caution that this model is known to be unreliable along
certain lines of sight (LOSs), in particular for low Galactic
latitudes (e.g., see Ibata et al. 2007). For each observed star in
our sample, we choose the simulated star that minimizes

(Vo − Vs)
2 + (Bo − Bs)

2 + (IC,o − IC,s)
2, (12)

Figure 11. B−V (left) and V −IC (right) CMDs for stars selected as members of
the Galactic field (top), for a simulated observation using the Besançon Galactic
models (middle), and for a simulated observation using the Trilegal Galactic
model (bottom). For plotting purposes, we have added a Gaussian noise of
0.05 mag to the V − IC colors from the Besançon model. Stars not selected
as cluster members that pass a number of cuts on magnitude, light-curve rms,
and the number of points in the light curve (see Section 5.1) are selected as
members of the Galactic field. The solid lines show approximately the location
of stars selected as potential cluster members; these stars are selected on gri
CMDs and are not included in the top two CMDs. To estimate the mass and
radius for each star in the top two CMDs, we take the values for the nearest star
in the middle two CMDs. We use the Trilegal model to estimate the errors in
the planet frequency upper limits that result from uncertainties in the Galactic
model (Section 6.3). Open stars in the top two plots show points that match to
white dwarfs. We reject these stars from our sample.

where the o subscripts denote photometric measurements for
observed stars and the s subscripts denote photometric measure-
ments for simulated stars. We then assign the mass and radius
of the simulated star to the observed star. We reject 10 stars that
match to white dwarfs since all these lie in an isolated region
of the CMD. The majority of the stars in the sample (97%)
match to dwarf stars (log g > 4.0, cgs) rather than subgiants
or giants. Figure 12 shows the estimated radii of the field stars
as a function of magnitude compared with the values for the
cluster. Note that at fixed magnitude, the majority of field stars
have larger radii than the cluster stars. As a result, we expect
the transit probability to be larger, but the overall S/N to be
smaller at fixed magnitude for the field stars. Thus for signals
for which the S/N is much larger than the threshold, the detec-
tion efficiency is larger for field stars, but for planets near the
S/N threshold, the detection efficiency will be smaller. Thus,
the minimum detectable planet radius will be smaller for cluster
stars, all else being equal. For the less common foreground field
dwarfs, the opposite is true.

We determine the detection efficiency by conducting transit
injection and recovery simulations as described in Section 5.1.1.
We conduct the simulations for 1000 randomly selected field
stars. For each star, we calculate Pdet,i using Equation (10) where
we now take Pmem,i = 1. The 95% upper limit on the occurrence
frequency, assuming no detections, can then be calculated using
Equation (9) with the sum in the dominator being multiplied
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Figure 12. Estimated stellar radius is plotted against the magnitude for Galactic
field stars (solid points) when using the Besançon Galactic model (top) and the
Trilegal model (bottom). The solid line shows the relation for the cluster.

by 7814/1000 to scale from the simulated subset to the full
sample.

6. RESULTS

In Figure 13, we show several examples of transit-injected
light curves recovered in our simulations. Note that 1.5 and
1.0RJ planets are easily recovered. Also note that the S/N for
0.4RJ planets is similar to that for ∼1.0RJ planets discovered
by the field surveys (see, e.g., Pont et al. 2006).

In Figure 14, we plot the detection probability (Equation (10))
as a function of magnitude for 0.5, 1.0, and 1.5RJ simulations
on candidate cluster members recovered using selection criteria
set 2. We show the results for the EHJ (0.4 < P < 1.0 days), the
VHJ (1.0 < P < 3.0 days), and the HJ (3.0 < P < 5.0 days)
period ranges. For the HJ period range, we use an upper limit of
5.0 days rather than 9.0 days since we do not attempt to recover
planets with periods longer than 5.0 days. For each period
range and planet radius, we integrate Equation (10) assuming a
uniform probability distribution in log P and a Dirac-δ function
distribution in R, that is,

d2p

dPdR
∝ δ(R − R0)/P, (13)

where R0 is the planet radius under consideration. Note that
the detection probability for 1.5RJ planets orbiting bright
stars (15.0 � r � 20.0) drops relative to the probability for
1.0RJ planets. There are two factors that contribute to this:
steps 3–5 of the light-curve processing routines described in
Section 3.1 distort the high signal-to-noise transits for these large
planets often leading to out-of-transit variations in the processed
light curves, and the discrepancy between the limb-darkened
transit signal and the box-car model becomes significant for the
high signal-to-noise transits. When the light curve processing
routines are not used (selection set 3), the drop in the detection
probability of large planets is less significant; however, the
sensitivity to smaller planets is reduced.

Figure 13. Example-phased light curves of simulated transits that are success-
fully recovered using selection criteria set 2 (Section 3.2.2). The simulated
planets have radii of 1.5, 1.0, and 0.4RJ while the stars have radii of 0.70, 0.47,
and 0.83R�, respectively. The injected periods are 1.77, 1.44, and 1.12 days,
respectively. The line shows the best-fit box-car transit; we also list the SN for
each transit. Note that the examples shown correspond approximately to the
median SN recoveries for each planet radius among all recovered simulations
with periods between 1.0 and 3.0 days. The 1.5 and 1.0RJ planets are easily
recovered while the 0.4RJ planet is marginally recovered.

Figure 14. Detection probability as a function of r-magnitude for transit
injection/recovery simulations of candidate cluster members. The simulations
are recovered using selection criteria set 2. We show the results for the HJ, VHJ,
and EHJ period ranges for several planetary radii. The detection probability
decreases toward fainter magnitude since the transit probability at fixed period
decreases for smaller stars. Note that for very high signal-to-noise transits
(1.5RJ ) the detection probability is lower than expected as a result of the trend-
filtering routines.

In Figure 15, we compare the detection probability for field
stars to the probability for cluster members; we set Pmem = 1 for
the cluster members in making this comparison. As expected, the
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Figure 15. Detection probability as a function of r-magnitude for field stars
(dark points) compared with candidate cluster members (light points). We plot
PεPT , which corresponds to Pdet when Pmem = 1.0 for cluster members and is
equal to Pdet for field stars.

field stars generally show slightly higher detection probability
at fixed magnitude than the cluster members for signals with an
S/N well above the detection threshold due to the higher transit
probability, but smaller for those signals near the threshold due
to the larger radii (and so shallower transits).

Figure 16 shows the ∼95% and 1σ confidence upper limits on
the planet occurrence frequency for cluster members and field
stars as a function of the orbital period using selection criteria
set 2. We assume that the orbital periods are uniformly dis-
tributed in logarithm within logarithmic period bins of size
0.022 and show the results for several different planet radii.
In Figure 17, we show the ∼95% confidence upper limits for
cluster members as a function of the planet radius for the EHJ,
VHJ, and HJ period ranges. We compare the results for the three
distinct selection criteria sets. The results are listed in Table 3.
We find that the SVM-based selection (selections 2 and 3) out-
performs the non-SVM-based selection (selection 1). The upper
limits set using SVM are as much as 1.7 times smaller than the
upper limits set using the non-SVM selection.

In Figure 18, we show how the distribution of stellar masses
to which we are sensitive to planets depends on the planetary
radius and period for the cluster candidates and field stars. Note
that for 0.3RJ planets, the field star distribution is peaked toward
smaller stars, whereas the cluster distribution is peaked toward
larger stars. The small field stars to which we have sensitivity
to 0.3RJ planets are foreground stars; at the distance of the
cluster, these stars are too faint for us to detect Neptune-sized
planets around them. For larger planets, the field star sensitivity
distribution is peaked around 0.8–1.0 M�, whereas the cluster
distribution is broader and peaked at around 0.8 M�.

6.1. Cluster Members

For cluster members, we place a 95% confidence upper limit
on the frequency of stars with Jupiter-sized EHJ, VHJ, and HJ
planets of 1.1%, 2.7%, and 8.3%, respectively. Note that all

Figure 16. ∼95% confidence upper limit (solid lines) on the fraction of cluster
members (left) and field stars (right) with planets of a given radius as a function
of the orbital period. We show the results for 0.35, 0.5, 0.7, and 1.0RJ planets.
For field stars, we show 0.3RJ rather than 0.35RJ . We also plot the 1σ upper
limits (dotted lines) for each of these planet radii.

Figure 17. ∼95% confidence upper limit on the fraction of cluster members
(left) and field stars (right) with planets in a given period range as a function of
the planetary radius. We show the results for the EHJ (0.4 < P < 1.0 days),
VHJ, (1.0 < P < 3.0 days), and HJ (3.0 < P < 5.0 days) ranges. We compare
the results for each of the selection criteria sets discussed in Section 3.2.

of these limits, as well as those we discuss below, come from
selection criteria set 2. For smaller planets, the limits rise. For
the EHJ period range, we can place a limit of 25% on planets
down to 0.35RJ , which is roughly the size of Neptune. For the
VHJ period range, we can place a limit of 44% on planets down
to 0.45RJ , while for the HJ period range, we can place a limit
of 49% on planets down to 0.6RJ .

6.2. Field Stars

The sample of field stars provides more stringent upper limits
on the planet occurrence frequency than the sample of cluster
members. For this sample we can place a 95% confidence upper
limit on the frequency of stars with Jupiter-sized EHJ, VHJ, and
HJ planets of 0.3%, 0.8%, and 2.7% respectively. This assumes
that the candidate 70127 is not a real planet; if 70127 is real,
the frequency of ∼1.0RJ planets in the EHJ period range would
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Table 3
95% Upper Limits on the Planet Occurrence Frequency

Period Selection 0.3RJ 0.35RJ 0.4RJ 0.45RJ 0.5RJ 0.6RJ 0.7RJ 0.8RJ 0.9RJ 1.0RJ 1.5RJ 2.0RJ

Cluster EHJ 1 1.000 0.421 0.139 0.067 0.042 0.023 0.017 0.015 0.014 0.014 0.026 0.048
2 1.000 0.247 0.091 0.049 0.032 0.019 0.015 0.012 0.011 0.011 0.012 0.025
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.014 0.010 0.014

VHJ 1 1.000 1.000 1.000 0.754 0.328 0.117 0.067 0.048 0.040 0.036 0.050 0.100
2 1.000 1.000 1.000 0.444 0.213 0.086 0.051 0.037 0.031 0.027 0.023 0.056
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.044 0.026 0.031

HJ 1 1.000 1.000 1.000 1.000 1.000 0.967 0.416 0.248 0.186 0.153 0.165 0.300
2 1.000 1.000 1.000 1.000 1.000 0.485 0.226 0.139 0.104 0.083 0.069 0.149
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.202 0.104 0.124

Field EHJ 1 0.230 · · · · · · · · · 0.023 · · · 0.007 · · · · · · 0.004 0.003 0.004
2 0.158 · · · · · · · · · 0.014 · · · 0.005 · · · · · · 0.003 0.002 0.002
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.003 0.002 0.002

VHJ 1 1.000 · · · · · · · · · 0.148 · · · 0.035 · · · · · · 0.012 0.007 0.007
2 1.000 · · · · · · · · · 0.088 · · · 0.020 · · · · · · 0.008 0.005 0.004
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.009 0.005 0.005

HJ 1 1.000 · · · · · · · · · 1.000 · · · 0.240 · · · · · · 0.062 0.028 0.026
2 1.000 · · · · · · · · · 0.469 · · · 0.095 · · · · · · 0.027 0.013 0.012
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.044 0.020 0.019

Figure 18. Pdet-weighted distribution of stellar masses to which we have
sensitivity to detect planets. The curves have been normalized to have a unit
integral over the range 0.09 M� < M < 2.1 M�. The distributions are plotted for
different planetary radii and period ranges, and are shown for cluster candidates
(left) and field stars (right) separately. Note that for 0.3RJ planets, the field star
distribution is peaked toward smaller stars, whereas the cluster distribution is
peaked toward larger stars. The small field stars to which we have sensitivity to
0.3RJ planets are foreground stars; at the distance of the cluster, these stars are
too faint for us to detect Neptune-sized planets around them. For larger planets,
the field star sensitivity distribution is peaked at around 0.8–1.0 M�, whereas
the cluster distribution is broader, but also peaked at around 0.8 M�.

be 0.002% < f < 0.5% with 95% confidence. In principle, this
frequency is small enough that planets in this period range could
have escaped detection in most other RV and transit surveys.
Some transit surveys have probed enough stars to be sensitive
to planets with these frequencies, as some of them have looked
at as many or more stars than we have, but these surveys have
generally not been very sensitive to hosts with masses as small

Figure 19. Masses and radii of solar system objects (filled circles) and transiting
planets (open circles) are compared with two simple mass–radius relations that
we adopt for estimating the expected planet yield. The solid line is a power law
of the form R/RJ = 1.5(M/MJ )0.5 for M < MJ and R = 1.5RJ for M � MJ ,
the dotted line is a power law of the form R/RJ = 1.0(M/MJ )0.38 for M <MJ

and R = RJ for M � MJ . The transiting planet data were taken from Torres
et al. (2008). For comparison we also show theoretical mass-radius relations
for a pure ice planet (dashed line), a gas giant with a 25M⊕ core (long dashed
line), and a pure gas giant (dot-dashed line) from Fortney et al. (2007). The gas
giant–planet relations are for a planetary semimajor axis of 0.045 AU.

as this host (see Gould et al. 2006; Beatty & Gaudi 2008). For the
EHJ period range, we can place a limit of 16% on planets down to
0.3RJ ; for the VHJ range, a limit of 8.8% on planets down to
0.5RJ ; and for the HJ range, a limit of 47% on planets down
to 0.5RJ . Extrapolating the curves in Figure 17, we note that
for the EHJ period range, we do have some sensitivity even to
planets as small as ∼2.5R⊕.
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Table 4
95% Upper Limits on the Planet Occurrence Frequency for Field Stars Using

Different Galactic Models

Radius [RJ] EHJa VHJ HJ

Trilegal model 0.3 0.143 · · · · · ·
0.5 0.014 0.082 0.401
0.7 0.005 0.022 0.104
1.0 0.003 0.009 0.033
1.5 0.002 0.005 0.015
2.0 0.002 0.005 0.013

Besançon model 0.3 0.151 · · · · · ·
AV = 0.5 mag kpc−1 0.5 0.010 0.065 0.394

0.7 0.004 0.016 0.070
1.0 0.003 0.007 0.023
1.5 0.002 0.005 0.014
2.0 0.002 0.005 0.015

Note. a The 95% upper limit on the occurrence frequency of planets
with the specified radius and within the EHJ period range.

6.3. Errors on the Upper Limits

There are a number of factors that may contribute errors to the
upper limits. This includes uncertainties in Pε from using a finite
number of simulations, errors in Pmem from using a finite sample,
and systematic errors from blends and binaries, from errors
in the assumed Galactic model, and from the possibility that
cluster members are more likely to be variable than noncluster
members. B06 gave a detailed discussion of how most of these
errors can be estimated.

The fractional uncertainties in the 95% upper limits for
cluster members (σf<95%/f<95%) due to using a finite number
of simulations to determine Pε range from ∼1% for 0.3RJ

simulations to ∼0.04% for 1.0RJ EHJ simulations. For field
stars, the fractional uncertainties are all less than 1%. These
errors are negligible compared to other sources of uncertainty.

Following B06, we note that the fractional uncertainty in
the 95% upper limit for candidate cluster members due to
uncertainties in Pmem is equal to the fractional uncertainty in
the effective number of cluster members: σN	,eff /N	,eff , where
N	,eff = N	〈Pmem〉. We find σN	,eff /N	,eff = 2%.

We expect binarity to be a more significant effect than chance
alignments. As we noted in Paper II, we expect ∼1 chance
alignment within 0.′′1 of two point sources brighter than our
detection threshold in our entire field. The effect of binarity on a
transit survey is not straightforward. While the blending of light
from two stars will dilute the transit signal, the primary star
will be slightly smaller than what is assumed when injecting
transits. Moreover, if the precision of the light curve is good
enough that one could still detect the transit for a given planetary
radius and primary star radius if the transit were more than a
factor of 2 shallower, then such a planet would be detectable
orbiting the primary star for any mass ratio and it may also
be detectable orbiting the secondary star. In this case the total
number of stars to which one is sensitive to planets is greater
than estimated when binarity is neglected (see Gould et al. 2006;
Beatty & Gaudi 2008, for further discussion about the effects of
binarity). Binarity will only affect the detectability of a transit
if the mass ratio is high; B06 estimated that the requirement is
q � 0.6, which they argued is true for only ∼11% of dwarf
stars when the binary fraction ∼50%. There is an indication that
the binary fraction along the main sequence in M37 is closer
to 20% (Kalirai & Tosi 2004), which would reduce the number
of high-mass ratio binaries to ∼4% assuming that the mass

ratio distribution in the cluster is the same as for the Galactic
field.

To estimate how uncertainties in the inferred masses and radii
of field stars that results from uncertainties in the Galactic model
affect the planetary frequency upper limits, we recompute the
upper limits using the Trilegal 1.2 Galactic model (Girardi et al.
2005). We match the sample of field stars to a simulated set
of photometric observations generated with the Trilegal model
following the same procedure that we used in Section 5.2 to
match to the Besançon model. The Trilegal model is shown in
Figures 11 and 12 and is generated assuming a local extinction
law of 0.7 mag kpc−1. With this model, we find that 96.5%
of stars in our field sample have log g > 4.0, which is
comparable to the dwarf fraction found with the Besançon
model. In Section 5.2, we computed the transit detection
probability for a sample of 1000 field stars by conducting transit
injection/recovery simulations with stellar masses and radii
adopted from the match to the Besançon model. Here, we avoid
the expensive task of conducting additional transit injection/
recovery simulations by matching stars in the Trilegal-matched
sample to appropriate stars in the Besançon-matched sample.
We match each star, i, in the Trilegal-matched sample to the
star, j, in the Besançon-matched sample that minimizes

(0.2 ln(10)(ri − rj ))2 + (2(Ri − Rj )/Ri)
2, (14)

where r is the r-magnitude of the star and R is its radius. We
then set the transit detection probability for star i equal to the
probability for star j determined from the simulations. This
choice of weighting between magnitude and radius minimizes
differences between the expected transit S/N of the two stars.
The upper limits on the planet occurrence frequency are then
computed with Equation (9). The results using selection criteria
2 are listed in Table 4. We find that the fractional difference in the
planet frequency upper limits from the two Galactic models is
� 10%. The Trilegal model yields a systematically lower upper
limit for the 0.3RJ and 0.5RJ planets but a systematically higher
upper limit for larger planets. In a similar manner, we recalculate
the upper limits using the Besançon model generated with less
extinction (0.5 mag kpc−1). In this case we find that the upper
limits for planets smaller than 1.0RJ are systematically smaller
while the upper limits for larger planets are systematically larger.
The fractional differences in the upper limits for 0.7RJ and
smaller planets range from ∼5% to ∼30%, while for larger
planets they range from ∼2% to ∼20%. We adopt a fractional
uncertainty of ∼10% on the upper limits due to uncertainties in
the Galactic model.

To estimate the effect of variability on the upper limits for
cluster members, we compute the upper limits under the extreme
case where all candidate cluster members that are variable have
Pmem = 1 and other stars have Pmem = (N (r)Pmem,0(r) −
Nvar(r))/(N (r) − Nvar(r)), where Pmem,0 is the value of Pmem
when variable and nonvariable stars are weighted equally, N (r)
is the number of candidate cluster stars in magnitude bin r,
and Nvar is the number of variable candidate cluster stars in
magnitude bin r. The resulting 95% upper limits for selection
criteria set 2 are given in Table 5. For small radius planets,
the effect is significant, so that the upper limit on 0.35RJ EHJ
planets, for instance, increases to 38% from 25%. For larger
planets, the effect of variability is less important; above 1.0RJ ,
the fractional increase in the upper limit is less than 10%.

Assuming that binarity and variability only increase the
upper limits, the fractional uncertainty on the upper lim-
its for 1.0RJ planets orbiting candidate cluster members is
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Table 5
95% Upper Limits on the Planet Occurrence Frequency for Cluster Stars

Assuming that All Variables are Cluster Members

Radius [RJ] EHJa VHJ HJ

0.35 0.381 1.000 1.000
0.40 0.123 1.000 1.000
0.45 0.060 0.633 1.000
0.50 0.037 0.281 1.000
0.60 0.021 0.103 0.636
0.70 0.015 0.058 0.277
0.80 0.013 0.040 0.161
1.00 0.011 0.028 0.090
1.50 0.012 0.024 0.071
2.00 0.022 0.056 0.154

Note. a The 95% upper limit on the occurrence frequency
of planets with the specified radius and within the EHJ
period range.

∼ + 11%,−2%, and for 0.35RJ planets, it is ∼ + 50%,−2%.
For field stars, we can neglect the uncertainty due to variabil-
ity and the uncertainty on the membership probability, but we
must include the uncertainty on the Galactic model, so that the
fractional uncertainty on the upper limit for all planetary radii is
∼ + 15%,−10%.

6.4. Comparison with Previous Results

Our results can be compared with both previous results for
transit surveys of open clusters and results from transit and RV
surveys of the Galactic field.

Our limits of 1.2%, 2.3%, and 6.9% for the cluster on the
frequency of EHJ, VHJ, and HJ planets, respectively, with
R = 1.5RJ are substantially better than the corresponding
limits of 1.5%, 6.4%, and 52% for NGC 1245 by B06. The
primary differences between the two surveys are that we
observed approximately twice as many cluster members as B06
and we obtained significantly higher precision photometry at
fixed stellar radius than B06. Note, however, that B06 used a
period range of 3–9 days for the HJ range, whereas we use a
range of 3–5 days. Since, by selection, we have zero sensitivity
to planets with 5 days < P < 9 days, extending our HJ range
to the B06 range results in a limit of ∼15% on the fraction
of stars with planets of radius 1.5RJ (assuming an underlying
distribution in P that is uniform in logarithm). Miller et al.
(2008) have also conducted detailed Monte Carlo simulations
of their open cluster transit survey and placed 95% upper limits
of 14% and 45% on a VHJ and HJ, respectively, with radii of
1.5RJ .

We can estimate the frequency of planets detected by RV
surveys in the EHJ, VHJ, and HJ period ranges using the results
from Cumming et al. (2008, see Figure 5 in their paper). Out
of their sample of 585 FGKM stars, there are seven planets
with M > 0.1MJ and 3 days < P < 5 days, one planet
with M > 0.1MJ and 1 day < P < 3 days, and no
planets detected with P<1 day. This yields 95% confidence
intervals for the occurrence frequencies of 0.48% < fHJ < 2.5%,
0.0043% < fVHJ < 0.95%, and fEHJ < 0.51%. Our results are
not directly comparable with the RV survey results for two
reasons: first, our limits are based on planetary radius while
the RV survey limits are based on planetary mass; second, the
distribution of stellar masses and metallicities is not the same for
the two surveys. Nonetheless, if we assume that all extrasolar
giant planets have radii of ∼1.0RJ and that the planet occurrence

frequency does not depend on stellar properties, then our upper
limits of fEHJ < 0.3%, fVHJ < 0.8%, and fHJ < 2.7% for field
stars are consistent with the measured RV frequencies.

Gould et al. (2006) used the results of the OGLE transit
survey to determine the frequency of VHJ and HJ planets.
Assuming that planets follow a uniform distribution in radius
between 1.0RJ and 1.25RJ , they found fVHJ = 0.14+0.19

−.08 % and
fHJ = 0.31+0.35

−0.17% with 90% confidence error bars. Furthermore,
they placed a 95% confidence upper limit of less than 1.7%
on planets with periods between one and five days and radii
distributed uniformly between 0.78 and 0.97RJ . Similarly,
Fressin et al. (2007) found fVHJ = 0.18% and fHJ = 0.29%
for the OGLE survey, and they found that the fraction of stars
bearing planets with periods less than two days is 0.079+0.066

−0.040%
with 90% confidence error bars. Note that the frequency of an HJ
is lower for the OGLE survey than for the RV surveys because
the RV surveys tend to be biased toward higher metallicity stars
whereas the OGLE survey is not. Our upper limits on the VHJ
and HJ occurrence frequencies for field stars are consistent with
the frequencies determined by both of these groups.

We can also compare our results with the results from the
SWEEPS survey. Sahu et al. (2006) found that ∼0.4+0.4

−0.2%
of stars larger than 0.44 M� host a Jupiter-sized planet with
P < 4.2 days, assuming that all 16 of their candidates are
real, which is consistent with the limits that we set. Focusing
specifically on the EHJ period range, we note that Sahu et al.
(2006) found five candidate planets in this range and estimated
that at least ∼2 of them are likely to be real. Assuming that all
16 candidates are real planets, and that 5 of them are an EHJ,
their results suggested that ∼0.13% of stars host an EHJ. If, on
the other hand, we estimate that only half of the candidates are
real, and that two of them are an EHJ, the frequency of an EHJ
would be ∼0.05%. Note that we have assumed that the detection
probability is constant over the entire period range. Accounting
for the enhanced probability of detecting an EHJ over a VHJ
and HJ may lower the frequency estimates of these planets by
as much as a factor of ∼5. The SWEEPS frequency of an EHJ
is below the 95% upper limit that we set assuming that 70127
is not a real candidate. If 70127 is real, our EHJ frequency of
0.09+0.2

−0.077% (with 1σ errorbars) would be consistent with the
SWEEPS results.

6.5. Expected Planet Yield

Based on the planet distribution determined by other surveys,
we can estimate the expected yield of our survey. Cumming
et al. (2008) found that the distribution of planet masses down
to ∼0.1MJ is given by

d2N

d ln Md ln P
= CMαP β, (15)

where α = −0.31 ± 0.2 and β = 0.26 ± 0.1, M is in Jupiter
masses, P is in days, and C is a constant. For notational
simplicity, in the following discussion, we do not write factors
of MJ and RJ . We will adopt the mass dependence from this
relation, but not the period dependence, since this relation does
not account for the pile-up of planets at short periods. For the
period dependence we adopt a constant CP̄ that is appropriate
for each period range P̄ (i.e., EHJ, VHJ, or HJ). The model
distribution is then given by

dNP̄

d ln M
= CP̄ Mα, (16)
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where

CP̄ = fP̄ α

Mα
max − Mα

min

, (17)

and fP̄ is the fraction of stars with planets in period range P̄
with masses between Mmin = 0.1 and Mmax = 10.

We assume a simple planetary mass–radius relation of the
form

R(M) =
{
R0M

γ , M<1.0
R0, M � 1.0 , (18)

with γ = 0.5, R0 = 1.5, or γ = 0.38, R0 = 1 (see Figure 19).
We consider two different mass-radius relations to determine the
sensitivity of our results to the assumed relation. The expected
number of planet detections in the EHJ, VHJ, and HJ period
ranges is then given by

NP̄ =
∑

i

(∫ R0

Rmin

γ −1CP̄

(
R

R0

)α/γ

R−1Pdet,P̄ ,i(R)dR

+ Pdet,P̄ ,i(R0)CP̄ α−1(Mα
max − 1

))
, (19)

where the sum is over all stars in the sample, Pdet,P̄ ,i(R) is
the planet detection probability for star i for planets with radii
R restricted to the period range P̄ , and Rmin is a minimum
planetary radius below which Pdet = 0 for all stars (we take
Rmin = 0.3). Note that we assume that the planetary mass and
period distribution are independent of the stellar mass.

We expect that the sample of stars surveyed by the RV planet
searches, which is biased toward high metallicity, provides a
better match to the metallicity of the cluster than the stars
surveyed by the OGLE transit search, whereas the OGLE
sample provides a better match to the metallicity of the field
stars than the RV sample. We therefore use the frequencies
of the HJ and VHJ planets from Cumming et al. (2008) for
the cluster and the frequencies from Gould et al. (2006) for
the field. We take the frequency of an EHJ inferred from the
SWEEPS survey for both the field and the cluster. Fixing CHJ,
CVHJ, and CEHJ for cluster members such that the fraction of
stars with an HJ, VHJ, and EHJ larger than 0.1 M� is 0.012,
0.0017, and 0.0005, respectively, we find CHJ = 2.4 × 10−3,
CVHJ = 3.4 × 10−4 and CEHJ = 1.0 × 10−4. For the field
stars, we use the frequencies from Gould et al. (2006) to set
CHJ = 6.2 × 10−4 and CVHJ = 2.8 × 10−4.

Using the above model and Pdet(R) values from selection
criteria set 2, we find that for cluster members we would expect
to detect ∼0.10–0.12 EHJ planets, 0.11–0.16 VHJ planets, and
0.23–0.35 HJ planets where the range depends on the assumed
mass-radius relation. For field stars, on the other hand, the
expected number of detections are ∼0.34–0.51, 0.30–0.54, and
0.18–0.39. We conclude that for the above model, we would
have expected to detect ∼1.3–2 stars in our entire survey, and
therefore our observations are consistent with the model. Finally,
we note that Beatty & Gaudi (2008) predicted that there are ∼6
transiting HJ and VHJ planets per square degree orbiting Sun-
like stars with V � 20 at Galactic latitude b = 3.◦1 (see Figure 8
of that paper). For our 0.16 deg2 survey, they would predict ∼1

transiting planet detection, which is comparable to the expected
planet yield around field stars from our simulations.

7. DISCUSSION

We have presented the results of a deep ∼20 night survey for
transiting hot planets in the open cluster M37. This survey stands
out from previous ground-based transit surveys both in terms of
the size of the telescope used and the photometric precision
attained. We observed ∼1450 cluster members with masses
between 0.3 M� � M � 1.3 M� as well as 7814 Galactic
field stars with masses between 0.1 M� � M � 2.1 M�.
While no candidate planets were found among the cluster
members, we did identify one candidate EHJ with a period of
0.77 days transiting a Galactic field star. However, the follow-
up spectroscopic observations needed to confirm the planetary
nature of this candidate would be difficult (although perhaps
not impossible) to obtain with current technology, given the
faintness of the source. We note that if this candidate is real,
then we conclude that 0.09+0.2

−0.077% of FGKM stars have Jupiter-
sized planets with periods between 0.5 and 1.0 days. This result
would be consistent with the results from the SWEEPS survey,
and would confirm this new class of ultrashort-period planets.
We also note that this planet frequency is small enough that
these planets could have escaped detection in most other RV
and transit surveys.

The primary result of this survey is an upper limit on the
frequency of planets smaller than 1.0RJ . For cluster members,
we find that at 95% confidence less than 25% of stars have
planets with radii as small as 0.35RJ and periods shorter than
one day, less than 44% of stars have planets with radii as small
as 0.45RJ and periods between 1.0 and 3.0 days, and less than
49% of stars have planets with radii as small as 0.6RJ and
periods between 3.0 and 5.0 days. The upper limits on the
smallest planets may be as much as a factor of 50% higher if
all the variable stars near the cluster main sequence are cluster
members. For the field stars, we are able to place 95% confidence
upper limits of 16% on the fraction of stars with planets as small
as 0.3RJ with periods less than one day, 8.8% on the fraction of
stars with planets as small as 0.5RJ with periods between 1.0 and
3.0 days and 47% on the fraction of stars with planets as small as
0.5RJ with periods between 3.0 and 5.0 days. We estimate that
these upper limits may be higher by at most a factor of ∼11%
due to binarity. While these limits do not approach the observed
frequency of Jupiter-sized planets with similar periods, they do
represent the first limits on the frequency of planets as small
as Neptune. We can now state empirically that extremely hot
Neptunes (periods shorter than one day) are not ubiquitous nor
are very hot planets with radii intermediate between Neptune
and Saturn.

The limits that we place on Jupiter-sized planets are more
stringent than previous open cluster transit surveys, but are still
above the frequencies measured by RV and Galactic field transit
surveys. The primary limitation on open cluster transit surveys
appears to be the paucity of stars in these systems. To place a
limit on the frequency of an HJ that is less than 2% with the
same set of observations, M37 would have to have been ∼4
times richer than it is. We also note that for a relatively young
cluster like M37, variability may reduce the detectability of
Neptune-sized planets by as much as ∼50%.
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Kovács, G., Bakos, G., & Noyes, R. W. 2005, MNRAS, 356, 557
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Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Sahu, K., et al. 2006, Nature, 443, 534
Santos, N., et al. 2004, A&A, 426, L19
Scargle, J. D. 1982, ApJ, 263, 835
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1990, PASP, 102, 932
Stetson, P. B. 1992, JRASC, 86, 71
Stetson, P. B., Bruntt, H., & Grundahl, F. 2003, PASP, 115, 413
Street, R. A., et al. 2003, MNRAS, 340, 1287
Szentgyorgyi, A. H., Cheimets, P., Eng, R., Fabricant, D. G., Geary, J. C.,

Hartmann, L., Pieri, M. R., & Roll, J. B. 1998, in Proc. SPIE 3355, Optical
Astronomical Instrumentation, ed. S. D’Odorico (Bellingham, WA: SPIE),
242

Tingley, B., & Sackett, P. D. 2005, ApJ, 627, 1011
Torres, G., Winn, J. N., & Holman, M. J. 2008, ApJ, 677, 1324
Udalski, A., et al. 2002, Acta Astron., 52, 1
Udry, S., et al. 2006, A&A, 447, 361
Udry, S., et al. 2007, A&A, 469, L43
Vapnik, V. N. 1995, The Nature of Statistical Learning Theory (New York:

Springer)
Vogt, S., et al. 2005, ApJ, 632, 638
von Braun, K., Lee, B. L., Seager, S., Yee, H. K. C., Mallén-Ornelas, G., &

Gladders, M. D. 2005, PASP, 117, 14
Weldrake, D. T. F., Sackett, P. D., & Bridges, T. J. 2008, ApJ, 674, 1117
Weldrake, D. T. F., Sackett, P. D., Bridges, T. J., & Freeman, K. C. 2005, ApJ,

620, 1043

http://dx.doi.org/10.1111/j.1365-2966.2006.11303.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375...29A
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375...29A
http://dx.doi.org/10.1051/aas:2000214
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A&AS..144..363A
http://adsabs.harvard.edu/cgi-bin/bib_query?2000A&AS..144..363A
http://dx.doi.org/10.1086/305984
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...503..325A
http://adsabs.harvard.edu/cgi-bin/bib_query?1998ApJ...503..325A
http://dx.doi.org/10.1086/425256
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...613L.153A
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...613L.153A
http://dx.doi.org/10.1086/509653
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...655..233A
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...655..233A
http://dx.doi.org/10.1086/509874
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..552B
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...656..552B
http://dx.doi.org/10.1086/591441
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686.1302B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...686.1302B
http://dx.doi.org/10.1051/0004-6361:20040170
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...421L..13B
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...421L..13B
http://dx.doi.org/10.1111/j.1365-2966.2005.08973.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.359.1096B
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.359.1096B
http://dx.doi.org/10.1016/j.icarus.2005.02.015
http://adsabs.harvard.edu/cgi-bin/bib_query?2005Icar..177..264B
http://adsabs.harvard.edu/cgi-bin/bib_query?2005Icar..177..264B
http://dx.doi.org/10.1051/0004-6361:20031198
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...410..323B
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...410..323B
http://dx.doi.org/10.1086/504468
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....132..210B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....132..210B
http://dx.doi.org/10.1086/425173
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...617..580B
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...617..580B
http://dx.doi.org/10.1086/504701
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...646..505B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...646..505B
http://dx.doi.org/10.1086/500801
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...643.1151C
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...643.1151C
http://dx.doi.org/10.1051/0004-6361:20041673
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...428.1001C
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...428.1001C
http://dx.doi.org/10.1111/j.1365-2966.2006.11350.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375..951C
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.375..951C
http://dx.doi.org/10.1086/588487
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PASP..120..531C
http://adsabs.harvard.edu/cgi-bin/bib_query?2008PASP..120..531C
http://dx.doi.org/10.1086/165593
http://adsabs.harvard.edu/cgi-bin/bib_query?1987ApJ...320..756D
http://adsabs.harvard.edu/cgi-bin/bib_query?1987ApJ...320..756D
http://dx.doi.org/10.1086/524703
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...673.1165E
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...673.1165E
http://dx.doi.org/10.1086/428383
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622.1102F
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...622.1102F
http://dx.doi.org/10.1086/525512
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675..790F
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675..790F
http://dx.doi.org/10.1086/512120
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...659.1661F
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...659.1661F
http://dx.doi.org/10.1051/0004-6361:20077138
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...475..729F
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...475..729F
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ASPC..366..273G
http://dx.doi.org/10.1086/428478
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...623..472G
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...623..472G
http://dx.doi.org/10.1086/317334
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...545L..47G
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...545L..47G
http://dx.doi.org/10.1051/0004-6361:20077799
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...472L..13G
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...472L..13G
http://dx.doi.org/10.1051/0004-6361:20042352
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...436..895G
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...436..895G
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AcA....56....1G
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AcA....56....1G
http://dx.doi.org/10.1086/500729
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...642..462G
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...642..462G
http://dx.doi.org/10.1086/462405
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....130.2241H
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....130.2241H
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1254H
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1254H
http://dx.doi.org/10.1086/527465
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1233H
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...675.1233H
http://dx.doi.org/10.1088/0004-637X/691/1/342
http://dx.doi.org/10.1111/j.1365-2966.2005.09104.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.360..791H
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.360..791H
http://dx.doi.org/10.1086/522574
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...671.1591I
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...671.1591I
http://dx.doi.org/10.1086/381724
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...604..388I
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...604..388I
http://dx.doi.org/10.1086/429953
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...626.1045I
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...626.1045I
http://dx.doi.org/10.1029/96JE00833
http://adsabs.harvard.edu/cgi-bin/bib_query?1996JGR...10114853J
http://adsabs.harvard.edu/cgi-bin/bib_query?1996JGR...10114853J
http://dx.doi.org/10.1111/j.1365-2966.2004.07813.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.351..649K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.351..649K
http://dx.doi.org/10.1086/521922
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...671..748K
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...671..748K
http://dx.doi.org/10.1086/324463
http://adsabs.harvard.edu/cgi-bin/bib_query?2001AJ....122.3239K
http://adsabs.harvard.edu/cgi-bin/bib_query?2001AJ....122.3239K
http://adsabs.harvard.edu/cgi-bin/bib_query?1992AcA....42...29K
http://adsabs.harvard.edu/cgi-bin/bib_query?1992AcA....42...29K
http://dx.doi.org/10.1038/nature01379
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Natur.421..507K
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Natur.421..507K
http://dx.doi.org/10.1086/422600
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609L..37K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...609L..37K
http://dx.doi.org/10.1111/j.1365-2966.2004.08479.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.356..557K
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.356..557K
http://dx.doi.org/10.1051/0004-6361:20020802
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...391..369K
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...391..369K
http://dx.doi.org/10.1086/316207
http://adsabs.harvard.edu/cgi-bin/bib_query?1993ASPC...44...87K
http://dx.doi.org/10.1007/BF00648343
http://adsabs.harvard.edu/cgi-bin/bib_query?1976Ap&SS..39..447L
http://adsabs.harvard.edu/cgi-bin/bib_query?1976Ap&SS..39..447L
http://dx.doi.org/10.1038/nature04828
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.441..305L
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.441..305L
http://dx.doi.org/10.1086/345520
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...580L.171M
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...580L.171M
http://dx.doi.org/10.1143/PTPS.158.24
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PThPS.158...24M
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PThPS.158...24M
http://dx.doi.org/10.1038/378355a0
http://adsabs.harvard.edu/cgi-bin/bib_query?1995Natur.378..355M
http://adsabs.harvard.edu/cgi-bin/bib_query?1995Natur.378..355M
http://dx.doi.org/10.1086/505651
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...648.1228M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...648.1228M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000fdso.conf...11M
http://dx.doi.org/10.1051/0004-6361:20066845
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...467..721M
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...467..721M
http://dx.doi.org/10.1111/j.1365-2966.2008.13236.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.387..349M
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.387..349M
http://dx.doi.org/10.1086/430219
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....129.2856M
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....129.2856M
http://dx.doi.org/10.1086/499208
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1090M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1090M
http://dx.doi.org/10.1051/0004-6361:20066199
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...470.1137M
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...470.1137M
http://dx.doi.org/10.1051/0004-6361:20011492
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...381...65N
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...381...65N
http://dx.doi.org/10.1086/504829
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...646..499O
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...646..499O
http://dx.doi.org/10.1086/432532
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...631..581P
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...631..581P
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AcA....56..183P
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AcA....56..183P
http://dx.doi.org/10.1051/0004-6361:200400066
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...426L..15P
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...426L..15P
http://dx.doi.org/10.1111/j.1365-2966.2006.11012.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.373..231P
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.373..231P
http://dx.doi.org/10.1086/167197
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...338..277P
http://adsabs.harvard.edu/cgi-bin/bib_query?1989ApJ...338..277P
http://dx.doi.org/10.1086/491669
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...634..625R
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...634..625R
http://dx.doi.org/10.1051/0004-6361:20031117
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...409..523R
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...409..523R
http://dx.doi.org/10.1038/nature05158
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.443..534S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006Natur.443..534S
http://dx.doi.org/10.1051/0004-6361:200400076
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...426L..19S
http://adsabs.harvard.edu/cgi-bin/bib_query?2004A&A...426L..19S
http://dx.doi.org/10.1086/160554
http://adsabs.harvard.edu/cgi-bin/bib_query?1982ApJ...263..835S
http://adsabs.harvard.edu/cgi-bin/bib_query?1982ApJ...263..835S
http://dx.doi.org/10.1086/498708
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1163S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1163S
http://dx.doi.org/10.1086/131977
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PASP...99..191S
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PASP...99..191S
http://dx.doi.org/10.1086/132719
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PASP..102..932S
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PASP..102..932S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992JRASC..86...71S
http://adsabs.harvard.edu/cgi-bin/bib_query?1992JRASC..86...71S
http://dx.doi.org/10.1086/368337
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PASP..115..413S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003PASP..115..413S
http://dx.doi.org/10.1046/j.1365-8711.2003.06388.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.340.1287S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.340.1287S
http://dx.doi.org/10.1086/430494
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627.1011T
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627.1011T
http://dx.doi.org/10.1086/529429
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...677.1324T
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...677.1324T
http://adsabs.harvard.edu/cgi-bin/bib_query?2002AcA....52....1U
http://adsabs.harvard.edu/cgi-bin/bib_query?2002AcA....52....1U
http://dx.doi.org/10.1051/0004-6361:20054084
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...447..361U
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...447..361U
http://dx.doi.org/10.1051/0004-6361:20077612
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...469L..43U
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...469L..43U
http://dx.doi.org/10.1086/432901
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...632..638V
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...632..638V
http://dx.doi.org/10.1086/427982
http://dx.doi.org/10.1086/524917
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...674.1117W
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...674.1117W
http://dx.doi.org/10.1086/427258
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...620.1043W
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...620.1043W

	1. INTRODUCTION
	2. SUMMARY OF OBSERVATIONS AND DATA REDUCTION
	3. TRANSIT SELECTION PIPELINE
	3.1. Light-Curve Postprocessing
	3.2. Transit Selection

	4. TRANSIT CANDIDATES
	4.1. Discussion of Individual Transit Candidates

	5. TRANSIT DETECTION EFFICIENCY CALCULATION
	5.1. Cluster Members
	5.2. Field Stars

	6. RESULTS
	6.1. Cluster Members
	6.2. Field Stars
	6.3. Errors on the Upper Limits
	6.4. Comparison with Previous Results
	6.5. Expected Planet Yield

	7. DISCUSSION
	REFERENCES

