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ABSTRACT

We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet
discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric
measurements from the Hubble Space Telescope, as well as constraints from higher order effects extracted from
the ground-based light curve, such as microlens parallax, planetary orbital motion, and finite-source effects.
Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is an M
dwarf in the foreground disk with mass M = 0.46 ± 0.04 M�, distance Dl = 3.2 ± 0.4 kpc, and thick-disk
kinematics vLSR ∼ 103 km s−1. From the best-fit model, the planet has mass Mp = 3.8 ± 0.4 MJupiter, lies at
a projected separation r⊥ = 3.6 ± 0.2AU from its host, and so has an equilibrium temperature of T ∼ 55 K,
that is, similar to Neptune. A degenerate model gives similar planetary mass Mp = 3.4 ± 0.4 MJupiter with a
smaller projected separation, r⊥ = 2.1 ± 0.1AU, and higher equilibrium temperature, T ∼ 71 K. These results
from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet
discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in
the outer regions of M dwarf planetary systems is predicted to be unlikely within the core-accretion scenario.
There are a number of caveats to this primary analysis, which assumes (based on real but limited evidence) that
the unlensed light coincident with the source is actually due to the lens, that is, the planetary host. However,
these caveats could mostly be resolved by a single astrometric measurement a few years after the event.

Key words: Galaxy: bulge – gravitational lensing – planetary systems

1. INTRODUCTION

Microlensing provides a powerful method to detect extrasolar
planets. Although only six microlens planets have been found
to date (Bond et al. 2004; Udalski et al. 2005; Beaulieu et al.
2006; Gould et al. 2006; Gaudi et al. 2008; Dong et al. 2008),
these include two major discoveries. First, two of the planets
are “cold Neptunes,” a high discovery rate in this previously
inaccessible region of parameter space, suggesting that this new
class of extrasolar planets is common (Gould et al. 2006; Kubas
et al. 2008). Second, the discovery of the first Jupiter/Saturn
analog via a very high magnification event with substantial
sensitivity to multiple planets indicates that solar system analogs
may be prevalent among planetary systems (Gaudi et al. 2008).
Recent improvements in search techniques and future major
upgrades should increase the discovery rate of microlensing
planets substantially (Gaudi 2008).

Routine analysis of planetary microlensing light curves yields
the planet/star mass ratio q and the planet–star projected
separation d (in units of the angular Einstein radius). However,
because the lens-star mass M cannot be simply extracted from
the light curve, the planet mass Mp = qM remains, in general,
equally uncertain.

The problem of constraining the lens mass M is an old
one. When microlensing experiments were initiated in the
early 1990s, it was generally assumed that individual mass
measurements would be impossible and that only statistical
estimates of the lens mass scale could be recovered. However,
Gould (1992) pointed out that the mass and lens–source relative
parallax, πrel ≡ πl − πs , are simply related to two observable
parameters, the angular Einstein radius, θE, and the Einstein
radius projected onto the plane of the observer, r̃E,

M = θE

κπE
, πrel = θEπE. (1)

Here, πE = AU/r̃E is the “microlens parallax” and κ ≡
4G/(c2 AU) ∼ 8.1 mas/M�. See Gould (2000b) for an illus-
trated derivation of these relations.

In principle, θE can be measured by comparing some structure
in the light curve to a “standard angular ruler” on the sky.
The best example is light-curve distortions due to the finite
angular radius of the source θ∗ (Gould 1994), which usually can

be estimated very well from its color and apparent magnitude
(Yoo et al. 2004). While such finite-source effects are rare for
microlensing events considered as a whole, they are quite
common for planetary events. The reason is simply that the
planetary distortions of the light curve are typically of a similar
or smaller scale than θ∗. In fact, all six planetary events
discovered to date show such effects. Combining θE with the
(routinely measurable) Einstein radius crossing time tE yields
the relative proper motion μ in the geocentric frame,

μgeo = θE

tE
. (2)

From Equation (1), measurement of θE by itself fixes the product
Mπrel = θ2

E/κ . Using priors on the distribution of lens–source
relative parallaxes, one can then make a statistical estimate of
the lens mass M and so of the planet mass Mp.

To do better, one must develop an additional constraint. This
could be measurement of the microlens parallax πE, but this
is typically possible only for long events. Another possibility
is direct detection of the lens, either under the “glare” of the
source during and immediately after the event or displaced
from the source well after the event is over. Bennett et al.
(2006) used the latter technique to constrain the mass of the first
microlensing planet, OGLE-2003-BLG-235/MOA-2003-BLG-
53Lb. They obtained Hubble Space Telescope (HST) Advanced
Camera for Surveys (ACS) images in B, V, and I at an epoch
Δt = 1.78 years after the event. They found astrometric offsets
of the (still overlapping) lens and source light among these
images of up to 0.7 mas. Knowing the lens–source angular
separation Δθ = μΔt from the already determined values of
θE and tE, they were able to use these centroid offsets to fix the
color and magnitude of the lens and so (assuming that it was a
main-sequence star) its mass.

While the planet mass is usually considered to be the most
important parameter that is not routinely derivable from the light
curve, the same degeneracy impacts two other quantities as well,
the distance and the transverse velocity of the lens. Knowledge
of these quantities could help constrain the nature of the lens, that
is, whether it belongs to bulge, the foreground disk, or possibly
the thick disk or even the stellar halo. Since microlensing
is the only method currently capable of detecting planets in
populations well beyond the solar neighborhood, extracting such



972 DONG ET AL. Vol. 695

RoboNet FTN R

PLANET Canopus I

MOA I

I

I

Clear

V

I

Clear

OGLE V

OGLE I

3479 3480 3481 3482 3483

16

15.8

15.6

15.4

15.2

15

Figure 1. Main panel: all available ground-based data of the microlensing event OGLE-2005-BLG-071. HST ACS HRC observations in F814W and F555W were
taken at two epochs, once when the source was magnified by A ∼ 2 (arrow) and again at HJD = 2453788.2 (at baseline). Planetary models that include (solid) and
excludes (dotted) microlens parallax are shown. Zoom at bottom: triple-peak feature that reveals the presence of the planet. Each of the three peaks corresponds to the
source passing by a cusp of the central caustic induced by the planet. Upper inset: trajectory of the source relative to the lens system in the units of angular Einstein
radius θE. The lens star is at (0, 0), and the star–planet axis is parallel to the x-axis. The best-fit angular size of the source star in units of θE is ρ ∼ 0.0006, too small
to be resolved in this figure.

information would be quite useful. Because the mass, distance,
and transverse velocity are all affected by a common degeneracy,
constraints on one quantity are simultaneously constraints on
the others. As mentioned above, simultaneous measurements
of θE and πE directly yield the mass. However, clearly from
Equation (1), they also yield the distance and hence (from
Equation (2)) also the transverse velocity. Here, we assemble
all available data to constrain the mass, distance and transverse
velocity of the second microlensing planet, OGLE-2005-BLG-
071Lb, whose discovery we previously reported (Udalski et al.
2005, hereafter Paper I).

2. OVERVIEW OF DATA AND TYPES OF CONSTRAINTS

The light curve consists of 1398 data points from nine ground-
based observatories (see Figure 1), plus two epochs of HST
ACS data in the F814W (I) and F555W (V) filters. The primary
ground-based addition relative to Paper I is late-time data from
OGLE, which continued to monitor the event down to baseline
until HJD = 2453790.9.

These data potentially provide constraints on several parame-
ters in addition to those reported in Paper I. First, the light curve
shows a clear asymmetry between the rising and falling parts
of the light curve, which is a natural result of microlens paral-
lax due to the Earth’s accelerated motion around the Sun (see
the best-fit model without parallax effects plotted in a dotted
line in Figure 1). However, it is important to keep in mind that
such distortions are equally well produced by “xallarap” due to

accelerated motion of the source around a companion. Poindex-
ter et al. (2005) showed that it can be difficult to distinguish
between the two when, as in the present case, the effect is de-
tected at Δχ2 <∼ 100.

Second, the two pronounced peaks of the light curve, which
are due to “cusp approaches” (see the bottom inset of Figure 1),
are relatively sharp and have good coverage. These peaks would
tend to be “rounded out” by finite-source effects, so in principle
it may be possible to measure ρ (i.e., θ∗ in the units of θE) from
these distortions.

Third, the orbital motion of the planet can give rise to two
effects: rotation of the caustic about the center of the mass
and distortion of the caustic due to expansion/contraction of
the planet–star axis. The first changes the orientation of the
caustic structure as the event evolves while the second changes
its shape. These effects are expected to be quite subtle because
the orbital period is expected to be of an order of 10 years while
the source probes the caustic structure for only about four days.
Nevertheless, they can be very important for the interpretation
of the event.

Finally, the HST data cover two epochs, one at 2005 May
23 (indicated by the arrow in Figure 1) when the magnification
was about A = 2 and the other at 2006 February 21 when
the event was very nearly at baseline, A ∼ 1. These data
could potentially yield four types of information. First, they can
effectively determine whether the blended light is “associated”
with the event or not. The blended light is composed of sources
in the same photometric aperture as the magnified source, but
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Table 1
Light-Curve Parameter Estimations from MCMC Simulations

Model t0 u0 tE d q α ρ πE,N πE,E ω ḋ/d Is Ib Vs Vb

χ2 (HJD’) (day) ×103 (deg) ×104 (yr−1) (yr−1) (mag) (mag) (mag) (mag)

MCMC A

Wide+ 3480.7024 0.0282 71.1 1.306 7.5 273.63 3.9 -0.30 -0.26 -1.328 -0.256 19.51 21.29 20.85 23.11
1345.0 +0.0058

−0.0054
+0.0008
−0.0009

+2.3
−2.4

+0.002
−0.004 ±0.2 +0.16

−0.15
+1.8
−2.7

+0.24
−0.28 ±0.05 +0.274

−0.165
+0.134
−0.129

+0.04
−0.03

+0.22
−0.17 ±0.04 +0.43

−0.26

Wide− 3480.7028 -0.0283 70.6 1.307 7.5 86.21 3.9 -0.34 -0.26 1.117 -0.277 19.51 21.30 20.85 23.11
1345.3 +0.0054

−0.0056
+0.0010
−0.0008 ±2.2 +0.003

−0.004 ±0.3 +0.13
−0.16

+1.8
−2.6

+0.30
−0.23 ±0.05 +0.130

−0.293
+0.152
−0.113 ±0.04 ±0.19 ±0.03 +0.43

−0.26

Close+ 3480.6789 0.0239 70.1 0.763 6.9 274.27 3.1 -0.36 -0.27 0.301 0.502 19.52 21.28 20.85 23.13
1345.8 +0.0055

−0.0043
+0.0009
−0.0007

+2.1
−2.4

+0.004
−0.006 ±0.3 +0.25

−0.36
+1.7
−2.5

+0.24
−0.27 ±0.05 +0.486

−0.788
+0.148
−0.101 ±0.03 +0.21

−0.16
+0.04
−0.03

+0.40
−0.28

Close− 3480.6799 -0.0241 69.2 0.762 6.9 85.53 2.7 -0.33 -0.26 -0.405 0.528 19.52 21.30 20.85 23.17
1345.2 +0.0042

−0.0051
+0.0009
−0.0007

+2.3
−1.9

+0.004
−0.006 ±0.3 +0.39

−0.26 ±2.2 +0.28
−0.26 ±0.05 +0.696

−0.622
+0.127
−0.118 ±0.03 ±0.18 ±0.04 +0.35

−0.32

MCMC B

Wide+ 3480.7015 0.0287 69.3 1.305 7.7 273.67 6.1 -0.02 -0.22 -1.242 -0.283 19.49 21.40 20.82 23.91
1353.4 +0.0050

−0.0059 ±0.0007 +1.6
−1.7

+0.003
−0.005 ±0.2 +0.17

−0.11 ±0.4 ±0.12 ±0.03 +0.321
−0.125 ±0.129 ±0.03 ±0.19 ±0.03 +0.24

−0.20

Wide− 3480.7012 -0.0287 69.2 1.305 7.7 86.29 6.0 0.02 -0.21 1.193 -0.293 19.49 21.40 20.82 23.97
1353.3 +0.0052

−0.0060 ±0.0007 +1.7
−1.8

+0.002
−0.005 ±0.2 +0.12

−0.15
+0.5
−0.3

+0.10
−0.13 ±0.03 +0.127

−0.342
+0.131
−0.121 ±0.02 ±0.19 ±0.03 +0.19

−0.24

Close+ 3480.6792 0.0245 68.3 0.763 7.0 274.38 6.0 -0.01 -0.22 0.415 0.569 19.49 21.35 20.83 23.88
1355.5 +0.0041

−0.0051
+0.0005
−0.0006 ±1.6 +0.003

−0.006
+0.3
−0.2

+0.23
−0.39 ±0.4 +0.12

−0.15 ±0.02 +0.503
−0.744

+0.112
−0.130 ±0.03 +0.20

−0.16 ±0.02 +0.24
−0.18

Close− 3480.6793 -0.0245 68.2 0.762 7.1 85.63 6.0 0.04 -0.22 -0.179 0.561 19.50 21.36 20.83 23.90
1355.5 +0.0042

−0.0051 ±0.0006 +1.8
−1.5

+0.004
−0.006 ±0.3 +0.46

−0.24 ±0.4 +0.09
−0.16 ±0.03 +0.703

−0.722
+0.126
−0.112 ±0.02 ±0.18 ±0.02 ±0.21

that do not become magnified during the event. If this light
is due to the lens, a companion to the lens, or a companion
to the source, it should fall well within the ACS point-spread
function (PSF) of the source. On the other hand, if it is due to a
random interloper along the line of sight (LOS), then it should be
separately resolved by the ACS or at least give rise to a distorted
PSF. Second, the HST data can greatly improve the estimate of
the color of the blended light. The original model determined
the source fluxes in both OGLE V and I very well, and of
course the baseline fluxes are also quite well determined. So it
would seem that the blended fluxes, which are the differences
between these two, would also be well determined. This proves
to be the case in the I band. However, while the source flux is
derivable solely from flux differences over the light curve (and
so is well determined from OGLE difference image analysis
(DIA); Wozniak 2000), the baseline flux depends critically on
the zero point of PSF-fitting photometry, whose accuracy is
fundamentally limited in very crowded bulge fields. The small
zero-point errors turn out to have no practical impact for the
relatively bright I background light, but are important for the
V band. Third, one might hope to measure a centroid shift
between the two colors in the manner of Bennett et al. (2006).
Last, one can derive the source proper motion μs from HST
data (at least relative to the mean motion of bulge stars). This
is important, because the event itself yields the source–lens
relative proper motion, μgeo. Hence, precise determination of
μl requires knowledge of two proper-motion differences, first
the heliocentric proper motion:

μhel = μl − μs , (3)

and second, the offset between the heliocentric and geocentric
proper motions:

μhel − μgeo = v⊕πrel

AU
. (4)

Here, v⊕ is the velocity of the Earth relative to the Sun at
the time of peak magnification t0. Note that if the lens–source

relative parallax πrel is known, even approximately, then the
latter difference can be determined quite well, since its total
magnitude is just 0.6 mas yr−1(πrel/0.17 mas).

3. CONSTRAINING THE PHYSICAL PROPERTIES OF
THE LENS AND ITS PLANETARY COMPANION

In principle, all the effects summarized in Section 2 could
interact with each other and with the parameters previously
determined, leading potentially to a very complex analysis. In
fact, we will show that most effects can be treated as isolated
from one another, which greatly facilitates the exposition. In the
following sections, we will discuss the higher order microlens
effects in the order of their impact on the ground-based light
curve, starting with the strongest, that is, parallax effects
(Section 3.1), followed by planetary orbital motion (Section 3.2)
and finally the weakest, finite-source effects (Section 3.3.4).
To study these effects, we implement Markov chain Monte
Carlo (MCMC) with an adaptive step-size Gaussian sampler
(Doran & Mueller 2003) to perform the model fitting and obtain
the uncertainties of the parameters. The HST astrometry is
consistent with no (V − I ) color-dependent centroid shift in
the first epoch, while such a shift is seen in the second epoch
observations (Section 3.4). In addition, the PSF of the source
shows no sign of broadening due to the blend, suggesting that
the blend is associated with the event (Section 3.5). Therefore,
the HST observations provide good evidence that the blend is
likely due to the lens. In Section 3.4, it is shown, under such an
assumption, how the astrometry can be used in conjunction with
finite-source and microlens parallax measurements to constrain
the angular Einstein radius and proper motion (Section 3.4). In
Section 3.5, we discuss using HST photometric constraints in the
form of χ2 penalties to the MCMC runs to extract the color and
brightness of the blend. The results of these runs, which include
all higher order effects of the ground-based light curve and the
HST photometric constraints, are summarized as “MCMC A” in
Table 1. Subsequently in Section 3.6, by making the assumption
that the blended light seen by HST is due to the lens, we combine
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Table 2
Derived Physical Parameters

Model M πrel Dl μN μE θE Mp r⊥
χ2 M� mas kpc mas yr−1 mas yr−1 mas MJupiter AU

Wide+ 0.46 0.19 3.2 −0.4 −4.3 0.84 3.8 3.6
1353.4 ±0.04 ±0.04 ±0.4 +2.7

−3.1 ±0.3 +0.06
−0.04

+0.3
−0.4 ±0.2

Wide− 0.46 0.19 3.2 0.3 −4.3 0.85 3.8 3.6
1353.3 ±0.04 +0.04

−0.03 ±0.4 +2.3
−3.6

+0.3
−0.2 ±0.05 +0.3

−0.4 ±0.2

Close+ 0.46 0.19 3.1 −2.6 −4.4 0.86 3.4 2.1
1355.5 ±0.04 +0.04

−0.03 ±0.4 +4.8
−1.1 ±0.3 ±0.05 +0.3

−0.4 ±0.1

Close− 0.46 0.20 3.1 −0.2 −4.4 0.87 3.4 2.1
1355.5 ±0.04 ±0.04 ±0.3 +3.6

−3.4 ±0.3 ±0.04 ±0.3 ±0.1

all constraints discussed above to obtain physical parameters of
the lens star and its planet. The corresponding best-fit model
parameters are reported as “MCMC B” in Table 1. The results
for the physical parameters from these runs are given in Table 2.
Finally, we discuss some caveats in the analysis in Sections 3.7
and 3.8.

3.1. Microlens Parallax Effects

A point-source static binary-lens model has six “geometric-
model” parameters: three “single-lens” parameters (t0, u0, tE),
where we define the time of “peak” magnification (actually
lens–source closest approach) t0 and the impact parameter u0
with respect to the center of mass of the planet–star systems,
and three “binary-lens” parameters (q, d, α), where α is the
angle between the star–planet axis and the trajectory of the
source relative to the lens. In addition, flux parameters are
included to account for light coming from the source star (Fs)
and the blend (Fb) for each data set. In this paper, we extend
the fitting by including microlens parallax, orbital motion, and
finite-source effects. Paper I reported that, within the context
of the point-source static binary-lens models, the best-fit wide-
binary (d > 1) solution is preferred by Δχ2 = 22 over the close-
binary (d < 1) solution. Remarkably, when we take account of
parallax, finite-source, and orbital effects, this advantage is no
longer as significant. We discuss the wide/close degeneracy
with more detail in Section 3.6.2.

The microlens parallax effects are parametrized by πE,E and
πE,N, following the geocentric parallax formalism by An et al.
(2002) and Gould (2004). To properly model the parallax effects,
we characterize the “constant acceleration degeneracy” (Smith
et al. 2003) by probing models with u0 → −u0 and α → −α.
We find that all other parameters remain essentially unchanged
under this form of degeneracy. In the following sections, if not
otherwise specified, parameters from models with positive u0
are adopted.

As shown in Figure 2, microlens parallax is firmly detected in
this event at a greater than 8σ level. Not surprisingly, the error
ellipse of πE is elongated toward πE,⊥, that is, the direction
perpendicular to the position of the Sun at the peak of event,
projected onto the plane of the sky (Gould et al. 1994; Poindexter
et al. 2005). As a result, πE,E is much better determined than
πE,N,

πE,E = −0.26 ± 0.05, πE,N = −0.30+0.24
−0.28 (wide), (5)

πE,E = −0.27 ± 0.05, πE,N = −0.36+0.24
−0.27 (close). (6)

Xallarap (light-curve distortion from reflex motion of the
source due to a binary companion) could provide an alternate

Figure 2. Probability contours (Δχ2 = 1, 4) of microlens parallax parameters
derived from MCMC simulations for wide-binary (in a solid line) and close-
binary (in a dashed line) solutions. Figure 2 and Equation (12) in Gould (2004)
imply that πE,⊥ is defined so that πE,‖ and πE,⊥ form a right-handed coordinate
system.

explanation of the detected parallax signals. In Section 3.8, we
find that the best-fit xallarap parameters are consistent with those
derived from the Earth’s orbit, a result that favors the parallax
interpretation.

3.2. Fitting Planetary Orbital Motion

To model orbital motion, we adopt the simplest possible
model, with a uniform expansion rate ḃ in binary separation
b and uniform binary rotation rate ω. Because orbital effects are
operative only for about four days, while the orbital period is of
an order of 10 years, this is certainly adequate. Interestingly, the
orbital motion is more strongly detected for the close solutions
(at a >∼5.5σ level) than the wide solutions (at a ∼3σ level), and
as a result, it significantly lessens the previous preference of the
wide solution that was found before orbital motion was taken
into account. Further discussions on planetary orbital motion
are given in Section 3.6.2.

3.3. Finite-source Effects and Other Constraints on θE

3.3.1. Color–Magnitude Diagram

We follow the standard procedure to derive dereddened source
color and magnitude from the color–magnitude diagram (CMD)
of the observed field. Figure 3 shows the calibrated OGLE
CMD (black), with the baseline source being displayed as a
green point. The V−I color of the source can be determined in
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Figure 3. CMD for the OGLE-2005-BLG-071 field. Black dots are the stars
with the OGLE I-band and V-band observations. The red point and green points
show the center of red clump and the source, respectively. The errors in their
fluxes and colors are too small to be visible on the graph. Cyan points are
the stars in the ACS field, which are photometrically aligned with OGLE stars
using 10 common stars. The magenta point with error bars show the color and
magnitude of the blended light.

a model-independent way from linear regression of the I-band
and V-band observations. The I-band magnitude of the source
is also precisely determined from the microlens model, and it
is hardly affected by any higher order effects. The center of red
clump (red) is at (V − I, I )clump = (1.89, 15.67). The Galactic
coordinates of the source are at (l, b) = (355.58,−3.79).
Because the Galactic bulge is a barlike structure that is inclined
relative to the plane of the sky, the red clump density at this
sky position peaks behind the Galactic center by 0.15 mag
(Nishiyama et al. 2005). Hence, we derive (V − I, I )0,clump =
(1.00, 14.47), by adopting a Galactic distance R0 = 8 kpc.
We thereby obtain the selective and total extinction toward
the source [E(V − I ), AI ] = (0.89, 1.20) and thus RV I =
AV /E(V − I ) = 2.35. The dereddened color and magnitude
of the source is ((V − I ), I )s,0 = (0.45, 18.31). From its
dereddened color (V − I )0 = 0.45, as well as its absolute
magnitude (assuming it is in the bulge) MI ∼ 3.65, we conclude
that the source is a main-sequence turnoff star. Following the
method of Yoo et al. (2004), we transform (V − I )0 = 0.45
to (V − K)0 = 0.93 (Bessell & Brett 1988), and based on the
empirical relation between the color and surface brightness for
subgiant and main-sequence stars (Kervella et al. 2004), we
obtain the angular size of the source

θ∗ = 0.52 × 100.2(19.51−Is ) ± 0.05 μas, (7)

where Is is the apparent magnitude of the source in the I band.
Other features on the CMD shown in Figure 3 are further
discussed in Section 3.5.

3.3.2. Photometric Systematics of the Auckland Data Set

The Auckland data set’s excellent coverage over the two peaks
makes it particularly useful for probing the finite-source effects.
Unlike the more drastic “caustics crossings” that occur in some

events, the finite-source effects during “cusp approaches” are
relatively subtle. Hence, one must ensure that the photometry
is not affected by systematics at the few percent level when
determining ρ = θ∗/θE. The Auckland photometry potentially
suffers from two major systematic effects.

First, the photometry of constant stars reduced by μFUN’s
DoPHOT pipeline are found to show sudden “jumps” of up to
∼10% when the field crossed the meridian each night. The
signs and amplitudes of the “jumps” depend on the stars’
positions on the CCD. The Auckland telescope was on a German
equatorial mount, and hence the camera underwent a meridian
flip. Due to scattered light, the flat-fielded images were not
uniform in illumination for point sources, an effect that can be
corrected by making “superflats” with photometry of constant
stars (Manfroid 1995). We have constructed such “superflats”
for each night of Auckland observations using 71 bright isolated
comparison stars across the frame. The DoPHOT instrumental
magnitude mi,j for star i on frame j is modeled by the following
equation:

mi,j = m0,i − f (xi,j , yi,j ) − Zj − f whmi,j × si, (8)

where m0,i is the corrected magnitude for star i, f(x,y) is a
biquartic illumination correction as a function of the (x, y)
position on the CCD frame with 14 parameters, Zj is a zero-
point parameter associated with each frame (but with Z1 set to
be zero), and si is a linear correlation coefficient for the seeing
f whmi,j . A least-squares fit that recursively rejects 4σ outliers
is performed to minimize χ2. The best-fit f(x,y) is dominated
by the linear terms and has small quadratic terms, while its
cubic and quartic terms are negligible. The resulting reduced
χ2 is close to unity, and the “jumps” for all stars are effectively
eliminated. We apply the biquartic corrections to the images and
then reduce the corrected images using the DIA pipeline. The
resulting DIA photometry of the microlens target is essentially
identical (at the ∼1% level) to that from the DIA reductions of
the original Auckland images.

As we now show, this is because DIA photometry automat-
ically removes any artifacts produced by the first- and second-
order illumination distortions if the sources are basically uni-
formly distributed across the frame. For the first-order effect, a
meridian flip about the target (which is very close to center of
the frame) will induce a change in the flux from the source, but
it will also induce a change in the mean flux from all other stars
in the frame, which for a linear correction will be the same as the
change in the position of the “center of light” of the frame light.
If the frame sources are uniformly distributed over the frame,
the “center of light” will be the center of the frame, which is the
same position as the source, therefore introducing no effects.
The second-order transformation is even under a rotation of
180◦, whereas a meridian flip is odd under this transformation.
Hence, the flip has no effects at second order.

Second, the Auckland observations were unfiltered. The
amount of atmospheric extinction differs for stars with different
colors. As shown in Figure 3, the source is much bluer than
most of the bright stars in the field, which dominate the
reference image. So the amount of extinction for the source
is different from the average extinction over the whole frame.
This difference varies as the airmass changes over time during
the observations. Coincidentally, the times of the two peaks were
both near maximum airmass when the “differential extinction”
effect is expected to be the most severe. To investigate this
effect, we match the isolated stars in the Auckland frame
with Cerro Tololo Inter-American Observatory (CTIO) I and
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V photometry. We identify 33 bright, reasonably isolated stars
with |(V − I ) − (V − I )s | < 0.25. We obtain a “light curve”
for each of these stars, using exactly the same DIA procedure
as for the source. We measure the mean magnitude of each of
the 33 light curves and subtract this value from each of the
508 points on each light curve, thereby obtaining residuals that
are presumably primarily due to air-mass variation. For each of
the 508 epochs, we then take the mean of all of these residuals.
We recursively remove outliers until all the remaining points are
within 3σ of the mean, as defined by the scatter of the remaining
points. Typically, one or two of the 33 points are removed as
outliers. The deviations are well fitted by a straight line,

dMag

dZ
= 0.0347 ± 0.0016, (9)

where Z is the air mass. The sense of the effect is that stars
with the color of the microlensed source are systematically
fainter at high air mass, as expected. (We also tried fitting
the data to a parabola rather than a line, but the additional
(quadratic) parameter was detected at substantially below 1σ .)
Finally, we apply these “differential extinction” corrections
to the “superflat”-adjusted DIA photometry to remove both
photometric systematics.

In general, the finite-source effects depend on the limb-
darkening profile of the source star in the observed passbands.
We find below that in this case, the impact proves to be extremely
weak. Nevertheless, using the matched Auckland and CTIO
stars, we study the difference between Auckland magnitudes
and I-band magnitude as a function of the V−I color. We find
the Auckland clear filter is close to the R band.

3.3.3. Blending in Palomar and MDM Data

Palomar data cover only about 80 minutes, but these include
the cresting of the second peak, from which we essentially derive
all the information about finite-source effects. The Palomar
data are sensitive to these effects through their curvature. The
curvature derived from the raw data can be arbitrarily augmented
in the fit (and therefore the finite-source effects arbitrarily
suppressed) by increasing the blending. In general, the blending
at any observatory is constrained by observations at substantially
different magnifications, typically on different nights. However,
no such constraints are available for Palomar, since observations
were carried out on only one night.

We therefore set the Palomar blending fb = 0.2 fs , that
is, similar to the OGLE blending. That is, we assume that
the observed flux variation of 9%, over the Palomar night,
actually reflects a magnification variation of 9%/[1−fb/Afs] =
9% + 0.026%, where A ∼ 70 is the approximate magnification
on that night. If our estimate of the blending were in error
by of order unity (i.e., either fb = 0 or fb = 0.4 fs), then
the implied error in the magnification difference would be
0.026%, which is more than an order of magnitude below the
measurement errors. Hence, the assumption of fixed blending
does not introduce “spurious information” into the fit even at
the 1σ level. MDM data cover the second peak for only ∼18
minutes. For consistency, we treat its blending in the same way
as Palomar, although the practical impact of this data set is an
order of magnitude smaller.

3.3.4. Modeling the Finite-source Effects

After careful tests that are described immediately below, we
determined that all finite-source calculations can be carried out

to an accuracy of 10−4 using the hexadecapole approximation
of Gould (2008; see also Pejcha & Heyrovsky 2009). This sped
up calculations by several orders of magnitude. We began by
conducting MCMC simulations using the “loop linking” finite-
source code described in Appendix A of Dong et al. (2006).
From these simulations, we found the 4.5σ upper bound on the
finite-source parameter ρ(4.5σ ) = 0.001. We then examined the
differences between loop-linking (set at ultrahigh precision) and
hexadecapole for light curves at this extreme limit and found a
maximum difference of 10−4. Based on Claret (2000), we adopt
linear limb-darkening coefficients ΓI = 0.35 for the I-band
observations and ΓR = 0.43 for the observations performed
in the R band and the clear filters, where the local surface
brightness is given by S(θ ) ∝ 1 − Γ[1–1.5(1 − θ2/θ2

∗ )1/2].
Ten additional MCMC runs are performed with ΓI and ΓR

that differ from the above values by 0.1 or 0.2. They result
in essentially the same probability distributions of ρ. Therefore,
the choice of limb-darkening parameters has no effect on the
results. The source size is found to be ρ = 3.9+1.8

−2.7 for the wide
solution and ρ = 3.1+1.7

−2.5 for the close solution. Solutions with
ρ > 0.0009 are ruled out at more than 3σ . The angular Einstein
radius is given by θE = θ∗/ρ. Hence, the lack of pronounced
finite-source effects yields a 3σ lower limit: θE > 0.6 mas. The
lens–source relative proper motion in the geocentric frame is
simply μgeo = θE/tE. The posterior probability distributions of
μgeo derived from these MCMC simulations are compared with
those derived from astrometry in Section 3.4.

3.4. HST Astrometry

HST observations were taken at two epochs (HJD =
2453513.6 and HJD = 2453788.2) with the ACS High Res-
olution Camera (HRC). For each epoch, four dithered images
were acquired in each of F814W and F555W with individual
exposure times of 225 s and 315 s respectively. The position of
the microlens on the HST frame is in excellent agreement with
its centroid on the OGLE difference image (within ∼0.′′01). The
closest star to the source is about 0.′′6 away. This implies that
the OGLE photometry of the target star does not contain addi-
tional blended light that would be identifiable from the HST im-
ages. Data analysis was carried out using the software program
img2xym_HRC (Anderson & King 2004) in a manner similar to
that described in Bennett et al. (2006). Stars are fitted with an
empirical “library” PSF that was derived from well populated
globular cluster fields. These positions are then corrected with
precise distortion-correction models (accurate to ∼0.01 pixel).
We adopted the first F555W frame of the first epoch as the ref-
erence frame, and used the measured positions of stars in this
frame and the frame of each exposure to define a linear trans-
formation between the exposure frame and the reference frame.
This allowed us to transform the position of the target star in
each exposure into the reference frame, so that we see how the
target star had moved relative to the other stars. The centroid
positions of the target star in each filter and epoch are shown in
Figure 4. For convenience, in this figure, the positions are dis-
played relative to the average of the centroid positions. The error
bars are derived from the internal scatter of the four dithered im-
ages. The probability is P = 38% of measuring the observed
separation (or larger) between F814W and F555W under the
assumption that the true offset is zero. The fact that the blended
light is aligned with the source argues that it is associated with
the event (either it is the lens itself or a companion to the lens
or the source). We give a more quantitative statement of this
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Figure 4. HST ACS astrometric measurements of the target star in F814W (red)
and F555W (blue) filters in 2005 (filled dots) and 2006 (open dots). The center
positions of the big circles show mean values of the four dithered observations
in each filter at each epoch while radii of the circle represent the 1σ errors.

constraint in Section 3.5. For the present, we simply note that
the P = 38% probability is compatible with the picture that the
blend is due to the lens since the first epoch was only about half
of the Einstein-radius crossing time after t0, implying that the
lens–source separation induces only a very small centroid off-
set, well below the HST detection limit. For the second epoch,
the centroid offset is

ΔrF814W−F555W,east = − 0.52 ± 0.20 mas,

ΔrF814W−F555W,north = 0.22 ± 0.20 mas. (10)

We also calculate the error in the centroid offsets from the
scatter in such offsets among all comparison stars with F555W
magnitudes within 0.5 mag of the target and find that it is
consistent with the internally based error quoted above.

At the peak of the event, the angular separation between the
lens and the source was negligible, since u0 � 1. We therefore
fix the angular positions of the lens and source at a common θ0.
From the CMD (Figure 3), most of the stars in the HST field are
from the bulge. So we set a reference frame that is fixed with
respect to the bulge field at distance Ds. The source and lens
positions at time t are then

θs(t) = θ0 + μs(t − t0),

θl (t) = θ0 + μl (t − t0) + πrel[s(t) − s(t0)], (11)

where s(t) is the Earth-to-Sun vector defined by Gould (2004).
Then by applying Equations (3) and (4), the angular separation
between the lens and source is

θrel(t) = θl (t) − θs(t) = μgeo(t − t0) + πrelΔs(t), (12)

where Δs(t) is given by Equation (5) in Gould (2004).
The centroid of the source images θ ′

s is displaced from the
source position by (Walker 1995),

Δθ s(t) = θ ′
s(t) − θs(t) = −θrel(t)

[θrel(t)/θE]2 + 2
. (13)

Therefore, one can obtain the centroid position of the lens
and the source at time t:

θc(t) = [1 − fl(t)][θs(t) + Δθ s(t)] + fl(t)θl (t)

= θ0+μs(t − t0)+ θ rel(t)

[
fl(t)+

1 − fl(t)

[θrel(t)/θE]2 + 2

]
, (14)

where fl(t) is the fraction of the total flux due to the lens.
The centroid offset between the two passbands, F814W and

F555W, is related to the properties of the system by

Δθ c(t)F814W−F555W = [f (t)l,F814W − f (t)l,F555W]

×
[

1 − 1

[θrel(t)/θE]2 + 2

]
θ rel(t). (15)

The difference of the blend’s fractional flux between F814W and
F555W is obtained from “MCMC A” described in Section 3.5.
Consequently, under the assumption that the blend is the lens,
we can use the measurement of the second-epoch HST centroid
offset to estimate the relative proper motion from Equation (15)
for a given πrel. For purposes of illustration, we temporarily
adopt πrel = 0.2 when calculating the probability distribution
of μgeo (black contours in the upper panels of Figure 5). The
centroid shift generally favors faster relative proper motion than
that derived from the source size measurement (green contours
in Figure 5), but the difference is only at the ∼1σ level. We then
get a joint probability distribution of μgeo from both finite-source
effects and astrometry, which is shown as the red contours in
the upper panels of Figure 5.

We then derive the distribution of the μgeo position angle
(P.A.) φμgeo

(north through east), which is shown by the red
histograms in the lower panels of Figure 5. Since the direction
of the lens–source relative proper motion μgeo is the same
as that of the microlens parallax πE in the geocentric frame,
we have an independent check on the φμgeo

from our parallax
measurements, whose distribution is plotted as blue histograms
in Figure 5. Both constraints favor the lens–source proper
motion to be generally west, but they disagree in the north–
south component for which both constraints are weaker. The
disagreements between two histograms is at about 2.5σ level.

3.5. “Seeing” the Blend with HST

If the blend were not the lens (or otherwise associated with
the event), the PSF of the source would likely be broadened
by the blended star. We examine the HST F814W images of
the target and 45 nearby stars with similar brightness for each
available exposure. We fit them with the library PSF produced
by Anderson & King (2004). In order to account for breathing-
related changes of focus, we fit each of these 45 nearby stars
with the library PSF, and construct a residual PSF that can be
added to the library PSF to produce a PSF that is tailor-made for
each exposure. For both epochs, the source–blend combination
shows no detectable broadening relative to the PSFs of other
isolated stars in the field. From the ground-based light curve, it
is already known that ∼16% of this light comes from the blend.
We add simulated stars with the same flux as the blended light
from 0 to 2.0 pixels away from the center of the source. We find
that the blend would have produced detectable broadening of
the PSF if it were more than 15 mas apart from the source at the
second epoch. Hence, the source–blend separation must then be
less than about 15 mas. From the HST image itself, the density
of ambient stars at similar magnitudes is �1 arcsec−2. The
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Figure 5. Upper two panels show posterior probability contours at Δχ2 = 1 (solid line) and 4 (dotted line) for relative lens–source proper motion μgeo. The left
panel is for wide-binary solutions and the right one is for close-binary ones. The green contours show the probability distributions constrained by the finite-source
effects. The black contours are derived from HST astrometry measurements assuming πrel = 0.2 mas. The red contours show the joint probability distributions from
both constraints. The lower two panels show the posterior probability distribution of the P.A. φμgeo

of the relative lens–source proper motion for wide-binary and
close-binary solutions, respectively. The histogram in red is derived from the red contours of joint probability for finite source and astrometry constraints in the upper
panel. The blue histogram represents that of the microlens parallax. They mildly disagree at 2.5σ .

probability of a chance interloper is therefore less than 0.07%,
implying that the blended light is almost certainly associated
with the event, that is, either the lens itself, a companion to the
lens, or a companion to the source. Both of the latter options
are further constrained in Section 3.7 where, in particular, we
essentially rule out the lens-companion scenario.

As discussed in Section 2, the blended flux in I is relatively
well determined from the ground-based OGLE data alone, but
the blended V flux is poorly determined, primarily because the
systematic uncertainty in the zero point of the baseline flux
(determined from PSF fitting) is of the same order as the blended
flux. Because the HST image is very sparse, there is essentially
no zero-point error in the HST V-band flux. The problem is
how to divide the baseline V flux into source and blend fluxes,
Fbase = Fs + Fb.

The standard method of doing this decomposition would
be to incorporate the HST V light curve into the overall fit,
which would automatically yield the required decomposition.
Since this “light curve” consists of two points, the “fit” can be
expressed analytically

Fs = F (t1) − F (t2)

A1 − 1
, Fb = F (t2) − Fs, (16)

where we have made the approximation that the second ob-
servation is at baseline. Let us then estimate the resulting
errors in Fs and Fb, ignoring for the moment that there is
some uncertainty in A1 due to uncertainties in the general
model. Each of the individual flux measurement is determined
from four separate subexposures, and this permits estimates of

the errors from the respective scatters. These are σ1 = 0.01
and σ2 = 0.03 mag. Hence, the fractional error in Fs is
(2.5/ ln 10)σ (Fs)/Fs = [σ 2

1 (A1 + r)2 + σ 2
2 (1 + r)2]1/2/(A1 − 1),

where r ≡ Fb/Fs . Adopting, for purposes of illustration, A1 = 2
and r = 0.1, this implies an error σ (Vs,HST ) of 0.04 mag. This
may not seem very large, but after the subtraction in Equa-
tion (16), it implies an error σ (Vb,HST ) ∼ σ (Vs,HST )/r ∼ 0.4
mag. And taking into account the uncertainties introduced by
model fitting in determining the magnifications, the error is
expected to be even larger. Hence, we undertake an alternate
approach.

Because the HST and OGLE V filters have very nearly the
same wavelength center, Vs,HST should be nearly identical to
Vs,OGLE up to a possible zero-point offset on their respective
magnitude scales. Because the OGLE data contain many more
points during the event, some at much higher magnification than
the single HST event point, Vs,OGLE is determined extremely
well (for a fixed microlensing model), much better than the
0.04 mag error for Vs,HST . Thus, if the zero-point offset between
the two systems can be determined to better than 0.04 mag, this
method will be superior. Although the I-band blend is much
better measured than the V-band blend from the ground-based
data, for consistency we determine the zero-point offset in I by
the same procedure.

Figure 6 shows differences between OGLE and HST V
magnitudes for matched stars in the HST image. The error
for each star and observatory is determined from the scatter
among measurements of that star. We consider only points
with V < 19.5 because at fainter magnitudes the scatter grows
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considerably. Each star was inspected on the HST images, and
those that would be significantly blended on the OGLE image
were eliminated. The remaining points are fit to an average offset
by adding a “cosmic error” in quadrature to the errors shown.
We carry out this calculation twice, once including the “outlier”
(shown as a filled circle) and once with this object excluded.
For the V band, we find offsets of VHST −VOGLE = 0.17 ± 0.01
and 0.18 ± 0.01, respectively. We adopt the following V-band
offset

ΔV = VHST − VOGLE = 0.18 ± 0.01. (17)

A similar analysis of the I band leads to

ΔI = IHST − IOGLE = 0.08 ± 0.01. (18)

We find no obvious color terms for either the V-band or I-band
transformations. As a check, we perform linear regression to
compare the OGLE and HST (V − I ) colors, and we find they
agree within 0.01 mag, which further confirms the color terms
are unlikely to be significant in the above transformations.

We proceed as follows to make HST-based MCMC
(“MCMC A”) estimates of Vb,OGLE and Ib,OGLE that place the
blending star on the OGLE-based CMD. Since flux parameters
are linear, they are often left free and fitted by linear least-
squares minimization, which significantly accelerates the com-
putations. However, for “MCMC A,” the source fluxes from
OGLE and HST are treated as independent MCMC parameters
so that they can help align the two photometric systems as de-
scribed below. Since HST blended light is not affected by light
from ambient stars (as OGLE is), we also leave HST blended
fluxes as independent. Therefore, in “MCMC A,” we include
the following independent MCMC flux parameters, FI,s,OGLE,
FV,s,OGLE, FI,s,HST , FV,s,HST , FI,b,HST , and FV,b,HST , which for
convenience we express here as magnitudes. For each model
on the chain, we add to the light-curve-based χ2 two addi-
tional terms Δχ2

V = (Vs,HST − Vs,OGLE − ΔV )2/[σ (ΔV )]2 and
Δχ2

I = (Is,HST − Is,OGLE − ΔI )2/[σ (ΔI )]2 to enforce the mea-
sured offset between the two systems. Finally, we evaluate the
V-band blended flux from HST and convert it to OGLE sys-
tem, Vb,OGLE/HST = Vs,OGLE − Vs,HST + Vb,HST (and similarly
for the I band), where all three terms on the right-hand side
are the individual Monte Carlo realizations of the respective
parameters.

The result is shown in Figure 3, in which the blend (magenta)
is placed on the OGLE CMD. Also shown, in cyan points, is HST
photometry (aligned to the OGLE system) of the stars in the ACS
subfield of the OGLE field. Although this field is much smaller,
its stars trace the main sequence to much fainter magnitudes. The
blend falls well within the bulge main sequence revealed by the
HST stars on the CMD, so naively the blend can be interpreted
as being in the bulge. Hence, this diagram is, in itself, most
simply explained by the blend being a bulge lens or a binary
companion of the source. However, the measurement of V−I
color has relatively large uncertainty, and it is also consistent
with the blend being the lens (or a companion to it) several kpc
in front of the bulge, provided the blend is somewhat redder
than indicated by the best-fit value of its color. In Section 3.6, we
assume the blended light seen by HST is the foreground lens star,
and the HST photometry is combined with other information to
put constraints on the lens star under this assumption.

Figure 6. Differences between OGLE V and HST F555W magnitudes for the
matched stars are plotted against their V magnitudes measured by OGLE. To
calculate the offset, we add a 0.017 mag “cosmic error” in quadrature to each
point in order to reduce χ2/dof to unity. The open circles represent the stars
used to establish the final transformation and the filled point shows an “outlier.”

3.6. Final Physical Constraints on the Lens and Planet

3.6.1. Constraints on a Luminous Lens

In the foregoing, we have discussed two types of constraints
on the host star properties: the first class of constraints, con-
sisting of independent measurements of πE, θE, and μ, relate
the microlens parameters to the physical parameters of the lens;
the second class are HST and ground-based observations that
determine the photometric properties of the blend.

In this section, we first describe a new set of MCMC
simulations taking all these constraints into account. Similarly
to what is done to include HST photometry in the “MCMC A”
(see Section 3.5), we incorporate HST astrometry constraints by
adding χ2 penalties to the fittings. For a given set of microlens
parameters, we can derive the physical parameters, namely, M,
πrel, μgeo, and so calculate ρ = θ∗/θE (from Equation (1)) and
the F814W − F555W centroid offset (from Equation (15)).
Then we assign the χ2 penalties based on the observed centroid
offset from Section 3.4. In this way, the MCMC simulations
simultaneously include all microlens constraints on the lens
properties. The posterior probability distribution of M and πrel
are plotted in Figure 7. The πrel determination very strongly
excludes a bulge (πrel � 0.05) lens. Note that by incorporating
HST astrometry, we implicitly assume that the blend is the lens.

If the blend is indeed the lens itself, we can also estimate
its mass and distance from the measured color and magnitude
of the blend. In doing so, we use theoretical stellar isochrones
(M. Pinsonneault 2007, private communication) incorporating
the color–temperature relation by Lejeune et al. (1997, 1998).
We first use an isochrone that has solar metal abundance, with
stellar masses ranging from 0.25 M� − 1.0 M�, and an age of
4 Gyr. The variation in stellar brightness due to stellar age is
negligible for our purpose. Extinction is modeled as a function
of Dl by dAI/dDl = (0.4 kpc−1) exp(−wDl), where w is set to
be 0.31 kpc−1 so that the observed value AI (8.6 kpc) = 1.20 (as
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Figure 7. Posterior probability distribution of lens mass M, and relative lens–
source parallax πrel from MCMC simulations discussed in Section 3.6.1. The
constraints include those from parallax effects, finite-source effects and relative
proper-motion measurements from HST astrometry. The Δχ2 = 1, 4, 9 contours
are displayed in solid, dotted, and dashed lines, respectively. Both wide-binary
(magenta) and close-binary (blue) solutions are shown. The lines in black, red,
and green represent the predicted M and πrel from the isochrones for different
metal abundances: [M/H] = 0 (black), −0.5 (red), −1.0 (green). The points on
these lines correspond to the observed I-band magnitude I = 21.3 and various
V−I values V − I = 1.8 (best estimate, filled dots), 2.0 (0.5σ , filled triangle),
2.1 (1.0σ , filled squares), 2.3 (1.5σ , filled pentagons), and 2.6 (2.0σ , filled
hexagons).

derived from CMD discussed in Section 3.3.1) is reproduced.
Again, the distance to the source is assumed to be 8.6 kpc,
implying πs = 0.116 mas, and hence that the lens distance is
Dl/kpc = mas/(πrel + πs). In Figure 7, we show the lens mass
M and relative parallax πrel derived from the isochrone that
correspond to the observed I-band magnitude I = 21.3 in black
line and a series of V−I values V − I = 1.8 (best estimate),
2.0 (0.5σ ), 2.1 (1σ ), 2.3 (1.5σ ) and 2.6 (2σ ) as black points.
The observed color is in modest disagreement < 2σ with
the mass and distance of the lens at solar metallicity. We
also show analogous trajectories for [M/H] = −0.5 (red) and
[M/H] = −1.0 (green). The level of agreement changes only
very weakly with metallicity.

We then include the isochrone information in a new set of
MCMC runs (“MCMC B”). To do so, the HST blended fluxes
in I and V bands can no longer be treated as independent
MCMC parameters. Instead, based on the isochrone with solar
metallicity, the lens V−I color and I magnitude are predicted at
the lens mass and distance determined from MCMC parameters.
Then the HST I-band and V-band fluxes are fixed at the predicted
values in the fitting for each MCMC realization.

Figure 8 illustrates the constraints on M and πrel from the
MCMC, which are essentially the same for both wide-binary
(solid contours) and close-binary (dashed contours) solutions:

M = 0.46 ± 0.04 M�, πrel = 0.19 ± 0.03 mas. (19)

Assuming the source distance at 8.6 kpc, the πrel estimates
translate to the following lens distance measurement:

Dl = 3.2 ± 0.4 kpc. (20)

Figure 8. Posterior probability distribution of lens mass M and relative lens–
source parallax πrel from MCMC simulations assuming that the blended light
comes from the lens star. The Δχ2 = 1, 4 contours are displayed in a solid line
for wide solutions and in a dotted line for close solutions.

Furthermore, we can derive constraints on the planet mass
Mp and the projected separation between the planet and the lens
star r⊥,

Mp = 3.8 ± 0.4 MJupiter, r⊥ = 3.6±0.2 AU (wide),
(21)

and

Mp = 3.4±0.4 MJupiter, r⊥ = 2.1±0.1 AU (close).
(22)

The wide solution is slightly preferred over close solution by
Δχ2 = 2.1.

To examine possible uncertainties in extinction estimates, we
reran our MCMC with AI and AV that are 10% higher and
lower than the fiducial values. These runs result in very similar
estimates as when adopting the fiducial values.

From Equations (14) and (13), one can easily obtain the
centroid shift between two epochs in a given passband by
ignoring Δθ s(t),47

θc(t2) − θc(t1) = μs(t2 − t1) + μgeo

× [fl(t2)(t2 − t0) − fl(t1)(t1 − t0)]

+ πrel[fl(t2)Δs(t2) − fl(t1)Δs(t1)]. (23)

Because μgeo, πrel and fl in a given passband can be extracted
from the MCMC realizations (“MCMC B”), we can use the
above equation to measure the source proper motion by making
use of the centroid shift in F814W between two epochs. The
source proper motion with respect to the mean motion of stars

47 The angular separations between the source and the lens are ∼0.47θE and
∼4.4θE for the two HST epochs, respectively. Thus, the angular position
offsets between the centroids of the source images and the source are both
∼0.21θE and the directions of the offset relative to the source are almost the
same due to the small impact parameter u0. The difference between lens flux
fractions of the two epochs are about 7% in the I band, so the offsets can be
confidently ignored in deriving the source proper motion using the relative
astrometry in F814W at two different epochs.
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in the HST field is measured to be

μs = (μs,E, μs,N ) = (2.0 ± 0.2, −0.5+0.2
−0.7) mas yr−1. (24)

We obtain similar results with F555W, but with understandably
larger errorbars since the astrometry is more precise for the
microlens in F814W.

Combining Equations (3) and (4), the lens proper motion in
the heliocentric frame is therefore

μl = μgeo + μs +
v⊕πrel

AU
. (25)

For each MCMC realization, πrel is known, so we can convert the
lens proper motion to the velocity of the lens in the heliocentric
frame vl,hel and also in the frame of local standard of rest vl,LSR
(we ignore the rotation of the galactic bulge). The lens velocity
in the LSR is estimated to be vl,LSR = 103 ± 15 km s−1. This
raises the possibility of the lens being in the thick disk, in which
the stars are typically metal-poor. As shown in Figure 7, the
constraints we have cannot resolve the metallicity of the lens
star.

3.6.2. Planetary Orbital Motion

Wide/Close Degeneracy. Binary-lens light curves in general
exhibit a well-known “close–wide” symmetry (Dominik 1999;
An 2005). Even for some well covered caustics-crossing events
(e.g., Albrow et al. 1999), there are quite degenerate sets of
solutions between wide and close binaries. In Paper I, we found
that the best-fit point-source wide-binary solution was preferred
over close-binary solutions by Δχ2 ∼ 22. But this did not
necessarily mean that the wide–close binary degeneracy was
broken, since the two classes of binaries may be influenced
differently by higher order effects. We find that the χ2 difference
between best-fit wide and close solutions is within 1 from
“MCMC A” and 2.1 (positive u0) or 2.2 (negative u0) from
“MCMC B.”

However, orbital motion of the planet is subject to additional
dynamical constraints: the projected velocity of the planet
should be no greater than the escape velocity of the system:
v⊥ � vesc, where,

v⊥ =
√

ḋ2 + (ωd)2
AU

πl

θE, (26)

vesc =
√

2GM

r
� vesc,⊥ ≡

√
2GM

dθEDl

=
√

πl

2dπE
c, (27)

and where r is the instantaneous three-dimensional planet–star
physical separation. Note that in the last step, we have used
Equation (1).

We then calculate the probability distribution of the ratio

v2
⊥

v2
esc,⊥

= 2
AU2

c2

d3[(ḋ/d)2 + ω2]

[πE + (πs/θE)]3

πE

θE
(28)

for an ensemble of MCMC realizations for both wide and
close solutions. Figure 9 shows probability distributions of the
projected velocity r⊥γ in the units of critical velocity vc,⊥, where
r⊥γ is the instantaneous velocity of the planet on the sky, which
is further discussed in the Appendix and vc,⊥ = vesc,⊥/

√
2.

The dotted circle encloses the solutions that are allowed by the
escape velocity criteria, and the solutions that are inside the
solid line are consistent with circular orbital motion. We find

Figure 9. Probability contours of projected velocity r⊥γ (defined in the
Appendix) in the units of vc,⊥ for both close-binary (upper panel) and wide-
binary (lower panel) solutions. All the solutions that are outside the dotted circle
are physically rejected as the velocities exceed the escape velocity of the system.
The boundary in a solid line inside the dotted circle encloses the solutions for
which circular orbits are allowed.

that the best-fit close-binary solutions are physically allowed
while the best-fit wide-binary solutions are excluded by these
physical constraints at 1.6σ . The physically excluded best-fit
wide solutions are favored by Δχ2 = 2.1 (or 2.2) over the close
solutions, so by putting physical constraints, the degenerate
solutions are statistically not distinguishable at 1σ .

Circular Planetary Orbits and Planetary Parameters.
Planetary deviations in microlensing light curves are intrinsi-
cally short, so in most cases, only the instantaneous projected
distance between the planet and the host star can be extracted.
As shown in Section 3.6.2, for this event, we tentatively mea-
sure the instantaneous projected velocity of the planet, thanks
to the relatively long (∼4 days) duration of the planetary sig-
nal. One cannot solve for the full set of orbital parameters just
from the instantaneous projected position and velocity. How-
ever, as we show in the Appendix, we can tentatively derive
orbital parameters by assuming that the planet follows a cir-
cular orbit around the host star. In Figure 10, we show the
probability distributions of the semimajor axis, inclination, am-
plitude of radial velocity (RV), and equilibrium temperature
of the planet derived from “MCMC B” for both wide and
close solutions. The equilibrium temperature is defined to be
Teq ≡ (Lbol/Lbol,�)1/4(2a/R�)−1/2T�, where Lbol is the bolo-
metric luminosity of the host, a is the planet semimajor axis,
and Lbol,�, R�, and T� are the luminosity, radius, and effective
temperature of the Sun, respectively. This would give the Earth
an equilibrium temperature of Teq = 285 K. In calculating these
probabilities, we assign a flat (Öpik’s Law) prior for the semi-
major axis and assume that the orbits are randomly oriented,
that is, with a uniform prior on cos i.

3.7. Constraints on a Nonluminous Lens

In Section 3.5, we noted that the blended light must lie
within 15 mas of the source: otherwise, the HST images would
appear extended. We argued that the blended light must be
associated with the event (either the lens itself or a companion
to either the source or lens), since the chance of such an
alignment by a random field star is less than 0.07%. In fact,
even stronger constraints can be placed on the blend–source
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Figure 10. Probability distributions of planetary parameters (semimajor axis
a, equilibrium temperature, cosine of the inclination, and amplitude of the
RV of the lens star) from MCMC realizations assuming circular orbital
motion. Histograms in black and red represent the close-binary and wide-
binary solutions, respectively. Dotted and dashed histograms represent the two
degenerate solutions for each MCMC realization discussed in the Appendix.

separation using the arguments of Section 3.4. These are
somewhat more complicated and depend on the blend–source
relative parallax, so we do not consider the general case (which
would only be of interest to further reduce the already very
low probability of a random interloper) but restrict attention to
companions of the source and lens. We begin with the simpler
source–companion case.

3.7.1. Blend As A Source Companion

As we reported in Section 3.4, there were two HST mea-
surements of the astrometric offset between the V and I light
centroids, dating from 0.09 and 0.84 years after peak, respec-
tively. In that section, we examined the implications of these
measurements under the hypothesis that the blend is the lens.
We therefore ignored the first measurement because the lens–
source separation at that epoch is much better constrained by the
microlensing event itself than by the astrometric measurement.
However, as we now examine the hypothesis that the blend is
a companion to the source, both epochs must be considered
equally. Most of the weight (86%) comes from the second ob-
servation, partly not because the astrometric errors are slightly
smaller, but mainly because the blend contributes about twice
the fractional light, which itself reduces the error on the inferred
separation by a factor of 2. Under this hypothesis, we find a best-
fit source–companion separation of 5 mas, with a companion
P.A. (north through east) of 280◦. The (isotropic) error is 3 mas.
Approximating the companion–source relative motion as recti-
linear, this measurement strictly applies to an epoch 0.73 years
after the event, but of course the intrinsic source–companion
relative motion must be very small compared to the errors in
this measurement.

There would be nothing unusual about such a source-
companion projected separation, roughly 40 ± 25 AU in phys-
ical units. Indeed, the local G-star binary distribution function
peaks close to this value (Duquennoy & Mayor 1991).

The separation derived is also marginally consistent with the
companion generating a xallarap signal that mimics the parallax
signal in our dominant interpretation. The semimajor axis of the
orbit would have to be about 0.8 AU to mimic the 1 yr period of
the Earth, which corresponds to a maximum angular separation
of about 100 μas, which is compatible with the astrometric
measurements at the 1.6σ level.

Another potential constraint comes from comparing the color
difference with the magnitude difference of the source and
blend. We find that the source is about 0.5 ± 0.5 mag too bright
to be on the same main sequence. However, first, this is only a
1σ difference, which is not significant. Second, both the sign
and magnitude of the difference are compatible with the source
being a slightly evolved turnoff star, which is consistent with its
color.

The only present evidence against the source–companion
hypothesis is that the astrometric offset between V and I HST
images changes between the two epochs, and that the direction
and amplitude of this change is consistent with other evidence
of the proper motion of the lens. Since this is only a P = 1.7%
effect, it cannot be regarded as conclusive. However, additional
HST observations at a later epoch could definitively confirm or
rule out this hypothesis.

3.7.2. Blend As A Lens Companion

A similar, but somewhat more complicated, line of reasoning
essentially rules out the hypothesis that the blend is a companion
to the lens, at least if the lens is luminous. The primary difference
is that the event itself places very strong lower limits on how
close a companion can be to the lens.

A companion with separation (in units of θE) d � 1 induces a
Chang & Refsdal (1979) caustic, which is fully characterized by
the gravitational shear γ = q/d2. We find that the light-curve
distortions induced by this shear would be easily noticed unless
γ < 0.0035, that is,

γ = qc

d2
c

= qcθ
2
E

θ2
c

< 0.0035, (29)

where qc = Mc/M is the ratio of the companion mass to the
lens mass and dc = θc/θE is the ratio of the lens–companion
separation to the Einstein radius. Equivalently,

θc > 19

(
qc

1.3

)1/2

θE. (30)

Here, we have normalized qc to the minimum mass ratio required
for the companion to dominate the light assuming that both are
main-sequence stars. (We will also consider completely dark
lenses below).

We now show that Equation (30) is inconsistent with the
astrometric data. If a lens companion is assumed to generate the
blend light, then essentially the same line of reasoning given
in Section 3.7.1 implies that 0.73 years after the event, this
companion lies 5 mas from the source, at a P.A. of 280◦ and with
an isotropic error of 3 mas. The one wrinkle is that we should
now take account of the relative-parallax term in Equation (15),
whereas this was identically zero (and so was ignored) for the
source–companion case. However, this term is only about 1.8πrel
and hence is quite small compared to the measurement errors
for typical πrel � 0.2 mas. We will therefore ignore this term
in the interest of simplicity, except when we explicitly consider
the case of large πrel further below.
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Figure 11. χ2 distributions for best-fit xallarap solutions at fixed binary-source
orbital periods P. The solid and dotted lines represent xallarap fits with and
without dynamical constraints described in Section 3.8. The best-fit parallax
solution is shown as a filled dot at a period of one year. All of the fits shown in
this figure assume no planetary orbital motion.

Of course, the lens itself moves during this interval. From
the parallax measurement alone (i.e., without attributing the
V/I astrometric displacement to lens motion), it is known that
the lens moves in the same general direction, that is, with the
P.A. roughly 210◦. In assessing the amplitude of this motion,
we consider only the constraints from finite-source effects (and
ignore the astrometric displacement). These constraints yield a
hard lower limit on θE (from lack of pronounced finite-source
effects) of θE > 0.6 mas, which corresponds to a proper motion
μ = 3.1 mas yr−1. At this extreme value (and allowing for
2σ uncertainty in the direction of lens motion as well in the
measurement of the companion position), the maximum lens-
companion separation is 11.4 mas (i.e., 19 θE), which is just
ruled out by Equation (30). At larger θE, the lens-companion
scenario is excluded more robustly. For example, in the limit of
large θE, we have θc = μ × 0.73 yr = θE(0.73 yr/tE) = 3.9θE,
which is clearly ruled out by Equation (30).

Then we note that any scenario involving values of πrel that are
large enough that they cannot be ignored in this analysis (πrel �
0.5 mas) must also have very large θE = πrel/πE � 1 mas, a
regime in which the lens-companion is easily excluded.

The one major loophole to this argument is that the lens may
be a stellar remnant (white dwarf, neutron star, or black hole), in
which case it could be more massive than the companion despite
the latter’s greater luminosity.

3.8. Xallarap Effects and Binary Source

Binary source motion can give rise to distortions of the light
curve, called “xallarap” effects. One can always find a set
of xallarap parameters to perfectly mimic parallax distortions
caused by the Earth’s motion (Smith et al. 2003). However, it is a
priori unlikely for the binary source to have such parameters, so
if the parallax signal is real, one would expect the xallarap fits to
converge to the Earth parameters. For simplicity, we assume that
the binary source is in circular orbit. We extensively search the

Figure 12. Results of xallarap fits by fixing binary orbital phase λ and
complement of inclination β at period P = 1 yr and u0 > 0. The plot is color-
coded for solutions with Δχ2 within 1 (black), 4 (red), 9 (green), 16 (blue), 25
(magenta), and 49 (yellow) of the best fit. The Earth parameters are indicated
by black circles. Because of a perfect symmetry (u0 → −u0 and α → −α),
the upper black circle represents Earth parameter (λ = 268◦, β = −11◦) for
the case u0 < 0. Comparison of parallax with xallarap must be made with the
better of the two, that is, the lower one.

parameter space on a grid of five xallarap parameters, namely
the period of binary motion P, the phase λ and complement
of inclination β of the binary orbit, which corresponds to the
ecliptic longitude and latitude in the parallax interpretation of
the light curve, as well as (ξE,E, ξE,N), which are the counterparts
of (πE,E, πE,N) of the microlens parallax. We take advantage of
the two exact degeneracies found by Poindexter et al. (2005) to
reduce the range of the parameter search. One exact degeneracy
takes λ′ = λ + π and χE

′ = −χE , while all other parameters
remain the same. The other takes β ′ = −β, u0

′ = −u0, and
ξ ′
E,N = −ξE,N (the sign of α should be changed accordingly as

well). Therefore, we restrict our search to solutions with positive
u0 and with π � λ � 2π . In modeling xallarap, planetary orbital
motion is neglected. In Figure 11, the χ2 distribution for best-
fit xallarap solutions as a function of period is displayed in a
dotted line, and the xallarap solution with a period of 1 yr has
a Δχ2 = 0.5 larger than the best-fit at 0.9 yr. Figure 12 shows
that, for the xallarap solutions with a period of 1 yr, the best fit
has Δχ2 = 3.2 less than the best-fit parallax solution (displayed
as a black circle point) and its orbital parameters are close
to the ecliptic coordinates of event (λ = 268◦, β = −11◦).
Therefore, the overall best-fit xallarap solution has Δχ2 = 3.7
smaller than that of the parallax solution (whose χ2 value is
displayed as a filled dot in Figure 11) for 3 extra degrees of
freedom (dof), which gives a probability of 30%. The close
proximity between the best-fit xallarap parameters and those
of the Earth can be regarded as good evidence of the parallax
interpretation. The slight preference of xallarap could simply
be statistical fluctuation or reflect low-level systematics in the
light curve (commonly found in the analysis by Poindexter et al.
2005).

We also devise another test on the plausibility of xallarap. In
Section 3.5, we argued that the blend is unlikely to be a random
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interloper unrelated to either the source or the lens. If the source
were in a binary, then the blend would naturally be explained as
the companion of the source star. Then from the blend’s position
on the CMD, its mass would be mc ∼ 0.9 M�. By definition, ξE
is the size of the source’s orbit as in the units of r̂E (the Einstein
radius projected on the source plane):

ξE = as

r̂E
= amc

(mc + ms)r̂E
, (31)

where a is the semimajor axis of the binary orbit, and ms and
mc are the masses of the source and its companion, respectively.
Then we apply Kepler’s third law:

(
P

yr

)2
m3

c

M�(mc + ms)2
=

(
ξEr̂E

AU

)3

. (32)

Once the masses of the source and companion are known, the
product of ξE and r̂E are determined for a given binary orbital
period P. And in the present case, r̂E/AU = θEDs = θ∗/ρDs =
4.5 × 10−3/ρ. By adopting ms = 1 M�, mc = 0.9 M�, for
each set of P and ρ, there is a uniquely determined ξE from
Equation (32). We then apply this constraint in the xallarap
fitting for a series of periods. The minimum χ2s for each period
from the fittings are shown in a solid line in Figure 11. The best-
fit solution has Δχ2 ∼ 1.0 less than the best-fit parallax solution
for 2 extra dof. Although as compared to the test described in the
previous paragraph, the current test implies a higher probability
that the data are explained by parallax (rather than xallarap)
effects, it still does not rule out xallarap.

4. SUMMARY AND FUTURE PROSPECTS

Our primary interpretation of the OGLE-2005-BLG-071 data
assumes that the light-curve distortions are due to parallax
rather than xallarap and that the blended light is due to the
lens itself rather than a companion to the source. Under these
assumptions, the lens is fairly tightly constrained to be a
foreground M dwarf, with mass M = 0.46 ± 0.04 M� and
distance Dl = 3.2 ± 0.4 kpc, which has thick-disk kinematics
(vLSR ∼ 103 km s−1). As we discuss below, future observations
might help to constrain its metallicity. The microlens modeling
suffers from a well known wide–close binary degeneracy. The
best-fit wide-binary solutions are slightly favored over the
close-binary solutions; however, from dynamical constraints on
planetary orbital motion, the physically allowed solutions are not
distinguishable within 1σ . For the wide-binary model, we obtain
a planet of mass Mp = 3.8 ± 0.4 MJupiter at projected separation
r⊥ = 3.6 ± 0.2AU. The planet then has an equilibrium
temperature of about T = 55 K, that is, similar to Neptune. In the
degenerate close-binary solutions, the planet is closer to the star
and so hotter, and the estimates are: Mp = 3.4 ± 0.4 MJupiter,
r⊥ = 2.1 ± 0.1AU, and T ∼ 71 K.

As we have explored in considerable detail, it is possible
that one or both of these assumptions is incorrect. However,
future astrometric measurements that are made after the lens
and source have had a chance to separate will largely resolve
both ambiguities. Moreover, such measurements will put much
tighter constraints on the metallicity of the lens (assuming that
it proves to be the blended light).

First, the astrometric measurements made 0.84 years after
the event detected motion suggests that there was still 1.7%
chance that the blend did not move relative to the source. A later
measurement that detected this motion at higher confidence

would rule out the hypothesis that the blend is a companion
to the source. We argued in Section 3.7.1 that the blend could
not be a companion to a main-sequence lens. Therefore, the
only possibilities that would remain are that the lens is the
blend, that the lens is a remnant (e.g., white dwarf), or that the
blend is a random interloper (probability is less than 10−3). As
we briefly summarize below, a future astrometric measurement
could strongly constrain the remnant-lens hypothesis as well.

Of course, it is also possible that future astrometry will reveal
that the blend does not move with respect to the source, in which
case the blend would be a companion to the source. Thus, either
way, these measurements would largely resolve the nature of
the blended light.

Second, by identifying the nature of blend, these measure-
ments will largely, but not entirely, resolve the issue of parallax
versus xallarap. If the blend proves not to be associated with the
source, then any xallarap-inducing companion would have to
be considerably less luminous and so (unless it were a neutron
star) less massive than the mc = 0.9 M� that we assumed in
evaluating Equation (32). Moreover, stronger constraints on r̂E
(right-hand side of Equation (32)) would be available from the
astrometric measurements. Hence, the xallarap option would be
either excluded or very strongly constrained by this test.

On the other hand, if the blend were confirmed to be a source
companion, then essentially all higher order constraints on the
nature of the lens would disappear. The parallax “measurement”
would then very plausibly be explained by xallarap, while the
“extra information” about θE that is presently assumed to come
from the blend proper-motion measurement would likewise
evaporate.

These considerations strongly argue for making a future
high-precision astrometric measurement. Recall that in the HST
measurements reported in Section 3.5, the source and blend
were not separately resolved: the relative motion was inferred
from the offset between the V and I centroids, which are
displaced because the source and blend have different colors.
Due to its well controlled PSF, HST is capable of detecting the
broadening of the PSF even if the separation of the lens and
source is a fraction of the FWHM. Assuming that the proper
motion is μgeo ∼ 4.4 mas yr−1, and based on our simulations in
Section 3.5, such broadening would be confidently detectable
about 5 years after the event (see also Bennett et al. 2007 for
analytic PSF broadening estimates). Ten years after the event,
the net displacement would be ∼40 mas. This compares to a
diffraction-limited FWHM of 40 mas for the H band on a
ground-based 10 m telescope and would therefore enable full
resolution. The I−H color of the source is extremely well
determined (0.01 mag) from simultaneous I and H data taken
during the event from the CTIO/SMARTS 1.3 m in Chile.
Hence, the flux allocation of the partially or fully resolved blend
and source stars would be known. The direct detection of a
partially or fully resolved lens will provide precise photometric
and astrometry measurements (see Kozłowski et al. 2007 for
one such example), which will enable much tighter constraints
on the mass, distance, and projected velocity of the lens. It
also opens up the possibility of determining the metallicity
of the host star by taking into account both nonphotometric
and photometric constraints. If, as indicated by the projected
velocity measurement, it is a thick-disk star, then it will be
one of the few such stars found to harbor a planet (Haywood
2008).

As remarked above, a definitive detection of the blend’s
proper motion would still leave open the possibility that it was
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a companion to the lens, and not the lens itself. In this case, the
lens would have to be a remnant. Without going into detail,
the astrometric measurement would simultaneously improve
the blend color measurement as well as giving a proper-motion
estimate (albeit with large errors because the blend–source offset
at the peak of the event would then not be known). It could then
be asked whether the parallax, proper-motion, and photometric
data could be consistently explained by any combination of
remnant lens and main-sequence companion. This analysis
would depend critically on the values of the measurements,
so we do not explore it further here. We simply note that
this scenario could also be strongly constrained by future
astrometry.

5. DISCUSSION

With the measurements presented here, and the precision with
which these measurements allow us to determine the properties
of the planet OGLE-2005-BLG-071Lb and its host, it is now
possible to place this system in the context of similar plane-
tary systems discovered by RV surveys. Of course, the kind of
information that can be inferred about the planetary systems
discovered via RV differs somewhat from that presented here.
For example, for planets discovered via RV, it is generally only
possible to infer a lower limit to the planet mass, unless the plan-
ets happen to transit or produce a detectable astrometric signal.
Mutatis mutandis, for planets discovered via microlensing, it is
generally only possible to measure the projected separation at
the time of the event, even in the case for which the microlens-
ing mass degeneracy is broken as it is here (although see Gaudi
et al. 2008).

With these caveats in mind, we can compare the properties
of OGLE-2005-BLG-071Lb and its host star with similar RV
systems. It is interesting to note that the fractional uncertainties
in the host mass and distance of OGLE-2005-BLG-071Lb are
comparable to those of some of the systems listed in Table 3.

OGLE-2005-BLG-071Lb is one of the only eight Jovian-
mass (0.2 MJupiter < Mp < 13 MJupiter) planets that have been
detected orbiting M dwarf hosts (i.e., M∗ < 0.55 M�; Marcy
et al. 1998, 2001; Delfosse et al. 1998; Butler et al. 2006;
Johnson et al. 2007b; Bailey et al. 2009). Table 3 summarizes the
planetary and host-star properties of the known M dwarf/Jovian-
mass planetary systems. OGLE-2005-BLG-071Lb is likely the
most massive known planet orbiting an M dwarf.

As suggested by the small number of systems listed in
Table 3, and shown quantitatively by several recent studies, the
frequency of relatively short-period P � 2000 days, Jupiter-
mass companions to M dwarfs appears to be ∼3–5 times lower
than such companions to FGK dwarfs (Butler et al. 2006; Endl
et al. 2006; Johnson et al. 2007b; Cumming et al. 2008). This
paucity, which has been shown to be statistically significant,
is expected in the core-accretion model of planet formation,
which generally predicts that Jovian companions to M dwarfs
should be rare, since for lower mass stars, the dynamical time
at the sites of planet formation is longer, whereas the amount of
raw material available for planet formation is smaller (Laughlin
et al. 2004; Ida & Lin 2005; Kennedy & Kenyon 2008, but
see Kornet et al. 2006). Thus, these planets typically do not
reach sufficient mass to accrete a massive gaseous envelope
over the lifetime of the disk. Consequently, such models also
predict that in the outer regions of their planetary systems,
lower mass stars should host a much larger population of “failed
Jupiters,” cores of mass �10 M⊕ (Laughlin et al. 2004; Ida &
Lin 2005). Such a population was indeed identified based on two

microlensing planet discoveries (Beaulieu et al. 2006; Gould
et al. 2006).

Our detection of a ∼4 MJupiter companion to an M dwarf may
therefore present a difficulty for the core-accretion scenario.
While we do not have a constraint on the metallicity of the host,
the fact that it is likely a member of the thick disk suggests
that its metallicity may be subsolar. If so, this would pose an
additional difficulty for the core-accretion scenario, which also
predicts that massive planets should be rarer around metal-poor
stars (Ida & Lin 2004), as has been demonstrated observationally
(Santos et al. 2004; Fischer & Valenti 2005). This might imply
that a different mechanism is responsible for planet formation
in the OGLE-2005-BLG-071L system, such as the gravitational
instability mechanism (Boss 2002, 2006).

One way to escape these potential difficulties is if the host
lens is actually a stellar remnant, such as a white dwarf.
The progenitors of remnants are generally more massive stars,
which are both predicted (Ida & Lin 2005; Kennedy & Kenyon
2008) and observed (Johnson et al. 2007a, 2007b) to have a
higher incidence of massive planets. As we discussed above,
future astrometric measurements could constrain both the low-
metallicity and remnant-lens hypotheses. These measurements
are therefore critical.

Although it is difficult to draw robust conclusions from
a single system, there are now four published detections of
Jovian-mass planetary companions with microlensing (Bond
et al. 2004; Gaudi et al. 2008), and several additional such
planets have been detected that are currently being analyzed. It is
therefore reasonable to expect several detections per year (Gould
2009), and thus it will soon be possible to use microlensing
to constrain the frequency of massive planetary companions.
These constraints are complementary to those from RV, since
the microlensing detection method is less biased with respect
to host star mass (Gould 2000a), and furthermore probes a
different region of parameter space, namely cool planets beyond
the snow line with equilibrium temperatures similar to the
giant planets in our solar system (see, e.g., Gould et al. 2007;
Gould 2009).
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Table 3
Jovian-mass Companions to M Dwarfs (M∗ < 0.55 M�)

Name M∗ Metallicity Dist. Mp P a Ref.
(M�) (pc) (MJup) (days) (AU)

GJ 876c 0.32 −0.12 4.660 0.6− 30.340 0.13030 1,2,3
±0.03 ±0.12 ±0.004 0.8 ±0.013

GJ 876b · · · · · · · · · 1.9− 60.940 0.20783 · · ·
2.5 ±0.013

GJ 849b 0.49 0.16 8.8 0.82/ sin i 1890 2.35 4
±0.05 ±0.2 ±0.2 ±130

GJ 317b 0.24 −0.23 9.2 1.2/ sin i 692.9 0.95 5
±0.04 ±0.2 ±1.7 ±4

GJ 832b 0.45 ∼−0.7 ∼4.93 0.64/ sin i 3416 3.4 6
±0.05 /−0.3 ±131 ±0.4

OGLE-2006 0.50 ? 1490 0.71 1830 2.3 7
-BLG-109Lb ±0.05 ? ±130 ±0.08 ±370 ±0.2

OGLE-2006 · · · · · · · · · 0.27 5100 4.6 · · ·
-BLG-109Lc ±0.03 ±730 ±0.5

OGLE-2005 0.46 Subsolar?a 3300 3.8b · · · 3.6b,c This
-BLG-071Lb ±0.04 ±300 ±0.4 ±0.2 paper

Notes.
a While the metallicity of the OGLE-2005-BLG-071Lb host star is not directly constrained by our data,
its kinematics indicate that it is likely a member of the metal-poor thick disk.
b We give the planet mass and projected separation for the wide solution, which is favored by Δχ2 = 2.1.
The second, close solution has Mp = 3.4 ± 0.3 MJupiter and r⊥ = 2.1 ± 0.1 AU.
c We give the projected separation between the host and planet at the time of event, which is the orbital
parameter most directly constrained by our observations. However, assuming a circular orbit, we infer that
the semimajor axis is likely only ∼10%–20% larger (a(wide) ∼ 4.1 AU, a(close) ∼ 2.5 AU).
References. (1) Rivera et al. 2005; (2) Bean et al. 2006; (3) Benedict et al. 2002; (4) Butler et al. 2006;
(5) Johnson et al. 2007b (6) Bailey et al. 2009 (7) Gaudi et al. 2008.

the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. This work
was supported in part by an allocation of computing time from
the Ohio Supercomputer Center.

APPENDIX

EXTRACTING ORBITAL PARAMETERS FOR A
CIRCULAR PLANETARY ORBIT

OGLE-2005-BLG-071 is the first planetary microlensing
event for which the effects of planetary orbital motion in the light
curve have been fully analyzed. The distortions of the light curve
due to the orbital motion are modeled by ω and ḃ as discussed
in Section 3.2. In addition, the lens mass M and distance Dl
are determined, so we can directly convert the microlens light-
curve parameters that are normalized to the Einstein radius to
physical parameters. In this section, we show that under the
assumption of a circular planetary orbit, the planetary orbital
parameters can be deduced from the light-curve parameters. Let
r⊥ = DlθEd be the projected star–planet separation and let r⊥γ
be the instantaneous planet velocity in the plane of the sky,
that is, r⊥γ⊥ = r⊥ω is the velocity perpendicular to this axis
and r⊥γ‖ = r⊥ḋ/d is the velocity parallel to this axis. Let a
be the semimajor axis and define the ı̂, ĵ , k̂ directions as the
instantaneous star planet axis on the sky plane, the direction into
the sky, and k̂ = ı̂ × ĵ . Then the instantaneous velocity of the
planet is

v =
√

GM

a
[cos θ k̂ + sin θ (cos φ ı̂ − sin φĵ )], (A1)

where φ is the angle between the star–planet–observer (i.e.,
r⊥ = a sin φ) and θ is the angle of the velocity relative to the
k̂ direction on the plane that is perpendicular to the planet–star
axis. We thus obtain

γ⊥ =
√

GM

a3

cos θ

sin φ
, γ‖ =

√
GM

a3
sin θ cot φ. (A2)

To facilitate the derivation, we define

A ≡ γ‖
γ⊥

= − tan θ cos φ, B ≡ r3
⊥γ 2

⊥
GM

= cos2 θ sin φ,

(A3)
which yield as an equation for sin φ:

B = F (sin φ); F (x) = x(1 − x2)

A2 + 1 − x2
. (A4)

Note that F ′(sin φ) = 0 when sin2 φ∗ = (3/2)A2 + 1 −
|A|

√
(9/4)A2 + 2. So Equation (A4) has two degenerate so-

lutions when B < F (sin φ∗) and has no solutions when
B > F (sin φ∗). Subsequently, one obtains

a = r⊥
sin φ

, cos i = − sin φ cos θ, K =
√

GM

a
q sin i,

(A5)
where i is the inclination and K is the amplitude of the RV.

The Jacobian matrix used to transform from P (r⊥, γ⊥, γ‖) to
P (a, φ, θ ) is given below:

∂(r⊥, γ⊥, γ‖)

∂(a, φ, θ )
= GM

a3

∣∣∣∣∣
sin φ a cos φ 0

− 3
2a

cos θ
sin φ

− cos θ cos φ

sin2 φ
− sin θ

sin φ

− 3
2a

sin θ cot φ − sin θ
sin2 φ

cos θ cot φ

∣∣∣∣∣
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= GM

a3
cot2 φ

(
1

2
− sin2 θ tan2 φ

)
. (A6)

Then for an arbitrary function H (a),

∂(r⊥, γ⊥, γ‖)

∂(H (a), cos φ, θ )
= ∂(r⊥, γ⊥, γ‖)

∂(a, φ, θ )
× 1

sin φH ′(a)
, (A7)

which, for the special case of a flat distribution, H (a) = ln a,
yields

∂(r⊥, γ⊥, γ‖)

∂(ln(a), cos φ, θ )
= GM

r2
⊥

cos2 φ

sin φ
.

(
1

2
− sin2 θ tan2 φ

)
. (A8)
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