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ABSTRACT
A planetary microlensing event occurs when a planet perturbs one of the two images created in a

point-mass microlensing event, causing a deviation from the standard Paczyn� ski curve. Determination of
the two physical parameters that can be extracted from a planetary microlensing event, the planet/star
mass ratio q, and the planet/star separation in units of the stellar Einstein ring, is hampered byyp,several types of degeneracies. There are two distinct and qualitatively di†erent classes of planetary
events : major and minor image perturbations. For major image perturbations, there is a potentially crip-
pling continuous degeneracy in q which is of order where is the maximum fractional deviation ofd

d
~1, d

dthe planetary perturbation. Since the threshold of detection is expected to be this degeneracy ind
d
D 5%,

q can be a factor of D20. For minor image perturbations, the continuous degeneracy in q is considerably
less severe, and is typically less than a factor of 4. We show that these degeneracies can be resolved by
observations from dedicated telescopes on several continents together with optical/infrared photometry
from one of these sites. There also exists a class of discrete degeneracies. These are typically easy to
resolve given good temporal coverage of the planetary event. Unambiguous interpretation of planetary
microlensing events requires the resolution of both types of degeneracy. We describe the degeneracies in
detail and specify the situations in which they are problematic. We also describe how individual planet
masses and physical projected separations can be measured.
Subject headings : gravitational lensing È planetary systems

1. INTRODUCTION

Two worldwide networks are currently searching for
extra-solar planetary systems by making densely sampled
observations of ongoing microlensing events toward the
Galactic bulge (PLANET, et al. GMAN,Albrow 1996 ;

et al. Several other groups will join the searchPratt 1996).
shortly, and there is serious discussion of new initiatives
that would intensify the search by an order of magnitude.
More than 100 microlensing events have been detected to
date by four groups, MACHO et al. EROS(Alcock 1997),

et al. OGLE et al. and DUO(Ansari 1996), (Udalski 1994),
based on observations made once or twice per(Alard 1996)

night. The events typically last one week to a few months.
MACHO and OGLE have reported ““ alerts,ÏÏ events
detected before peak. This alert capability is what has
allowed PLANET and GMAN to make intensive, some-
times round-the-clock, follow-up observations in hopes of
Ðnding the planetary perturbations which are expected to
last a day or less.

In sharp contrast to this explosion of observational activ-
ity, theoretical work on planet detection has been rather
sparse, amounting to only Ðve papers in as many years.

& Paczyn� ski originally suggested that planetsMao (1991)
might be detected in microlensing events. & LoebGould

developed a formalism for understanding the charac-(1992)
ter of planetary perturbations and made systematic esti-
mates of the rate of detection for various planetary-system
parameters. & Falco studied the detectionBolatto (1994)
rate in the more general context of binary systems. These
early works assumed that the lensed star could be treated as
a point source. The usefulness of this approximation
depends primarily on the angular size of the source h
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Here is the Einstein ring of the lensing star, m and M areh
ethe masses of the planet and its parent star, and andDol, Dls,are the distances between the observer, lens, and source.DosFor Jupiter-mass planets at typical distances kpc)(DlsD 2

from bulge giant sources, so the approximation ish
p
D 3h

*a reasonable one. However, for Saturn-mass, Neptune-mass
and especially Earth-mass planets, the Ðnite size of the
source becomes quite important, and even for Jupiter-mass
planets it is not completely negligible. Moreover, as we will
stress below, it is quite possible to mistake a ““ Jupiter
event ÏÏ in which the source size is negligible for a ““ Neptune
event ÏÏ with Hence it is essential to understandh
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.

Ðnite-source e†ects even to interpret events where the
source is in fact small.

Progress on Ðnite-source e†ects was substantially delayed
by problems of computation. Like all binary lenses, planet-
ary systems have caustics, curves in the source plane where
a point source is inÐnitely magniÐed as two images either
appear or disappear. If one attempts to integrate the mag-
niÐcation of a Ðnite source that crosses a caustic, one is
plagued with numerical instabilities near the caustic. While
it is straightforward to solve these problems for any given
geometry, the broad range of possible geometries makes it
difficult to develop an algorithm sufficiently robust for a
statistical study of lensing events. & RhieBennett (1996)
solves this problem by integrating in the image plane (where
the variation of the magniÐcation is smooth) rather than the
source plane (where it is discontinuous). They were thereby
able to investigate for the Ðrst time the detectability of
Earth to Neptune-mass planets. & GaucherelGould (1996)
showed that this approach could be simpliÐed from a two-
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dimensional integral over the image of the source to a one-
dimensional integral over its boundary. The
implementation of this method requires some care. We
describe the practical procedures elsewhere (Gaudi 1997).
The difficult computational problems originally posed by
Ðnite-source e†ects are now completely solved.

To date, the analysis of planetary-system lensing events
has focused on the question of ““ detectability ÏÏ which was
quantiÐed by & Loeb as a certain minimalGould (1992)
fractional deviation from a standard lightPaczyn� ski (1986)
curve having magniÐcation

A(x) \ x2] 2
x(x2] 4)1@2 , x(t) \

C(t [ t0)2
t
e
2 ] b2

D1@2
, (1.2)

where x is the projected lens-source separation in units of
Note that this curve is characterized by just threeh

e
.

parameters : the time of closest approach, b, the impactt0parameter in units of and the Einstein radius crossingh
e
, t

e
,

time. & Rhie adopted a similar approach butBennett (1996)
added the qualiÐcation that the deviation persist for a
certain minimum time.

Here we investigate a di†erent question : How well can
the parameters of the planetary-system be measured? As
discussed by & Loeb if there are light-curveGould (1992),
data of ““ sufficient quality,ÏÏ two planetary-system param-
eters can generically be extracted from a microlensing event
that displays a planetary perturbation. These are the planet/
star mass ratio, q, and the planet/star projected separation
in units of the stellar Einstein ring, y
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Here is the physical projected separation, anda
p

r
e
\Dol he.As we discuss in it will often be possible to make addi-° 8,

tional observations that specify that the mass and distance
of the lensing star, or equivalently M and For theser

e
.

cases, the measurements of q and yield the mass m\ qMr
eand projected separation a

p
\ y

p
r
e
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If a planet were detected by observing a deviation from
the standard curve, but its mass ratio remained uncertain
by a factor of 10, the scientiÐc value of the detection would
be severely degraded. Indeed, such ““ detections ÏÏ would
probably not receive general acceptance. Thus, the prob-
lems of planet detection and parameter measurement are
intimately connected. Microlensing planet-detection pro-
grams must monitor a total of at least several hundred
events in order to obtain representative statistics on the
frequency of planets. These observations require large
blocks of 1È2 m class telescope time coordinated over
several continents. For funding agencies and time allocation
committees to make rational decisions about the allocation
of scarce resources, and for observers to make rational
choices among prospective targets, it is essential to deter-
mine what are the minimum observational requirements for
detecting planetary systems and measuring the character-
istics of the detected systems.

As we discuss below, there are two distinct classes of
degeneracies which can hamper the determination of the
planetary parameters. Discrete degeneracies are typically
less severe and can usually be broken by the usual technique
of obtaining accurate and densely sampled light curves.
Continuous degeneracies are more problematic and often
require additional information. While, in general, micro-

lensing events are achromatic, if the magniÐcation gradient
is locally very large (i.e., near a caustic), then the lens will
resolve the source as the source passes through this region.
Any di†erence in the surface brightness proÐle of the source
in two di†erent Ñux bands will produce a color change
during the event. As we demonstrate below, measurement of
this color change can often be used to break the continuous
degeneracy.

2. TYPES OF DEGENERACY

2.1. Discrete
Planetary-system lensing events are subject to two di†er-

ent discrete degeneracies. The Ðrst ambiguity relates to
which image the planet is perturbing : the major image
outside the Einstein ring or the minor image inside the
Einstein ring. For almost all cases, this degeneracy is easily
broken provided there is good temporal coverage of the
light curve. However, if it is not broken the uncertainty in q
and can be a factor of a few. The magnitudes of thesey

puncertainties depend only on the overall geometry of the
event and not on the mass of the planet. The second ambi-
guity relates to whether the planet lies closer to or farther
from the star than does the position of the image that it is
perturbing. This degeneracy is more difficult to break, but it
does not seriously a†ect the determination of q, and the
uncertainty induced in is proportional to q1@2 and isy

ptherefore often much smaller than one induced by Ðrst
degeneracy. These two discrete degeneracies are illustrated
in The values of q and for each of the fourFigure 1. yppossible solutions are displayed in Note that theTable 1.
example illustrated in and tabulated in isFigure 1 Table 1
for a maximum fractional deviation from the standard
Paczyn� ski curve of This value was chosen ford

d
\ 0.15.

reasons of clarity. The majority of detectable planetary per-
turbations will have values of smaller than this (i.e.,d

d
d
d
D

0.05), simply because low-amplitude perturbations are a
priori more likely because the cross section for lensing is
higher. For perturbations with the uncertaintiesd

d
D 0.05,

in q and will be signiÐcantly higher than those illustratedypin Table 1.

2.2. Continuous
In addition, there is a continuous degeneracy arising from

Ðnite-source e†ects being misinterpreted as a larger value of
q. This is because q is determined from the (square of the)
duration of the planetary perturbation relative to the total
duration of the event. If the size of the source is larger than
the Einstein ring of the planet, then the duration of the
planetary perturbation will be the crossing time of the
source, not of the planet Einstein ring. shows 10Figure 2
light curves all with the same maximum fractional devi-
ation, and same full width half maximum (FWHM) ofd

d
,

perturbation, The parameter that di†ers in each of theset
d
.

TABLE 1

DEGENERATE PARAMETER VALUES : DISCRETE

Planet/Star Planet/Star
Separation Mass Ratio

y
p

q/q0
Major image . . . . . . 1.40 1.00

1.19 0.91
Minor image . . . . . . 0.75 1.08

0.80 0.88
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FIG. 1.ÈDiscrete degeneracies. T op : lensing light curve with (solid
curve) and without (dashed curve) taking account of the presence of a planet
with mass ratio q \ 10~3. Middle : associated lensing geometry. The two
solid curves represent the path of the images relative to the lens. The
crosses represent the image positions at the time of the perturbation. The
circles are the four planet positions for which the light curves reproduce
the measured parameters (maximum fraction deviation) and (FWHMd

d
t
dof deviation) at the peak of the disturbance when the source-lens separa-

tion is The Ðlled circle is the ““ actual ÏÏ planet position. Bottom : fourx
d
.

associated light curves for times near the peak of the perturbation, t0,d.Note that time is expressed in units of the perturbation time scale, nott
d
, t

e
.

The bold curve corresponds to the ““ actual ÏÏ planet position. Clearly, if the
light curve is well sampled, the two dashed curves corresponding to the
image position inside the Einstein ring in the middle panel could be ruled
out immediately. However, the two solid curves are less easily distin-
guished. These di†er by D15% in planet/star separation and 10% in mass.
See middle panel and Table 1.

curves is the ratio of source radius, to planet Einsteinh
*
,

radius, h
p
\ q1@2h

e
,

o \ h
*

h
p

. (2.1)

gives the inferred values of q and of the properTable 2
motion k (of the planetary system relative to the observer-
source line of sight) associated with each curve in units of
the arbitrary chosen ““ Ðducial ÏÏ values associated with
o \ 0.3. In so far as one could not distinguish among these
curves, any of these parameter combinations would be
acceptable. The Ðducial parameters and would thenq0 k0be measurable, i.e., by Ðtting the observed lightcurve for
o \ 0.3, but the actual values of k and q would not. The
proper motion of both bulge and disk lenses is typically

km s~1 kpc~1, where kmk DO(VLSR/R0) D 30 VLSRD 220
s~1 is the rotation speed of the local standard of rest, and

kpc is the Galactocentric distance. If, for theR0D 8

FIG. 2.ÈTen curves showing the fractional deviation, d, as a function of
time in units of the perturbation timescale, for a geometry in which thet

d
,

perturbation occurs near the peak of the unperturbed lightcurve, and the
planet/star projected separation is In terms of the formalism ofy

p
\ 1.29.

the geometry is c\ 0.6 and /\ 90¡ (see eqs. and All 10° 3, [3.1] [3.2]).
curves have maximum deviation and FWHM Thed

d
\ 10% t

d
\ 0.06t

e
.

ratios of source radius to planet Einstein ring range from o \ 0.1 to
o \ 2.87, the largest source radius consistent with this maximum deviation.

gives the corresponding values of q \ m/M, and proper motion, k,Table 2
relative to the Ðducial values and at the arbitrarily chosen valueq0 k0o \ 0.3.

example shown in the Ðducial value of obtainedTable 2, k0by Ðtting the lightcurve with o \ 0.3 was determined to be
one might then choose to argue thatk0DVLSR/R0,although one could not discard low-mass solutions based

simply on the observed light curve, the proper motions
associated with the low-mass solutions (i.e., wouldk D k0/3)
be so low as to be a priori unlikely, thus making these
solutions improbable. However, these solutions could not
actually be conclusively ruled out by such an argument,
since the distribution of k is rather broad (see & GouldHan

Thus, there would remain a factor D15 uncertainty1995).
in the planet/star mass ratio.

TABLE 2

DEGENERATE PARAMETER VALUES : CONTINUOUS

MAJOR IMAGE

Dimensionless Planet/Star
Source Radius Mass Ratio Proper Motion

o q/q0 k/k0
0.10 . . . . . . . . . . . . 1.095 2.867
0.20 . . . . . . . . . . . . 1.041 1.470
0.30 . . . . . . . . . . . . 1.000 1.000
0.60 . . . . . . . . . . . . 0.957 0.511
0.90 . . . . . . . . . . . . 0.767 0.381
1.20 . . . . . . . . . . . . 0.566 0.332
1.50 . . . . . . . . . . . . 0.373 0.327
1.80 . . . . . . . . . . . . 0.236 0.343
2.10 . . . . . . . . . . . . 0.163 0.354
2.40 . . . . . . . . . . . . 0.127 0.351
2.70 . . . . . . . . . . . . 0.093 0.364
2.87 . . . . . . . . . . . . 0.074 0.383
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FIG. 3.ÈChang-Refsdal magniÐcation contours of a point source as a function of source position in units of the planet Einstein ring, forh
p
\ q1@2h

e
,

various pairs of shears and corresponding to planetary perturbations of the major and minor images, respectively. MagniÐcation contours are(c
`

c~\ c~̀1)
calculated including the contribution of the unperturbed image. Contour pairs are for 0.6, 0.4, and 0.2 in panels (a)È(b), (c)È(d), (e)È( f ), and (g)È(h),c

`
\ 0.8,

and correspond to source positions at perturbation of 0.52, 0.95, and 1.79. Solid contours are d \ 5% (lightest), 10%, 20%, and O (boldest).x
d
\ 0.22,

Super-bold solid contour is no deviation. Dashed contours are [5% (lightest), [10%, and [20% (boldest). Diagonal lines in panels (c) and (d) represent
possible trajectories assuming that the overall light curve shows (i.e., and b \ 0.4 (i.e, If the maximum deviationx

d
\ 0.52 c

`
\ 0.6) /\ sin~1b/x

d
D 50¡).

were observed to be (and the point-source approximation were known to be valid), then the trajectory must be either B or D.d
d
\ 20%

2.3. Relation between Degeneracies in q and k
From the relation we obtain the identity k \k \ h

e
/t
e
,
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Since the quantities on the right-hand side of this equation
are observables, the product on the left-hand side must be
constant for all allowed parameter combinations in any
given planetary event : koq1@2\ constant. This equation
then establishes a relationship between degeneracies in q
and degeneracies in k. If a range of solutions are permitted
that have di†erent values of o but very similar values of q,
then we say that the mass ratio is not degenerate. However,
it follows from that the proper motion k thenequation (2.2)
varies inversely as o and therefore that it is degenerate.
Similarly, if the range of allowed solutions all have the same
value of k, then the proper motion is not degenerate but
then q P o~2 and so the mass ratio is degenerate. This

relationship is illustrated by The region o ¹ 0.3 hasTable 2.
well-determined q but degenerate k, while the region o Z 1
has well-determined k but degenerate q.

3. THE CHANG-REFSDAL LENS APPROXIMATION

In order to systematically investigate the role of these
degeneracies and to determine the data that are required to
break them, we follow & Loeb and approx-Gould (1992)
imate the planetary perturbation as a Chang-Refsdal lens

& Refsdal Ehlers, & Falco A(Chang 1979 ; Schneider, 1992).
Chang-Refsdal lens is a point mass (in this case the planet)
superimposed on a uniform background shear c. For any
given lensing event, the value of c is simply the shear due to
the lensing star at the unperturbed position of the image that
is perturbed by the planet. The evaluation of c is made at
the midpoint of the perturbation. The projected source-lens
separation in units of at the mid-point of the pertur-h

ebation, is known from the light curve (see Figs.x
d
, 1a, 1b).

The associated projected image-lens separations in units of
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FIG. 4.ÈChang-Refsdal magniÐcation contours of a nonpoint source as a function of source position in units of for the pair of shearsh
p
, (c

`
, c~) \ (0.6,

1.67) corresponding to planetary perturbations at source position The ratios of planet Einstein radius to source radius are o \ 0.5, 1.0, 1.5, and 2.5.x
d
\ 0.52.

Compare with point-source case shown in Figs. and Contours levels are the same as for3c 3d. Fig. 3.

are with shears given byh
e

y
d,B c

B

c
B

\ y
d,B~2 , y

d,B\ (x
d
2 ] 4)1@2 ^ x

d
2

(3.1)

Thus the shear is known (up to a two-fold ambiguity)
simply from the position of the planetary perturbation on
the overall light curve.

When computing the fractional deviation, d, of the
Chang-Refsdal lens from the standard Paczyn� ski curve, one
always normalizes relative to the total unperturbed magniÐ-
cation which includes both the image perturbed(eq. [1.2])
by the planet and the image that remains unperturbed

& Loeb(Gould 1992).
The Chang-Refsdal approximation permits an immense

conceptual simpliÐcation of the problem. For a point
source, all possible light curves of an event with a given x

dcan be represented on a pair of diagrams, one for andc
`one for All possible planetary perturbations can there-c~.

fore be represented by a single-parameter family of such
diagrams (see For a given event, one knows b andFig. 3). x

d

from the overall light curve. One can therefore compute c
Busing and thereby pick out which two dia-equation (3.1)

grams are relevant. One also knows the angle / at which
the source cuts through the diagram,

sin /\ b
x
d
. (3.2)

If for example, and b \ 0.4, then all possiblex
d
\ 0.516

light curves are represented by the parallel lines indicated in
Figures If the light curve is well sampled, it is easy to3c.
distinguish between and Suppose that isc

`
c~. c

`
(Fig. 3b)

correct, and say that the maximum fractional deviation is
Then one can immediately identify the correctd

d
\ 20%.

curve as being either B or D. The observed duration of the
perturbation relative to that of the whole event then sets the
scale of diagram relative to and thus determines the massh

eratio.
Of course, one does not know a priori that Ðnite source

e†ects can be ignored. However, for any all possiblex
d
,

events can still be represented by a single-parameter family
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FIG. 5.ÈFractional deviations d for H-band light curves, demonstrating the major/minor image degeneracy for /\ 0, with 0.38, 0.25, in panelsc
`

\ 0.61,
(a), (c), and (e). The solid curve corresponds to the dashed curve to Also shown in panels (b), (d), and ( f ) are the associated fractional colorc

`
, c~ \ c~̀1.

changes *(V [H).

of diagrams. The relevant parameter is, o, the ratio of the
angular radius of the source to the Einstein radius of the
planet. Hence, it is quite easy to study all possible degener-
acies (see Fig. 4).

The drawback of using the Chang-Refsdal approx-
imation is that it is not exact. Moreover, for any given

lensing event, it is straight forward to construct models that
are exact. As we argue below, however, the lack of exactness
has no signiÐcant impact in the analysis of degeneracies. On
the other hand, using the exact solution increases the
dimensionality of parameter space and thereby the concep-
tual complexity of the problem, without any compensating
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beneÐts. We therefore strongly advocate using the Chang-
Refsdal framework. We present a more detailed analysis in
the Appendix.

4. DEGENERACY BETWEEN MAJOR AND MINOR IMAGES

indicates that it should generally be quite easy toFigure 3
distinguish between perturbations of the major image have
one major positive excursion, while perturbations of the
minor image have two positive excursions separated by a
large negative excursion. However, if the observations are
made from only one site, then good temporal coverage is far
from automatic. The timescale for these excursions is the
minimum of the crossing time of the star, hr for ah

*
/k D 10

giant, and the crossing time of the planet Einstein ring
hr. Thus it would be quite possibleh

p
/k D 10(m/50 M

^
)1@2

to observe a positive excursion (or a signiÐcant fraction of
it) one night and then miss any subsequent excursions due
to one or two nights of bad weather. However, if there were
three observing sites on di†erent continents, such large data
gaps would be rare.

There is nevertheless another possible source of degener-
acy between the major and minor images. If / is sufficiently
small, then a source coming close to one of the caustics of
the perturbations of the minor image could cross the star-
planet axis at a point far enough from the planet that the
negative excursion along this axis would be very small. In

panels a, c, and d, we present examples of thisFigure 5,
degeneracy for three di†erent values of for /\ 0. Thec

`parameter o was chosen in each case such that the curves
for and would be most similar. It is clear that thec

`
c~degenerate curves could be distinguished only if precise

measurements could be made at the wings of the pertur-
bation. We therefore investigate another method of break-
ing the degeneracy between the and cases. Followingc

`
c~the discussion in if the gradient of the magniÐcation° 1,

across the source is large, and if the surface brightness
proÐle of the source is a function of wavelength, then we
would expect a change in color during the perturbation.
This color change depends on the magnitude of the average
gradient across the source is large, i.e., a larger gradient
results in a larger color change. In fact, the gradient of the
magniÐcation across the face of the source is much larger in
the case than the case. Measuring the color changec

`
c~would therefore enable one to distinguish between the two

cases. Giant stars are more limb-darkened in the optical
than in the infrared Bell & Gustafsson(Manduca, 1977 ;

and thus lensing of a giant source willManduca 1979),
cause a color change. We deÐne the fractional color change
as

*(V [H) \ [2.5 log d
V
/dH , (4.1)

where V and H are the usual broadband magnitudes, and
and are the fractional deviations for V -band andd

V
d
HH-band respectively. Thus *(V [H) is a measure of di†er-

ence between the lensed and unlensed color (see for a° 6.3
more detailed discussion). In panels b, d, and e, weFigure 5,
show the fractional color change *(V [H) corresponding to
the perturbations in panels a, c, and d, respectively. There
are relatively large (2%È10%) fractional color changes
associated with the curves throughout the event, whilec

`the fractional color changes associated with the curvesc~are always negligible. Thus by measuring *(V [H), one can
distinguish between the two degenerate cases even during

the peak of the perturbation. The larger the value of /, the
larger the negative excursion in the minor-image pertur-
bation, and thus curves with /[ 0 will be less degenerate
than the examples shown in Figure 5.

5. DEGENERACY OF PLANET POSITION RELATION TO

UNPERTURBED IMAGE

Henceforth we will assume that the major/image degener-
acy has been broken and the true value of c is known. Thus
we will omit the subscripts ^ from c. Note that values of
c\ 1 refer to major image perturbations and c[ 1 refer to
minor image perturbations.

In general, the degeneracy of the planet position relative
to the unperturbed image introduces an uncertainty in y

pwhich is where is the separation between*y
p
D 2ah

p
/h

e
ah

pthe planet and the unperturbed image at the midpoint of the
perturbation. Assume that perturbations of ared

d
D 0.05

detectable, and consider only perturbations of the major
image (c\ 1). As we will show below, this degeneracy is not
problematic for perturbations of the minor image (c[ 1).
From one sees that the majority of these pertur-Figure 3
bations will be single-peaked, and the peak, will occurd

d
,

near the planet-star axis (the x-axes in see, i.e., trajec-Fig. 3 ;
tory E). Thus a can be estimated by the point at which the
d \ 0.05 contour crosses the planet-star axis. For c\ 0.20,
a D 4, whereas for c\ 0.80, a D 14. The range of a will be
smaller for any perturbations with The fractionald

d
[ 0.05.

uncertainty in is Considery
p
\ (c)~1@2 *y

p
/y

p
D 2a(cq)1@2.

events with cD 0.60. For these events, a D 8 and hence if
the degeneracy remains unbroken, the fractional error is

For Jupiter-mass planets in orbit*y
p
/y

p
D (150m/M)1@2.

around M dwarfs, this error is of order unity, while for
Neptune-mass planets it is D20%. On the other hand, the
degeneracy in q is small (see and alsoTable 1 Appendix).

In this section we consider only point sources. If the
planet has a low mass, so that Ðnite source e†ects are
important (see and then (as mentioned above)° 1 eq. [1.1]),
the di†erence between the two degenerate solutions is small
and distinguishing between them is relatively less impor-
tant. In addition, Ðnite-source e†ects are more properly
addressed in the context of the mass/Ðnite-source degener-
acy discussed in ° 6.

5.1. Perturbations of the Major Image
It is clear from that it is impossible to break theFigure 3

degeneracy if /\ 90¡, i.e., if the planetary perturbation
takes place at the peak of the light curve If the(x

d
\b).

source crosses the perturbation structure in the region of
the caustic then degeneracy is relatively unimpor-(a [ 1)
tant and, in any event, is easily broken (provided /\ 90¡)
due to the richness of the structure in this region. We there-
fore focus on the case a [ 1. From one sees thatFigure 3,
there is an asymmetry in the light curve which has opposite
senses depending on whether the source crosses to the left
or the right of the planet. If it passes to the right, then the
deviation is more pronounced at the beginning of the per-
turbation than at the end, and if it passes to the left, the
deviation is more pronounced at the end. We deÐne the
asymmetry factor as the maximum over all times t of thePÕfractional di†erence,

PÕ(c, d
d
) 4 max [ o d(t0,d ] t) [ d(t0,d[ t) o ] , (5.1)

where is the midpoint of the perturbation and d(t) is thet0,dfractional deviation as a function of time. To lowest order,
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FIG. 6.ÈAsymmetry factor P (see eqs. and for nine values of[5.1] [5.2])
c, as a function of maximum deviation, The actual asymmetry of a givend

d
.

light curve, is given by Using this ÐgurePÕ(c, dd
), PÕ(c, dd

)D P(c, d
d
) cot /.

and formula, one can therefore determine whether the degeneracy can be
broken for any given sensitivity threshold.

one may approximate

PÕ(c, d
d
) \ P(c, d

d
) cot / . (5.2)

From one can see that as c increases, the positiveFigure 3,
contours of d become more stretched along the planet-star
axis, and thus low-peak perturbations occur farther from
the areas of negative excursion. One would therefore expect
smaller values of P for larger values of c. shows PFigure 6
as a function of for several values of c. As expected, Pd

dgenerally decreases with increasing c. Analytically, P(c, isd
d
)

roughly given by,

P(c, d
d
) ^
G12(1 [ c)d

d
,

29(5 [ 12c)d
d

,
cZ 13 ;
c[ 13 .

(5.3)

The break at occurs because the basic structure of thecD 13contours of d changes between c\ 0.40 and c\ 0.20 (see
For the d [ 0 contours converge to theFig. 3). cZ 13,caustic, whereas for these contours encircle thec[ 0.3,

caustic. This e†ect causes the analytical form of P to exhibit
a break, and is also reÑected in From orFigure 6. Figure 6,
using one can determine, for a given sensi-equation (5.3),
tivity, whether the degeneracy can be broken for any pertur-
bation. For example, consider trajectories such that /Z

75¡. If one were sensitive to asymmetries of i.e.,PÕD 1%,
PD 0.04, then the degeneracy could be broken only for

and then only if On the other hand, ifc[ 0.3, d
d
[ 0.1.

/D 30¡(PD 0.004), then the degeneracy could be broken
for essentially all values of c.

5.2. Perturbations of the Minor Image
As we discussed in to distinguish minor-image from° 4,

major-image perturbations, it is necessary to observe the
negative excursion (centered on the x-axes of the right-hand
side of If these are observed, then one can easilyFigure 3.
distinguish the case where the source transits the right side
from the case where it transits the left side of the x-axis

(provided /\ 90¡). Hence, there is no degeneracy of minor-
image perturbations unless the more severe major/minor-
image degeneracy remains unbroken.

6. CONTINUOUS MASS DEGENERACY OF MAJOR IMAGE

PERTURBATIONS

By far the potentially most crippling form of parameter
degeneracy is the one that is illustrated in and isFigure 2
tabulated in The basic character of this degeneracyTable 2.
can be understood analytically using the following theorem

& Gaucherel if the unperturbed major image(Gould 1996) :
crosses the position of the planet and the source is larger
than the major-image caustic structure, then

d
d
^

2
o2A(c)

, A(c)\ 1 ] c2
1 [ c2 . (6.1)

The FWHM of such an event is On thet
d
D 2(csc /)oq1@2t

e
.

other hand, the FWHM of a low-peak perturbation of a
point-source is Suppose that a low-peakt

d
D 2(csc /)q1@2t

e
.

perturbation has observables b, and Now con-t
e
, x

d
, t

d
, d

d
.

sider the combination of observables Q4 [(b/x
d
)(t

d
/t
e
)/2]2.

Then the solution

q D Q , o [ 1 , (6.2)

reproduces the observed values of and However, thed
d

t
d
.

solution

q D
Q

o'2
, o D o' , o'4

A 2
d
d

1 [ c2
1 ] c2

B1@2
, (6.3)

also reproduces the values of and Note that the ratiod
d

t
d
.

of masses for these two solutions is For thiso'2 . d
d
D 5%,

ratio is typically and can be as high as 40. Thus, unless[20
this degeneracy is broken, any low-peak perturbation of a
point source by a Jupiter-mass planet can masquerade as a
Neptune-mass event, and vice versa. All intervening masses
are permitted as well. Clearly, unless this degeneracy is
broken, low-peak perturbations will contain very little
information about mass, and unambiguous detection of
low-mass planets will be impossible. There are three pos-
sible paths to breaking this degeneracy.

6.1. Proper-Motion Measurement
If the proper motion k of the lens relative to the source

were measured, then one could partially break the degener-
acy between equations and The angular size of(6.2) (6.3).
the source would be known from its dereddened colorh

*and magnitude and StefanÏs law. The time for the source to
cross the perturbation x-axis, would thent

c
D 2h

*
csc //k,

also be known. If one found this would imply thatt
c
\ t

d
, t

dwas dominated by the size of the planet Einstein ring, not
the source. Hence, the solution would beequation (6.2),
indicated. On the other hand, if one would knowt

c
D t

d
,

only that the solution was not correct, and that the(6.2)
mass ratio lay somewhere in the interval (seeo'~2 Q¹ qQ
Table 2).

Proper motions can be measured if the lensing star tran-
sits or nearly transits the source or by imaging the split
image of the source using infrared interferometry. See

for a review. Another approach would beGould (1996)
simply to wait a few decades and measure the angular
separation of the lens and source. Since typical proper
motions are 5 mas yr~1, the separation should be after a0A.1
few decades. Unfortunately, most lenses are probably
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FIG. 7.ÈFractional deviations d for H-band light curves. Similar to except now shown for shears c\ 0.2, 0.4, 0.6, and 0.8, and for trajectory ofFig. 2,
source motion /\ 30¡, 45¡, 60¡, and 90¡. (Corresponding curves for /] [/ can be found by reversing the x-axes). In each curve, the maximum deviation is

and the FWHM isd
d
\ 10% t

d
\ 0.06t

e
.

fainter than while typical giant sources areM
I
\ 10, M

I
D

0, and even turno† stars are and even turno† starsM
I
D 0,

are Thus it would be difficult to image the lens untilM
I
D 3.

it was quite well separated from the source at which point it
might be hard to distinguish it from random Ðeld stars. We
explore this possibility further in ° 8.

6.2. Detailed L ight Curves
Although the parameter combinations, equations (6.2)

and reproduce the gross features of the perturbation(6.3),
(peak and FWHM) equally well, the detailed structures of
the light curves are di†erent. illustrates the prin-Figure 2

cipal di†erence for elongated perturbation structures, in this
case c\ 0.6. When the wings show a dip becauseo Do',
the source passes over the caustic which is surrounded by
regions of negative perturbation (see and On theFig. 3c 4).
other hand, when the approach to the peak is smootho [ 1
because the source is passing over the smooth outer portion
of the ridge seen in From it is clear thatFigure 3c. Figure 2
if these wing structures could be resolved at the D1% level,
then the degeneracy in mass could be reduced from the
factor D15 seen in to a factor D1.5.Table 2,

is an array of 16 diagrams each similar toFigure 7 Figure
but with di†erent values of c (0.2, 0.4, 0.6, and 0.8) and2,
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FIG. 8.ÈValues of (bold lines) and as functions of o for each set of degenerate curves in The Ðducial values and are(q/q0)~1 (k/k0)~1 Fig. 7. q0 k0associated with the curve with o \ 0.1.

di†erent angles of source motion / (30¡, 45¡, 60¡, and 90¡).
It is clear that it is easier to break the degeneracy as c
increases and as / decreases. For the uncertainty incZ 0.4
q could be signiÐcantly reduced if the wing structures could
be resolved at the D1% level. For however, dis-c[ 0.2,
tinguishing between the degenerate curves would require an
accuracy >1%. shows the values of andFigure 8 q/q0 k/k0as a function of o for each of the combinations of / and c in

Note that larger values of are allowed forFigure 7. o'smaller values of c, and thus the range of acceptable values
of q is largest for small c. This is especially disturbing in
light of the fact that the degenerate curves are most similar
for small c.

6.3. Optical/Infrared Colors
A major shortcoming of the details light curve method for

breaking the degeneracy is that it depends critically on
obtaining accurate observations during two brief intervals
covering the wings of the light curve. As a practical matter,
it may be difficult to obtain such coverage for a variety of
reasons. Once the event is noticed, observatories that are
dedicated to the planet search can engage in frequent moni-
toring and thereby obtain very accurate light curves.
However, it is quite possible, indeed likely, that the planet-
ary perturbation will not be recognized in time for intensive
monitoring of the Ðrst wing. Sometimes observation of the

Ðrst wing is crucial to breaking the degeneracy. Moreover,
the second wing will likely be observable from at most one
observatory which could be a†ected by bad weather.

Optical/infrared color measurements by contrast yield
degeneracy-breaking information throughout the event.
The reason is that by the principle of equivalence, lensing of
a point source is achromatic. If lensing introduces color
changes, the lens must be resolving the source (Witt 1995 ;

& Sasselov The best opportunity to observeLoeb 1995).
this e†ect is by looking for optical/infrared color di†erences

& Welch because giant stars are more limb-(Gould 1996)
darkened in the optical than in the infrared et al.(Manduca

Thus, if the planet Einstein ring is larger than the1977).
source (and the low peak is due to the source passing over
regions of small perturbation), the color changes will be
very small. On the other hand, if (and the low peakh

*
[ h

poccurs when the large source passes over the caustic), the
caustic structure will resolve the di†erential limb darkening
of the star and the color changes will be more pronounced.
We determine the fractional color change using equation

using the limb-darkening model parameterized by the(4.1),
surface brightness as a function of angular distance from the
center of the source,

S(h)
S(0)

\ 1 [ i1Y [ i2 Y 2 , Y 4 1 [
S

1 [ h2
h
*
2 . (6.4)
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FIG. 9.ÈFractional color change *(V [H) for light curves shown in Fig. 7

The coefficients for a cool (4500 K) giant (log g \ 1.5) of
solar metallicity in V and H are i1V \ 0.798, i2V \ [0.007,

and et al.i1H\ 0.206, i2H\ 0.331 (Manduca 1997 ;
See & Welch for further dis-Manduca 1979). Gould (1996)

cussion and their Figure 3 for a graphical representation of
[2.5 log shows the V [H colors forS

V
(h)/S

H
(h). Figure 9

the same parameters as are used for the H-band curves as in
The magnitude of the fractional color change isFigure 7.

largest for smallest c. This is fortunate, since, as discussed in
the degeneracy is most severe for small c, both in° 6.2,

terms of the similarity in the light curves, and in the range of
allowed values of q. It is therefore essential to have optical/

infrared color measurements to ensure that the continuous
degeneracy can be broken for all possible values of c.

7. CONTINUOUS DEGENERACY OF MINOR IMAGE

PERTURBATIONS

There is also a continuous degeneracy for minor-image
perturbations, but the degeneracy is considerably less severe
than for major-image perturbations because the caustic
structure is qualitatively di†erent. As with major image per-
turbations, the basic character of the minor image degener-
acy can be understood analytically. Consider the following
theorem & Gaucherel if the unperturbed(Gould 1996) :
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FIG. 10.ÈTop : ten light curves with c\ 1.67, /\ 90¡, all with
maximum deviation and FWHM The ratios ofd

d
\ [10% t

d
\ 0.06t

e
.

source radius to planet Einstein ring range from o \ 0.1 to o \ 1.83, the
largest source radius consistent with this maximum deviation. The corre-
sponding relative values of q \ m/M, and the relative proper motion, k/k0,are given in The parameter values given in last four rows of TableTable 4.
4 (for source radii of o \ 1.6, 1.7, 1.83, and 1.80), correspond to those
derived from the bold, dashed, bold dotted, and bold dashed curves,
respectively. Bottom : fractional color change *(V [H) for the ten curves in
the top panel.

minor image crosses the position of the planet and the
source encloses both minor-image caustics, then

d
d
^ [ f (o, c)

o4A(c)
] [ 2

o4A(c)
, A(c) \ c2 ] 1

c2 [ 1
, (7.1)

where f (o, c) and the limit\ [(12 ] o~2)2 [ c2o~4]~1@2,
applies for o ? c1@2. That is, in contrast to the major-image
perturbation (cf. the minor-image perturbationeq. [6.1]),
goes to zero rapidly for large sources. For minor image
perturbations, the caustics are located at et al.(Schneider
1992)

dcausD 2(c[ 1)1@2 . (7.2)

Thus the source must have to enclose botho Z 2(c [ 1)1@2
caustics. If the source is signiÐcantly larger than this, the
perturbation will be negligibly small. Hence we can restrict
attention to sources o \ dcaus.For minor-image perturbations, is the FWHM of thet

dnegative deviation. For a low-peak point source pertur-
bation, this duration scales as the distance between(a Z 2),
the contours of d \ 0 at a (see For Ðnite sources ofFig. 3).

increasing o, the trajectories must move close to the center
to maintain the observed value of (see However,d

d
Fig. 4).

until o becomes so large as to cover the caustics, the posi-
tions of the d \ 0 contours basically do not change
(compare with Since these contours areFig. 3d Fig. 4).
approximately horizontal, is not greatly inÑuenced byt

dchanges in o. Finally, since the largest permitted source has
which is also approximately equal to the separa-o D dcaus,tion of the d \ 0 contours, remains roughly the same event

dfor this extreme case (see The small degeneracy thatFig. 3).
does exist arises from the di†erence between this extreme
case on the one hand and the smaller sources and point
sources on the other. Examining we can expectFigure 3,
that the degeneracy will be somewhat larger for larger
values of c, since the contours of d \ 0 become less horizon-
tal as c increases. In we give the degeneracy in theTable 3
inferred values of q for and [5%, and ford

d
\[10%

several values of c. Note that the largest degeneracy in q is
only a factor of D4.

shows 12 light curves for c\ 1.67 andFigure 10a
/\ 90¡, all with maximum negative perturbation d

d
\

[10%, and all with the same FWHM. gives theTable 4
inferred values of q and k for each curve, relative to the
Ðducial values and associated with o \ 0.3. Note thatq0 k0the degeneracy in the derived mass ratios is only a factor of
D1.5. Also note that the inferred mass ratios of the Ðrst nine
curves agree to D4%. Thus to resolve the small degeneracy

TABLE 3

CONTINUOUS MINOR IMAGE DEGENERACY

Mass Ratio
Degeneracy

d
d

c q'/q&
[10% . . . . . . . . . . . . 1.25 1.45

1.43 1.09
1.67 1.68
2.00 3.82

[5% . . . . . . . . . . . . . 1.25 1.66
1.43 1.16
1.67 1.22
2.00 1.67
2.50 2.34

FIG. 11.ÈTen light curves with c\ 0.6~1, /\ 60¡, all with maximum
deviation and FWHM All other parameters ared

d
\[10% t

d
\ 0.06t

e
.

the same as and are given in Curves are as inFig. 10, Table 4. Fig. 10.
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TABLE 4

DEGENERATE PARAMETER VALUES : CONTINUOUS MINOR IMAGE

Impact Dimensionless Planet/Star
Parameter Source Radius Mass Ratio Proper Motion

a o q/q0 k/k0
4.32 . . . . . . . 0.10 0.993 4.014
4.30 . . . . . . . 0.20 1.016 1.984
4.25 . . . . . . . 0.40 1.000 1.000
4.21 . . . . . . . 0.60 1.006 0.665
4.00 . . . . . . . 0.80 1.020 0.495
3.70 . . . . . . . 1.00 1.033 0.394
3.50 . . . . . . . 1.20 1.017 0.331
3.20 . . . . . . . 1.40 0.994 0.287
2.60 . . . . . . . 1.60 1.004 0.249
2.00 . . . . . . . 1.70 1.093 0.225
1.00 . . . . . . . 1.83 1.591 0.173
0.00 . . . . . . . 1.80 1.628 0.174

in q, one only needs to distinguish between the last four
curves. From it is clear that this would be pos-Figure 10a
sible if one could resolve the positive perturbation struc-
tures at the D1% level. Furthermore, the situation
presented in for which /\ 90¡, is the worst caseFigure 10,
scenario. Due to the structure of the caustics of minor-
image perturbations, trajectories with /\ 90¡ display
marked asymmetry about excepting trajectories witht0,d,a D 0, which are nearly symmetric. This enables one to dis-
tinguish between curves with and a D 0 more easilya Z 1
when /\ 90¡. This is demonstrated in whichFigure 11,
shows 12 light curves with the same parameters as Figure

except that now /\ 60¡. Comparing Figures and10, 10 11,
it is clear that the curves are appreciably less degenerate for
/\ 60¡ than for /\ 90¡. From we see that theFigure 10b,
magnitude of the fractional color change for perturbations
with c\ 1.67 is always small, From*(V [H) [ 1%.
numerical calculations, we Ðnd that regard-*(V [H) [ 1%
less of the value of c. Thus, in contrast to major image
perturbations, optical/infrared colors are not useful in
resolving the degeneracy in minor image perturbations
since the magnitude of the fractional color change is always
small.

8. FROM MASS RATIOS TO PLANET MASSES

If the various degeneracies described in this paper are
broken, one generally recovers two planetary-system
parameters from a planetary microlensing event : q and y

p
.

While q is of some interest in its own right, is not. They
pquantities one would most like to know are the planet mass

m\ qM and the physical projected separation a
p
\ r

e
y
p
.

One could take a purely statistical approach to estimating
these quantities : given the measured timescale of thet

eevent and a plausible model of the distribution and veloci-
ties of lenses and sources along the line of sight, and Mr

ecan be estimated to a factor of 3. In this section, we discuss
what further constraints might be obtained on M and inr

eorder to determine m and a
p
.

The single most powerful method of acquiring additional
information would be to launch a parallax satellite (Refsdal

& Gould which would1966 ; Gould 1995a ; Gaudi 1997)
routinely measure and often measure ther8

e
4 (Dos/Dls)re

direction of motion as well. This information would, by
itself, narrow the uncertainty in the mass to a factor D1.7
(see & Gould especially Fig. 7). However, if theHan 1995,
proper motion k were also measured, this would yield a
complete solution of the lensing geometry including both M
and (e.g., In general, one expects to measurer

e
Gould 1996).

k only in D20% of giant events even with relatively
aggressive observations However, for events(Gould 1996).
with planetary perturbations, k can be measured much
more frequently. Recall from that for giant sources,° 6
major image perturbations, and planetary masses m[ 100

the planet usually resolves the source (if it is detectedM
^

,
at all) and that in the process of resolving the resulting
degeneracy, one measures k. Even when the sourceh

*
\h

p
,

will sometimes cross a caustic in which case k can be mea-
sured. Finally, for one can obtain a lower limith

*
\ h

pbased on the lack of detection of Ðnite-sourcek [k&e†ects. Since the mass is given by andM \ (c2/4G)r8
e
t
e
k,

since and are measured, this gives a lower limit on ther8
e

t
emass (Gould 1995b).

However, it is much more difficult to resolve the Ðnite
source degeneracy for minor-image perturbations. Even
though (or rather, because) the measurement of the mass
ratio, q, is not seriously hampered by this degeneracy, the
proper motion k is poorly determined (see Thus, it° 2.3.
would be necessary to measure k using other methods (see
° 6.1).

We now address several questions related to one of those
methods : direct imaging of the source and lensing star
several decades after the event. For deÐniteness, we suppose
that the measurement is made after 20 years. The expected
separation is but could plausibly be AtD0A.1, D0A.3.
BaadeÏs Window, the expected number of stars MI \ 10
inside this radius is D0.5 et al. Thus one(Light 1996).
would not be overwhelmed with candidates. On the other
hand, the great majority of lensing events are almost cer-
tainly due to objects that are fainter than simplyM

I
\ 10

because one does not come close to accounting for the
observed events from the observed stars alone(M

I
\ 10)

Thus, to positively identify a candidate star as(Han 1996).
the lens, one needs additional information. A parallax satel-
lite could provide two pieces of corroborating data. First,
the measured together with the proper motion inferredr8

efrom the candidate-source angular separation would give a
mass and distance to the lens One could(Gould 1995b).
then predict an apparent magnitude and see if it agreed with
that of the candidate. Second, if the parallax measurement
gave the angle of motion, one could check this against the
direction of the source-candidate separation vector. In addi-
tion, the candidateÏs inferred proper motion must satisfy the
lower limit derived from lack of Ðnite-source e†ects as dis-
cussed above. Finally, one could wait another decade or so
to see if the direction of the candidateÏs proper motion was
indeed away from the source. These methods would allow
one to unambiguously identify the lens responsible for the
event from the available candidates, thereby enabling one to
measure k directly.

We would like to to thank the referee, Emilio Falco for
his helpful comments and suggestions. This work was sup-
ported in part by grant AST 94-20746 from the NSF, and in
part by grant NAG5-3111 from NASA.
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APPENDIX

JUSTIFICATION FOR THE CHANG-REFSDAL APPROXIMATION

What errors are introduced by the Chang-Refsdal approximation? The unperturbed image structure consists of two images
separated by greater than The planet, with an e†ective sphere of inÑuence can have a major e†ect on at most2h

e
. Dh

p
> h

eone of these. For deÐniteness, say this is the major image. In the Chang-Refsdal approximation, the minor image is then
treated as being completely una†ected by the presence of the planet. In fact, the planet will change the shear at the minor
image by and therefore change the magniÐcation by a similar amount. However, what is directly of interest forO(h

p
/h

e
)

analyzing the planetary perturbation is not the absolute di†erence in magniÐcation with and without the planet. Rather, it is
the change in this di†erence over the lifetime of the planetary perturbation. Hence, the net e†ect is i.e., of higherO[(h

p
/h

e
)2],

order than the e†ects being analyzed.
We now turn to the errors in the Chang-Refsdal estimate of the magniÐcation of the perturbed image. In general, the

perturbed image is split by the planet into two or four images. For each such image, i, the shear due to the parent star is Ifc
i
.

this value were exactly equal to c, the shear at the position of the unperturbed image, then the Chang-Refsdal approximation
would be exact. Typically, is small, so one expects that the errors induced by the approximation*c

i
4 c

i
[ c *c

i
/cDO(h

p
/h

e
),

are small.
We focus Ðrst on perturbations of the major image. Let *h be the separation between the planet and the unperturbed image

and deÐne Consider Ðrst the case a ? 1 which is important when because the magniÐcation contours thena \ *h/h
p
. cZ 0.5

become signiÐcantly elongated (see The image is then split into two images, one very close to the planet and the otherFig. 3).
very close to the unperturbed image. For the image close to the planet, the shear due to the parent star may be signiÐcantly
misestimated, However, for this image, the total shear is dominated by the planet and is O(a2), so true*c

i
/cD ah

p
/h

e
.

fractional error is only Moreover, the magniÐcation of this image is small, O(a~4), so the total error induced byDa~1h
p
/h

e
.

the approximation is and is completely negligible. The other image is displaced by from the unperturbedDa~5h
p
/h

e
Da~1h

pimage, so which induces a similar small change in magniÐcation. Recall from that the source*c
i
/cD a~1h

p
/h

e
Figure 3c,

trajectory is determined up to a two-fold degeneracy from the maximum magniÐcation. Since the sign of the image displace-
ment is di†erent for the two allowed solutions, the error in estimating the magniÐcation structure could result in two types of
errors. First, there is an error in the planet star separation, but this is only and is therefore lower by a~1 than theDa~1h

pbasic degeneracy indicated in Second, there is an error in the estimate of q and, in fact a degeneracy because theFigure 3c.
error has opposite sign for the two allowed solutions. This could in principal be signiÐcant because, within the Chang-Refsdal
framework, the two allowed solutions indicated in have identical values of q, and this e†ect is therefore the lowestFigure 3c
order degeneracy. However, the mass ratio is estimated from the FWHM of the light curve which is only a weak function of
position along the elongated magniÐcation contours. Moreover, the misestimate of that position is small. We therefore
estimate a fractional mass degeneracy of *q/q D a~2q1@2.

For and sources that are small compared to the caustic structure (seen e.g., in the situation is similar to that ofa [ 1 Fig. 3),
caustic-crossing binary-lens events. The light curves are highly nondegenerate, and one determines not only q and but alsox

p
,

o. From the standpoint of understanding degeneracies, the important case is when the source is of order or larger than the
caustic. Here, there are roughly equally magniÐed images displace roughly by on either side of the planet. Hence, the lowesth

porder errors cancel and the next order errors are and can therefore be ignored.DO[h
p
/h

e
)2],

There is one exception to this conclusion. In the argument given above, we implicitly assumed that the planetary pertur-
bation would be signiÐcant only over an interval of source motion This assumption fails when the perturbationDh

p
.

structure is elongated and when the angle of source motion is low In this case, the local shear is(cZ 0.5) (sin /\ B/x
d
> 1).

no longer well approximated by the shear at the center of the perturbation. A proper calculation would then require that the
shear be recalculated at every point along the source trajectory, holding the planet Ðxed. This was the approach of &Gould
Loeb and the resulting magniÐcation for Ðxed planet position can be seen in their Figure 3. (In the present work, by(1992)
contrast, what is held Ðxed in constructing Figs. and is the observable : the shear at midpoint of the perturbation). As can3 4
be seen by comparing Figure 3c of & Loeb and of the present work, for Jupiter mass planets theGould (1992) Figure 3c
di†erence in contours can be signiÐcant. However, there are three points to note. First, such events are rare both because the
conditions together imply and because the elongated contours are encountered ““ edge on,ÏÏ so the(cZ 0.5, b >x

d
) b [ 0.2

cross section is only Second, the e†ect is proportional to q1@2 and so would not be signiÐcant for, e.g., Earth-massDh
p
/h

e
.

planets. Third, the nature of the e†ect is to provide information to break degeneracies in cases when the Chang-Refsdal
approximation would lead one to believe that there is no information. In brief, in certain rare cases, the Chang-Refsdal
approximation leads one to underestimate the amount of information available.

For perturbations of the minor image, the two principle sources of degeneracy are Ðrst, confusion of the two caustic peaks
with each other and second, confusion of one of these peaks with a perturbation of the major image. Because these peaks are
o†set in the direction perpendicular to the star-planet axis, the error in their location is and hence of higher orderO[(h

p
/h

e
)2]

than their separation. As in the case of the major image, there are certain rare events with sin /> 1 for which the
Chang-Refsdal approximation makes the degeneracy seem somewhat worse than it is.
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