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ABSTRACT

Of all planet-finding techniques, microlensing is potentially the most sensitive to Earth-mass planets. However,
microlensing light curves generically yield only the planet-star mass ratio: the mass itself is uncertain to a factor
of a few. To determine the planet mass, one must measure both the “microlens parallax” and source-lensr̃E

relative proper motionmrel. Here we present a new method to measure microlens masses for terrestrial planets.
We show that, with only a modest adjustment to the proposed orbit of the dedicated satellite that finds the events,
and combined with observations from a ground-based observing program, the planet mass can be measured
routinely. The dedicated satellite that finds the events will automatically measure the proper motion and one
projection of the “vector microlens parallax” ( ). If the satellite is placed in an L2 orbit or a highly ellipticalr̃ , fE

orbit around the Earth, the Earth-satellite baseline is sufficient to measure a second projection of the vector
microlens parallax from the difference in the light curves as seen from the Earth and the satellite as the source
passes over the caustic structure induced by the planet. This completes the mass measurement.

Subject headings:gravitational lensing — planetary systems

On-line material:color figure

1. INTRODUCTION

Among all proposed methods to search for extrasolar planets,
only microlensing has the property that the intrinsic amplitude
of the planetary signature remains constant as the planet mass
decreases. Hence, with the notable exception of pulsar timing
(Wolszczan 1994), microlensing can in principle probe to lower
masses than any other technique. A microlensing space mission
that was of similar scale to the transit missionsKepler5 and
Eddington6 or to the astrometry satelliteSpace Interferometry
Mission (SIM)7 would be sensitive to Mars-mass companions
(Bennett & Rhie 2002), a decade or two below these other
techniques. Furthermore, any microlensing detections of ter-
restrial planets are expected to be at significantly higher signal-
to-noise ratio (S/N) and thus will be more robust to unforeseen
systematic errors. Hence, microlensing can potentially play a
major role in determining the frequency of terrestrial planets
around main-sequence stars. An accurate assessment of this
frequency is a key requirement for the design of theTerrestrial
Planet Finder,8 which will ultimately take images and spectra
of such planets.

Unfortunately, while microlensing can detect planets of very
low mass, there has not seemed to be any way to measure the
masses of those planets to better than a factor of a few: although
microlensing light curves automatically yield the planet-star
mass ratio , the stellar mass itself is unknown be-q p m /Mp

cause of the classic microlensing degeneracy. This degeneracy
arises from the fact that among the three microlensing “ob-
servables,” the Einstein timescaletE, the angular Einstein radius
vE, and the projected Einstein radius , onlytE is routinelyr̃E

1 Department of Astronomy, Ohio State University, 140 West 18th Avenue,
Columbus, OH 43210; gould@astronomy.ohio-state.edu.

2 Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540;
gaudi@ias.edu.

3 Hubble Fellow.
4 Department of Physics, Institute for Basic Science Research, Chungbuk Na-

tional University, Chongju 361-763, Korea; cheongho@astroph.chungbuk.ac.kr.
5 See http://www.kepler.arc.nasa.gov.
6 See http://sci.esa.int/home/eddington/index.cfm.
7 See http://planetquest.jpl.nasa.gov/SIM/sim_index.html.
8 See http://planetquest.jpl.nasa.gov/TPF/tpf_index.html.

extractable from the microlensing light curve. These three ob-
servables are related to the three underlying physical param-
eters,M, prel, andmrel, by

v 4GMp 4GM AUE rel� �˜t p , v p , r p . (1)E E E2 2m c AU c prel rel

Here,prel andmrel are the source-lens relative parallax and proper
motion. To determine the mass would require measurement of
the other two observables, . To date, and2 ˜ ˜M p (c /4G)r v rE E E

vE have been measured for only about a dozen events each out
of the more than 1000 so far discovered, and only for one event
have both been measured, thus yielding the mass (An et al.
2002 and references therein).

So far, there has been only one idea to measure microlens
masses for a large representative ensemble of events. Gould &
Salim (1992) showed that by combining observations from the
ground and the solar-orbitingSIM, one could measurevE as-
trometrically and photometrically and so routinely measurer̃E

the mass. Unfortunately, this technique cannot be applied to
terrestrial-planet microlensing events, even in principle. Ter-
restrial planets can be detected only in events of main-sequence
source stars. For giant sources, the planetary microlensing pat-
tern would be much smaller than the source and so would be
undetectable (Bennett & Rhie 2002). Because of its small ap-
erture,SIM cannot observe Galactic bulge main-sequence stars
to the required precision.

Here we present a new method to measure microlens masses
for terrestrial planets. The method requires only a modest ad-
justment to the orbit of a microlensing planet-finder satellite,
combined with observations from a ground-based observing
program.

2. MICROLENSING PARAMETERS FROM A SINGLE OBSERVER

To understand how both andvE can be measured for ter-r̃E

restrial planets, one should first take a careful inventory of
what parameters are automatically measured from planetary
microlensing events detected from a planet-finder satellite.

From the width, height, and peak time of the underlying
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event due to the primary, one obtains the three standard mi-
crolensing parameterstE, u0, and t0, where the latter two are
the dimensionless impact parameter and time of maximum
(Paczyn´ski 1986). In addition to these usual three parameters,
one additional parameter of the primary event can also be
routinely measured: the parallax asymmetryg. The Earth’s
acceleration during the event induces parallax effects on the
light curve. If the event lasts a substantial fraction of a year,
then these effects can be used to measure both components of
the vector microlens parallax (Gould 1992). However, for more
typical short events, the effect reduces to an asymmetry in the
light curve (Gould, Miralda-Escude´, & Bahcall 1994). This
parallax asymmetry is in effect a projection of the full vector
parallax, and as such is described by a single parameter,g:

2r̃t 4p AUEE ˜g { a cosw cosf, v { , a { . (2)� � 2ṽ yrtE

Here is the length of the Earth-Sun separation projectedAU cosw
onto the plane of the sky,f is the angle between the source
trajectory and this projected separation, and is the source-lensṽ
relative speed projected onto the observer plane. For the typical
timescales and projected velocities of events toward the Galactic
bulge, and , the parallax asym-�1˜t ∼ 20 days v ∼ 800 km sE

metries would appear to be unmeasurably small, .�2g � 10
However, high-cadence high-precision (jph ∼�1( f ∼ 144 day )
0.01 mag) continuous photometric monitoring is required to de-
tect terrestrial planets in the first place (Bennett & Rhie 2002).
As a by-product of such photometry, it should be possible to
measure such small parallax asymmetries. Gould (1998) showed
that g can be measured with S/N

�1
�1 �1FgF j f S(u )ph 0p 12( ) ( )�1 [ ]j 0.01 144 day 3g

�1 3/2ṽ t F cosw cosfFE# , (3)( ) ( )�1800 km s 20 days 0.5

where for observation streams beginning and ending well be-
yond the event,S varies monotonically from toS(0) p 2.1

. Thus, except near June 21 when forS(0.7)p 4.4 cosw ∼ 0.1
observations toward the Galactic bulge and except for ex-
tremely short events, it should be possible to routinely measure
g with good S/N.

For all planetary events, it is generally possible to measure
an additional three parameters. Planets generally induce a short-
duration deviation to an otherwise unperturbed standard mi-
crolensing event. From the duration, peak time, and size and
shape of the planetary perturbation, one obtains the planet-star
mass ratioq, the anglea of the planet-star projected separation
relative to the source trajectory, and the angular planet-star
separation in units ofvE (Gould & Loeb 1992).

Finally, for terrestrial planets it should be possible to rou-
tinely measure one additional parameter, , wherev

*
r { v /v∗ ∗ E

is the source radius. Sincev
*

can be determined from the de-
reddened color and magnitude of the source (see, e.g., Fig. 10
in An et al. 2002), this would yieldvE. This ratio can be mea-
sured whenever the source passes over a magnification pattern
with structure on scales�r

*
. In particular, for planetary events,

Gaudi & Gould (1997) find that it can be measured provided
that , which corresponds to1/2r � 0.3q∗

2 �1v p∗ relm � 4 M , (4)p � ( ) ( )r /R 40 mas, 0

where is the angular size of a solar-type star at the Gal-r /R, 0

actocentric distance. Note that it is also possible to measurer
*

and thusvE from events due to higher mass planets if the source
crosses the planetary caustic.

3. PARAMETERS FROM TWO OBSERVERS AND
DEGENERACY RESOLUTION

From satellite measurements alone (§ 2), most of the pieces
are already in place for terrestrial-planet mass measurements.
Since bothvE and one combination of the vector microlens
parallax can already be measured, all that is required is˜(r , f)E

a measurement of another combination of .˜(r , f)E

It is well known that can be measured by observing anr̃E

event simultaneously from two telescopes that are significantly
displaced from each other. Here “significantly” means that the
light curve appears measurably different from the two obser-
vatories. In other words, the magnification pattern being probed
must have structure on a scale that, when projected to the ob-
server plane, is comparable to the separation of the observers.
For typical primary lensing events toward the Galactic bulge,
the projected scale of the magnification structure is ,r̃ ∼ 8 AUE

and so the observers must be separated by at leastO(AU). Thus,
by observing the event simultaneously from telescopes on the
Earth and in solar orbit, one could routinely measure (Refsdalr̃E

1966; Gould 1995).
Therefore, at first sight, the solution appears simple: just put

the microlensing satellite in orbit around the Sun and carry out
simultaneous observations from the ground. Unfortunately, the
huge data stream from the continuous monitoring ofO(109)
pixels required to detect the planets (Bennett & Rhie 2002)
makes this impossible unless there are major breakthroughs in
satellite telemetry. The satellite must stay reasonably close to
the Earth to transmit these data efficiently.

However, two factors combine to make feasible microlens
parallax measurements from short baselines for events with ter-
restrial planets. First, one component of the vector microlens
parallax is already measured for these events because of the
extremely high overall S/N required to detect them (see § 2).
Second, the planetary perturbation has structure on scales that
are smaller than the primary Einstein ring by a factor of∼q1/2.
Therefore, two observers need only be separated by the order
of the scale of the structures, not the whole Einstein ring (Hardy
& Walker 1995; Gould & Andronov 1999; Graff & Gould 2002).
For planetary events, the perturbed regions of the Einstein ring
typically lie on a line along the planet-star axis and have a width
of the order of . The satellite will cross this line at a time1/2˜q rE

that differs from the Earth crossing byDt. Figure 1a shows the
geometry. By applying the Law of Sines, one finds

d sin (f � b � a)sat1/2Dt p q t , (5)E 1/2˜q r sinaE

wheredsat is the distance to the satellite,a is the known angle
between planet-star axis and the source trajectory,b is the
known angle between the Earth-Sun and Earth-satellite axes,
both projected on the sky, andf is the (a priori) unknown
angle between the Earth-Sun axis and the source trajectory.
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Fig. 1.—(a) Geometry of microlens planetary mass measurement. All lines
are projected onto the two-dimensional plane of the sky and all distances are
scaled to the projected Einstein radius . Source as seen from the satelliter̃E

(thick solid line) travels horizontally at an (a priori unknown) anglef relative
to the line connecting the Sun and Earth (dotted line), which in turn is at a
(known) angleb relative to the line connecting the Earth and the satellite. The
star-planet axis (thin dashed line) lies at a (known) anglea relative to the
source trajectory. As seen from the Earth, the source (thick dashed line) moves
on a parallel trajectory but displaced by a distance . As a result, the˜d /rsat E

source intersects the perturbation induced by the planet (along the star-planet
axis) at a time later byDt, corresponding to a fraction on an EinsteinDt/tE
radius. (b) Contours of constant fractional deviationd from the primary lensing
event calculated for a point source. Contour levels are , 10%, 25%;d p �5%
positive contours are shaded. The long-dashed circle shows the planetary Ein-
stein ring radius. The shaded circle shows the size of the source. Horizontal
lines are as in (a). (c) Planetary perturbations from the primary event as seen
from the Earth (points with error bars) and the satellite (solid curve), taking
into account the finite size of the source. The dotted curve is for a point source
as seen from the Earth. (d) Primary lensing event with planetary perturbation
region outlined. In the example shown, , , ,f p 30� b p 80� a p 60�

, , , days,˜cosw p 0.93 r p 8 AU d p 0.0054 AU t p 21.58 r p 2.1#E sat E ∗
, , , , , and�3 �5 �1˜10 q p 10 p p 38 mas v p 630 km s M p 0.3 M m prel , p

. [See the electronic edition of the Journal for a color version ofqM p M�

this figure.]

Combining equations (2) and (5), one obtains an explicit ex-
pression forf,

Dt a t sina cosw� Etanf p � tan (b � a), (6)( )g d cos (b � a)sat

and by means of equation (2) an explicit expression for asṽ
well.

The first term on the right-hand side of equation (5) is
roughly the duration of the perturbation, the second term is the
dimensionless ratio of the Earth-satellite separation to the width
of the perturbation, while the third term is of the order of unity.
Hence,Dt can be measured with a fractional precisionj(Dt)/

, whereDx2 is the square of the S/N1/2 2 1/2˜Dt ∼ (r q /d )/(Dx )E sat

with which the perturbation is detected from the weaker ob-
servatory (probably the ground). The proposed planet detection
threshold from space is , but the expected distri-2Dx p 160
bution has a long tail toward larger values, so that half the
detections have (Bennett & Rhie 2002). Thus,Dt2Dx 1 800

could be measured with reasonable precision for a significant
fraction of events, provided that the satellite was not more than
a few times closer than the size of the planetary Einstein ring,

, and that the ground-based observations were not more1/2˜q rE

than a few times worse than the satellite observations. In ad-
dition, the separation cannot be more than a few planetary
Einstein radii or the Earth will pass outside the region of the
planetary perturbation. To target Earth-mass planets, the sep-
aration should therefore be

�1/24GM AU p� rel�d ∼ p 0.025 AU . (7)sat ( )2c p 40 masrel

A near optimal solution would seem to be to place the satellite
in L2 orbit, which lies at 0.01 AU in the anti-Sun direction.
However, while data transmission is 104 times more efficient
from L2 than from an AU, that still might not be efficient enough.

A plausible alternative approach would then be to put the
satellite in a highly elliptical orbit with period month.P ∼ 1
It would spend the majority of its time near ,2a ∼ 0.005 AU
adequate for Earth-mass and lighter planets. During the brief
perigee each month, it could focus on highly efficient data
transmission. Because of this large semimajor axis, the orbit
would have to be well out of the ecliptic to avoid gravitational
encounters with the Moon but not so far out that the orbit
destabilized and crashed into the Earth. In fact, it might be
difficult to find such long-term stable orbits, but the satellite
could be ejected into solar orbit at the end of its mission with
a boost at perigee of only , thereby evading the�1Dv ∼ 100 m s
requirement for long-term stability.

One potential concern is that if the satellite is anywhere in
the ecliptic (including L2), then (or 180�). Microlensingb p 0�
is most sensitive to planets close to the peak of the event. At
the peak itself, . Therefore, near the peak both termsa p 90�
in equation (6) would be very large, which would in effect
magnify the observational errors. However, we find from sim-
ulations that the enhanced sensitivity at does not implya p 90�
a tight clustering of events at this value. Rather the distribution
is extremely broad, so there is only a marginal cost to having
the satellite in the ecliptic.

4. DISCUSSION

For typical relatively short events, the parallax asymmetry
is quite weak and is detectable only because of the satellite’s
high cadence and S/N. Thus, one must worry about systematic
effects. Gould (1998) identified three such effects not specific
to terrestrial observers: variable sources, binary sources, and
binary lenses. Because of the long high-quality data stream,
the source can be easily checked for low levels of variability.
While there may be occasional stars that vary over a few
months but not otherwise over several years, the fraction of
such stars is not likely to be large and can be measured from
the prodigious supply of data on “stable” stars. A binary com-
panion to the source star would have to be separated by 2vE

or 3vE and have a flux ratio of∼1% to reproduce the magnitude
and shape of a parallax asymmetry. Although additional flux
at this level would be evident from a fit to the microlensing
event itself, it would not be distinguishable from light from
the lens star. However, one could check for consistency between
the amount of blended light and the mass and distance to the
lens as determined from the parallax asymmetry. Furthermore,
if the source is really a binary, high-resolution spectroscopy
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could uncover of the order of 10 km s�1 radial velocity vari-
ations over time. Binary lenses can also induce asymmetries.
There are no studies of the expected rate of these, but for field
stars it is probably of the same order as events with pronounced
deviations, which is∼5%. However, most stars with planets
are unlikely to have binary companions within a factor 3 or
so of the Einstein radius because they would render the plan-
etary orbit unstable. Thus, while caution is certainly warranted
in interpreting light-curve asymmetries as being due to parallax,
systematic effects are unlikely to dominate the signal.

There are two types of checks that can be performed on the
mass measurements derived by our method. First, in a significant
minority of planetary events, the lens can be directly observed
(Bennett & Rhie 2002). The derived mass and relative lens-
source parallax ( ) can then be compared to the˜p /AU p v /rrel E E

same quantities as determined from multicolor photometry and/
or spectroscopy. Second, in some cases it will be possible to
measure not only the offset parallel to the source-lens relative
motion but also the offset in the orthogonal directionDu0.Dt/tE
This is because the source will pass over a different part of the
planetary perturbation, which will generally yield a slightly dif-
ferent perturbation magnitude (see Fig. 1c). Measurement of both
the difference in the magnitude and time of the perturbation then
gives the two-dimensional offset in the Einstein ring and thus a
measurement of both components of . This effect is typ-˜(r , f)E

ically weaker than the time offset, because the magnification
contours as stretched along the planet-star axis and so requires
a higher S/N to detect, but in the cases for which it is detected,
the result can be cross-checked against the asymmetry
measurement.

A microlens planet-finding satellite with parallax capabilities

would have a number of other applications. First, it would au-
tomatically make precise mass measurements on all caustic-
crossing binaries (Graff & Gould 2002). Second, although it
would not measure masses for the majority of larger planets such
as gas giants, it would do so for the significant minority of cases
in which the source passed over the planetary caustic. From a
mathematical point of view, these cases are identical to the
caustic-crossing binaries analyzed by Graff & Gould (2002).
These caustics are substantially larger than the entire perturbation
because of an Earth-mass planet. Hence, if there are equal num-
bers of Earth-mass and Jovian-mass planets, the latter will yield
the majority of the mass measurements even though the fraction
of mass measurements is higher among the former.

Finally, we have so far not given much attention to the
problem of organizing the round-the-clock (and so round-the-
world) ground-based observations that must complement the
satellite observations. Although easier and cheaper than launch-
ing a satellite, the effort required for this is by no means trivial.
Such a survey would have tremendous potential in its own
right and might be undertaken independently of a satellite. We
reserve a full discussion of this idea for a future paper.
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