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ABSTRACT
Microlensing of a gamma-ray burst afterglow by an intervening star can be used to infer the radial

structure of the afterglow image. Near the peak of the microlensing event, the outer edge of the image is
more highly magniÐed than its central region, whereas the situation is reversed at later times because of
the rapid radial expansion of the image on the sky. Thus, the microlensed afterglow light curve can be
inverted to recover the self-similar radial intensity proÐle of the afterglow image. We calculate the
expected errors in the recovered intensity proÐle as a function of the number of resolution elements,
under the assumption that the afterglow and microlensing event parameters are known. For a point-
mass lens and uniform source, we derive a simple scaling relation between these parameters and the
resultant errors. We Ðnd that the afterglow need not be monitored for its entire duration ; rather, obser-
vations from the peak magniÐcation time of the microlensing event until are sufficient totpeak D7tpeakresolve the majority of the afterglow image. Thus, microlensing events can be alerted by relatively infre-
quent observations of afterglows and then monitored intensively, without signiÐcant loss of information
about the afterglow intensity proÐle. The relative intensity proÐle of D1% of all afterglows can be mea-
sured with 10 resolution elements to an accuracy of O(1%) in the optical and O(10%) in the infrared,
using 4 m class telescopes. Weak microlensing events with large impact parameters are more common;
we estimate that for D10% of afterglows the image proÐle may be inverted to a fractional accuracy

through frequent optical observations. We also calculate the e†ects of external shear due to the[20%
host galaxy or a binary companion, as well as contamination by background light from the host galaxy.
Subject headings : gamma rays : bursts È gravitational lensing

1. INTRODUCTION

Recent detections of afterglow emission in the X-ray,
optical, and radio have revolutionized gamma-ray burst
(GRB) astronomy (for a recent review see Kulkarni et al.
2000). The afterglow emission appears to be reasonably well
described by the Ðreball model (Waxman 1997a), in which a
relativistically expanding shell of hot gas encounters an
external quiescent medium. A blast wave is created, sweep-
ing up the ambient material and accelerating relativistic
electrons, which then emit synchrotron radiation

& Rhoads 1993 ; Meszaros & Rees 1997). In this(Paczyn� ski
model, the spectral Ñux of the afterglow is a broken power-
law function of frequency that evolves with time in a way
that depends on the physical parameters of the Ðreball and
its surrounding medium, such as the total energy output of
the GRB source, the collimation angle of the outÑow, the
ambient gas density, the fraction of the postshock energy
that is converted into magnetic Ðelds and accelerated elec-
trons, and the energy distribution of the accelerated elec-
trons (Sari, Piran, & Narayan 1998). So far, observations of
the afterglow spectrum over a wide range of frequencies and
times were the primary method used to place constraints on
these parameters (e.g., Wijers & Galama 1999 ; Panaitescu
& Kumar 2001 ; Freedman & Waxman 2001). Crude con-
straints on the size of the emitting region at late times were

1 Hubble Fellow.

derived based on considerations involving synchrotron self-
absorption (Katz & Piran 1997) and radio scintillations due
to the intervening interstellar medium of the Milky Way
galaxy (Goodman 1997 ; Waxman, Kulkarni, & Frail 1998).

The afterglow image is predicted to appear as a thin ring
on the sky (Waxman 1997b ; Sari 1998 ; Panaitescu & Mes-
zaros 1998) at frequencies near or above the peak of the
synchrotron emission (Granot, Piran, & Sari 1999a) but
more like a uniform disk around or below the synchrotron
self-absorption frequency (Granot, Piran, & Sari 1999b). In
between breaks in the power-law spectrum of an afterglow,
the contrast and width of this ring evolve self-similarly, i.e.,
the brightness proÐle maintains its shape as a function of
radius when the latter is normalized by the expanding circu-
lar boundary of the image (Granot et al. 1999a). The self-
similar brightness proÐle of the image changes only across
spectral breaks (Granot & Loeb 2001).

The outer radius of the image expands radially at an
apparent superluminal speed of D!c, where ! is the
Lorentz factor of the emitting shock. The image occupies an
angle of 1/! relative to the center of the explosion due to
relativistic beaming and hence has a radius R

s
P rsh/!,

where is the shock radius. Geometric time delay impliesrshthat the observed time and so the radius scales ast P rsh/!2,
For an ambient density proÐle o P r~k, one getsR

s
P!t.

Therefore, with d 4 (5 [ k)/!P rsh~(3~k)@2. R
s
P td

[2(4[ k)]. For a uniform ambient medium with k \ 0
(Blandford & McKee 1976), while for a windR

s
P t5@8,
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proÐle with k \ 2, one gets The predicted di†er-R
s
P t3@4.

ences between the afterglow images in these two cases are
typically small (Granot & Loeb 2001).2

By resolving the image of a GRB afterglow at di†erent
frequencies, one can obtain precious, new constraints on the
Ðreball model. As originally pointed out by Loeb & Perna
(1998), after about 1 day, the angular size of a GRB ring is
typically a microarcsecond (kas), i.e., of the same order as
the angular Einstein ring radius of a solar mass lens at
cosmological distances,

hE\
A4GM

c2D
B1@2 \ 1.6

A M
M

_

B1@2A D
1028 cm

B~1@2
kas , (1)

where M is the lens mass and withD4D
os

D
ol
/D

ls
, D

os
, D
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,

and as the angular diameter distances between theD
lsobserver-source, observer-lens, and lens-source, respec-

tively. This fortuitous coincidence, along with the fact that
the afterglow image expands superluminally, means that
lensing by an intervening solar mass star will produce a
detectable deviation in the afterglow light curve with a
duration suitable for intense monitoring. As the afterglow
image expands, di†erent parts of it sweep by the lens and get
ampliÐed. The di†erential magniÐcation of the source image
can be used to recover the radial structure of the afterglow
image through a series of relative Ñux measurements (Loeb
& Perna 1998 ; Mao & Loeb 2001 ; Granot & Loeb 2001).
The probability that a source at redshift zD 2 will have a
projected angular distance less than the Einstein radius of
any intervening star (the optical depth) is whereqD 0.3)

*
,

is the cosmological density of stars in units of the critical)
*density. The value of is constrained to be based on)

*
Z1%

the known populations of luminous (Fukugita, Hogan, &
Peebles 1998) and faint (Alcock et al. 2000) stars and [5%
based on big bang nucleosynthesis. Hence, qD 1% (Press &
Gunn 1973 ; Blaes & Webster 1992 ; Koopmans & Wambs-
ganss 2001), and roughly one out of 100 afterglows should
be strongly magniÐed (although all events may show weak
magniÐcation signals as a result of a star located at 10hEfrom their line of sight ; see Mao & Loeb 2001).

Intense monitoring of lensing events could provide
invaluable information about the nature of GRB after-
glows. Recently, Garnavich, Loeb, & Stanek (2000) inter-
preted the unusual optical afterglow light curve of GRB
000301C (Sagar et al. 2000 ; Rhoads & Fruchter 2001) as
being microlensed by an intervening D0.5 star. TheyM

_found that the opticalÈinfrared light curve was well Ðtted by
a model in which the emission originated from a ring of
fractional width D10%, in agreement with earlier theoreti-
cal predictions. Panaitescu (2001) argued that, if one adopts
realistic surface brightness proÐles for the afterglow image,
the optical/infrared afterglow of GRB 000301C cannot be
explained by microlensing. B. S. Gaudi, J. Granot, & A.
Loeb (2001, in preparation) showed, however, that micro-
lensing can reproduce the observed light curve, provided
that the source is signiÐcantly limb brightened, namely, that

of the Ñux arises from the outer 25% of the area ofZ60%
the afterglow. This requirement is met by the surface bright-
ness proÐles expected for emission frequencies above the
cooling break frequency (Granot & Loeb 2001). Unfor-
tunately, the light-curve coverage in radio frequencies was
too sparse to conÐrm uniquely the microlensing interpreta-

2 At very late times, of order months after the GRB trigger, the Ðreball
becomes nonrelativistic. In this regime, the observer sees the entire Ðreball,
which follows the Sedov-Taylor solution with R

s
P t2@5.

tion through, e.g., comparison of the inferred surface bright-
ness proÐles across spectral breaks.

The idea of using microlensing to study the images of
GRB afterglows is similar in spirit to the idea of using
microlensing to resolve the atmospheres of stars in the
Magellenic Clouds and the Galactic bulge (Loeb & Sasselov
1995 ; Valls-Gabaud 1995 ; Sasselov 1997 ; Sass-Heyrovsky� ,
elov, & Loeb 2000 ; for a recent review see Gould 2001). For
background stars, the source radius stays constant and the
resolution of the source occurs because the caustic structure
of the lens sweeps over the face of the star as a result of the
relative source-lens motion. However, for GRB afterglows
the relative source-lens motion is negligible, and the
resolution occurs as the image of the source itself is expand-
ing and sweeping by the lens. Microlensing has been used to
measure limb darkening of the stars in the Small Magellenic
Cloud and the Galactic bulge (Afonso et al. 2000 ; Albrow et
al. 1999a, 2000, 2001a) and also to measure the spatial
variations of spectral lines across the face of two stars
(Alcock et al. 1997 ; Castro et al. 2001 ; Albrow et al. 2001b ;

2001). Gaudi & Gould (1999) considered theHeyrovsky�
signal-to-noise requirements for resolving stellar atmo-
spheres with microlensing. Our goal here is to apply similar
considerations to GRB afterglows.

In this paper we examine the observational constraints
that can be obtained on afterglow images through a con-
certed monitoring e†ort of the GRB community in future
microlensing events. SpeciÐcally, we determine the expected
statistical errors in the recovered intensity proÐle as a func-
tion of various parameters and input assumptions,
assuming that the afterglow and microlensing event param-
eters are known. The signiÐcance of this work is twofold :
Ðrst, we show that the radial intensity proÐle of afterglows
can be determined with fairly good accuracy for([10%)
reasonable expense of observational resources ; and second,
we present the e†ects of various assumptions on the error in
the recovered intensity proÐle, in order to test the robust-
ness of the conclusions and to provide guidelines for obser-
vers. In ° 2 we present the formalism for microlensing of
GRB afterglows. We describe the method for determining
the expected errors in the recovered intensity proÐle in ° 3
and apply it to a Ðducial case in ° 4.1. In ° 4.2 we determine
the e†ects of various input assumptions on the errors.
Finally, we summarize the implications of our primary
results and discuss the e†ects of some of our (unavoidably)
simpliÐed assumptions in ° 5.

For concreteness, we will primarily focus on the scaling
laws of a spherical Ðreball in a uniform medium but derive a
general scaling relation for the recovered errors in the rela-
tive intensity proÐle that is applicable for any power-law
external density proÐle, o P r~k. The two currently popular
models, k \ 0 (uniform medium) and k \ 2 (stellar wind),
yield qualitatively similar conclusions. We do not consider
jetted outÑows, although a collimated outÑow of opening
angle would behave as if it is part of a spherical Ðreballhjetat early time as long as (Rhoads 1997). We also!(t) [ 1/hjetassume that the afterglow Ñux exhibits a single power-law
slope, which is appropriate if the observed frequency does
not cross one of the several breaks in the afterglow spec-
trum (see Granot & Loeb 2001). Note that we do not
assume any speciÐc, model-dependent form for the intensity
proÐle, i.e., we do not evaluate the errors on the coefficients
of some parametric form for the proÐle. Rather, we evaluate



No. 2, 2001 RESOLVING IMAGE OF GRB AFTERGLOWS 645

the minimum attainable errors via direct inversion of the
afterglow light curve.

2. GAMMA-RAY BURST AFTERGLOWS

AND MICROLENSING

For a spherical Ðreball, the observer sees a circular source
image with an outer radius of angular size h that evolves as

h
s
(t)\ h0 tdayd , (2)

where is the angular size of the afterglow after 1 day,h0 tdayis the observed time in days, and d \ [5 [ k]/[2(4[ k)] for
an external medium with density proÐle o P r~k. The
angular size depends on the energy of the burst, theh0density of the ambient medium, and the redshift of the
burst. For typical parameters, is of order 1 kas. As longh0as an observed frequency, l, does not cross any of the time-
dependent spectral break frequencies, the afterglow Ñux at
that frequency evolves as a power law of time (e.g., Sari et al.

1998),

Fl(t) \ F0,l tday~a , (3)

where is the Ñux after 1 day. Granot & Loeb (2001)F0,lprovide a comprehensive study of the predicted image
proÐle in the di†erent spectral regimes.

Now assume that an intervening compact object lies at
an angular distance from the line of sight to the center ofh

bthe afterglow. We may then normalize the angular radius of
the afterglow image in units of the Einstein radius of this
object (eq. [1]),

R
s
\ R0 tdayd , (4)

where

R04
h0
hE

. (5)

Since both and are O(1 kas) for typical parameters,h0 hE R0is of order unity. The value of depends very weakly onR0

FIG. 1.ÈTop: MagniÐcation as a function of time for a uniform source with radius at t \ 1 day and an impact parameter b \ 1, assuming aR0\ 1
uniform external medium (solid line, o \ constant) and a medium such as that created by a stellar wind (dotted line, o P r~2). Middle : Fraction of total Ñux
contributed by Ðve equal-area annuli as a function of time in days for the uniform external medium. Bottom: Same as the middle panel, but for the stellar
wind medium.
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the GRB energy output and the ambient density normal-
ization but is more sensitive to the lens mass and the source
and lens redshifts (for k \ 0, see eqs. [2] and [3] in Garna-
vich et al. 2000).

The magniÐcation of an extended source is given by

k(t)\ / d2r k0(r)Il(t ; r)
/ d2r Il(t ; r)

, (6)

where is the point-sourcek0(r)\ (r2] 2)/[r(r2] 4)1@2]
magniÐcation at vector position r relative to the lens and
the integral is over the area of the source. For lensing of a
uniform circular source of radius by a single point massR

swith no external shear, the magniÐcation obtains the value
where (Schneider, Ehlers, &k(t ; R

s
, b)\ ([r \ R

s
(t), b],

Falco 1992 ; Witt & Mao 1994)

((r, b)\ 2
nr2
CP

@ b~r @

b`r
dR

R2] 2

JR2] 4

] arccos
b2] R2[ r2

2Rb
] H(r [ b)

]
n
2

(r [ b)J(r [ b)2] 4
D

. (7)

Here H(x) is the step function and is the angularb 4 h
b
/hEseparation (impact parameter) between the source center

and the lens in units of the Einstein ring radius.
For a uniform source (as applicable below the synchro-

tron self-absorption frequency ; see Granot et al. 1999b ;
Granot & Loeb 2001), the magniÐcation history by a point-
mass lens is completely speciÐed by two parameters : b and

Figure 1 shows the magniÐcation as a function of timeR0.in days for and b \ 1, as well as two density proÐles,R0\ 1
uniform and o P r~2 At early times when(d \ 58) (d \ 34).
the source radius is small, the magniÐcation is roughly
Ðxed at its point-source value (0(b)\ k0(b)\ (b2] 2)/
[b(b2] 4)1@2]. The peak magniÐcation occurs at a time tpeakwhen i.e., days. The total ÑuxR(tpeak)\ b, tpeakB (b/R0)1@dfrom the afterglow is then

Ftot,l(t)\ F0,l ((t ; R, b)tday~a ] Fbg , (8)

where we have allowed for Ñux from any unresolvedFbgsources not being lensed, e.g., the host galaxy of the GRB.
Thus, in the simplest scenario the Ñux at a given frequency
is a function of Ðve parameters : a, and b.F0,l, Fbg, R0,In order to illustrate how microlensing e†ectively resolv-
es the image of the GRB afterglow, we plot in Figure 1 the
fraction of contributed by Ðve equal area annuli as aFtotfunction of time assuming b \ 1, and a uniformR0\ 1,
source. For the annuli contribute roughly equalt [ tpeak,Ñux, and the source is not resolved. However, beginning at

di†erent annuli obtain di†erent weights and thet D tpeaklens di†erentially magniÐes the source. The annulus that
contributes most of the Ñux at a given time has a radius of

in units of where is the radius of thatrpeak \ r0 td D b hE, r0annulus at t \ 1 day. DeÐning the fractional radius X 4
r/R

s
4 r0/R0,

Xpeak \
A t
tpeak

B~d
. (9)

From inspection of Figure 1 and equation (9), it is clear that
the light curve need only be monitored from untiltpeak

to resolve the outer 70% of the radial proÐle of0.3~1@dtpeakthe afterglow image.

3. ERROR ANALYSIS

Consider an azimuthally symmetric afterglow divided
into annuli, with annulus i centered at radius WeN

r
r
i
.

assume a self-similar behavior for which both the fractional
radii and the mean relative intensity inX

i
I(r

i
) 4 I(t ; r

i
)/I(t)

each annulus i are constants in time. The total Ñux from the
afterglow is simply the sum of the Ñuxes from each annulus.
The weight of each annulus is in turn the area of the image
of each annulus of width *r

i
,

)(t ; r
i
) \ n[((t ; r

i
] *r

i
)(r

i
] *r

i
)2

[ ((t ; r
i
[ *r

i
)(r

i
[ *r

i
)2] , (10)

times the mean intensity of that annulus. Converting equa-
tion (6) from an integral to a Ðnite sum, the total Ñux is
simply

Ftot(t) \ Fbg] I(t) ;
i

Nr )(t ; r
i
)I(r

i
) . (11)

The coefficients one wishes to determine are the relativeN
rintensities These can be determined through inversionI(r

i
).

of the observed Ñux if I(t), and are known.Ftot(t) Fbg, )(t ; r
i
)

The functions I(t) and in turn depend on the param-)(t ; r
i
)

eters a, b, and Schematically, the inversion can beF0,l, R0.done as follows : a and can be determined from theFbglate-time behavior of the afterglow light curve,(t ? tpeak)when the magniÐcation due to microlensing is negligible.
The unlensed Ñux of the afterglow could then be extrapo-
lated back to t \ 1 day, to determine The o†setF0,l.between the lensed and unlensed Ñux at early times t > tpeakthen gives b. Finally, a measurement of b combined with

provides Therefore, all the parameters necessary totpeak R0.invert equation (11) can ideally be determined without refer-
ence to the surface brightness distribution of the source
image. In practice, of course, a global Ðt to all pa-5 ] N

rrameters must be done simultaneously, and this will intro-
duce correlations between the parameters and a,I(r

i
) F0,l,and b, in turn inÑating the errors on the measuredFbg, R0,values of While is linearly dependent on (seeI(r

i
). Ftot I(r

i
)

eq. [11]), this is not true for the parameters a,F0,l, Fbg, R0,
and b. The nonlinear dependences of these parameters on
the observed quantity make the expected errors onFtotthese parameters and their covariances with the parameters
of interest, extremely difficult and time-consuming toI(r

i
),

calculate. Furthermore, the errors will depend sensitively on
the exact coverage and accuracy of the afterglow photo-
metry. For an observed microlensing event, a full and
careful determination of the errors on the inferred values of

must account for their covariances with the other ÐtI(r
i
)

parameters. However, including these e†ects here is beyond
the scope of the paper. Therefore, when computing the error
bars on we will for simplicity assume that a,I(r

i
), F0,l, Fbg,and b are perfectly known. We stress that the errors weR0,derive should thus be regarded as lower limits to the actual

errors.
Now consider a series of Ñux measurements thatFtot(tk)are made at times with errors and that are Ðtted tot

k
p
kequation (11). The parameters of the Ðt are andI

i
4I(r

i
),

the variances in these parameters are wheredI
i
\ (C

ii
)1@2,
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is the covariance matrix,C
ij

C\B~1 , B
ij
\ ;

k
p
k
~2 LF(t

k
)

LI
i

LF(t
k
)

LI
j

, (12)

and The fractional errors are thenLF(t
k
)/LI

i
\ I(t

k
))(t ; r

i
).

We assume Poisson noise limited preci-dI
i
/I

i
\C

ii
1@2/I

i
.

sion, so that Therefore, for a given set ofp
k
P [F(t

k
)]1@2.

assumptions about the microlensing event (b, theR0),unlensed Ñux of the afterglow and the obser-(F0,l, Fbg),vational setup (duration of observations, telescope diam-
eter, etc.), the covariance matrix C can be formed and the
expected errors determined.dI

i
/I

i

4. RESULTS

4.1. Fiducial Scaling Relation
We now apply the formalism in ° 3 to derive an approx-

imate scaling relation for Rather than adopt speciÐcdI
i
/I

i
.

(and therefore model-dependent) forms for the afterglow
Ñux as a function of frequency and a speciÐc obser-F0,lvational setup, we will simply assume that the instrument
being used collects photons per second from the!lunlensed afterglow at t \ 1 day. In ° 4.5 we will evaluate
values of and thus the errors expected from a speciÐc!lexample of afterglow emission and observational setup. For
our Ðducial scenario, we assume a uniform source (I

i
\ 1),

a negligible background Ñux and that obser-(Fbg\ 0),
vations are made continuously from the burst until very late
times We also assume equal-area annuli, so thatt ? tpeak.all bins have equal weight for a uniform source. We then
calculate for a range of values of a, b, anddI

i
/I

i
R0, N

r
.

Numerically, we Ðnd the following approximate scaling
relation for the fractional errors in the recovered intensity
proÐle :

AdI
i

I
i

B
0
\ 0.35

A r
i

R
s

B5(1~a)@8d`3@2A !l
1 s~1

B~1@2AN
r

10
B8@5

] R0(1~a)@2d ba@2d . (13)

Equation (13) is the primary result of this paper. We Ðnd
that it predicts the expected errors to an accuracy of [5%
for most combinations of parameters. Note that equation
(13) and indeed the majority of the quantitative results in
this paper rely on four assumptions about the afterglow: (1)
the unlensed Ñux of the afterglow is a power-law function of
time, FP t~a ; (2) the radius of the afterglow image scales as

(3) the image proÐle evolves self-similarly ; and (4)R
s
P td ;

the afterglow image is circularly symmetric. These assump-
tions should hold at least approximately for some restricted
part of most afterglow light curves. We discuss these
assumptions more thoroughly in ° 5. The above equations
can be used to determine the expected errors on the recov-
ered intensity from observations performed with various
instruments, apertures, and photon frequencies of afterglow
light curves of arbitrary Ñuxes and power-law indices.
Because we have assumed that the observational precision
is limited only by photon statistics, that there are no corre-
lations with the other parameters (see the discussion in ° 3),
and that the measurements are continuous, equation (13)
provides the minimum attainable error, at least for uniform
sources and isolated lenses with no external shear. In the
next section we will relax some of the assumptions leading
to this result in order to evaluate their e†ect on the expected
errors. For the two cases of a uniform medium and a(d \ 58)

stellar wind medium the exponents in equation (13)(d \ 34),
are quite similar. Therefore, for the sake of simplicity, we
will consider only the uniform medium case with ind \ 58the discussion that follows.

Several of the terms in equation (13) can be derived ana-
lytically, simply by noting that, according to photon sta-
tistics, the errors should scale as wheredI

i
/I

i
P Nc~1@2, Ncis the number of photons collected. For example, the scaling

with can be derived as follows : the time of the peak ofR0the light curve scales as The unlensed Ñux attpeak P R01@d.this time is The magniÐcation structure isF(tpeak) PR0~a@d.
independent of however, all times are scaled byR0 ; R01@d,so the time over which photons can be collected scales as
this factor. Thus, the total error should scale as

as found numerically. The(R01@dR0~a@d)1@2 \R0(1~a)@2d,
scaling with the impact parameter b can be derived in a
similar fashion, under the assumption that the peak mag-
niÐcation scales as b~1. However, this is only strictly valid
for b > 1. Therefore, the scaling in equationdI

i
/I

i
P ba@2d

(13) is only approximate and breaks down for b ? 1.
Numerically, we Ðnd that for b ¹ 4, equation (13) predicts
errors that are too small by for (the outer[20% r Z 0.5R

s70% of the area of the image). The exponent for the scaling
with is 8/5, similar to that found by Gaudi & GouldN

r(1999) for resolving the images of Galactic stars by micro-
lensing. Naively, one might expect the prefactor in equation
(13) to be considerably smaller : for a \ 1 and b \ 1 the
total number of photons collected is of order NcD 105(!l/1s~1) (with only a logarithmic dependence on the integration
time during which the source is resolved). Divided over

bins, one might expect the error per bin to beN
r
\ 10

s~1)~1@2, about an order of magni-(Nc/Nr
)~1@2 D 1%(!l/1tude smaller than the s~1)~1@2 predicted byD12%(!l/1equation (13) for a radius However, the errorsr

i
\ 0.5R

s
.

increase with faster than one would naively expect, andN
rso the error in each bin is closer to (Nc/Nr

16@5)~1@2 D
s~1)~1@2.12%(!l/1

4.2. E†ects of Changes in the Input Assumptions
4.2.1. Duration of Observations

The most severe simpliÐcation made in deriving equation
(13) is the assumption of continuous measurement from the
GRB trigger until long after the peak time Since thetpeak.optical depth for microlensing is qD 1%b2, at least 100b~2
afterglows must be monitored to detect one that has impact
parameter ¹b. If it was truly necessary to monitor all of
these afterglows continuously to recover the intensity
proÐle accurately, this would represent an overwhelming
observational burden. We therefore evaluate the errors
expected under various assumptions about the starting time
and the duration of the observations. We scale the starting
time, and ending time, in terms of the peak timeqstart, qend,through the relation so that for givenq4 (t/tpeak)5@8, qstartand a Ðxed range of fractional radii, namely,qend, Xmin\

through are probed regardless of theqend~1 Xmax\ qstart~1 ,
values of and b (see eq. [9]). The top panel of Figure 2R0shows the expected errors normalized to the ÐducialdI

i
/I

ierrors in equation (13), for 100.0), corre-(qstart, qend) \ (0.1,
sponding to complete coverage of the microlensing event,
and also for (starting at the peak of the event) andqstart\ 1
various values of Note that here and throughout weqend.plot as a function of because we assume binsdI

i
/I

i
(r/R

s
)2

of equal area (and hence equal weight for a uniform source ;
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FIG. 2.ÈBoth panels show the fractional error in the recovered intensity proÐle dI/I normalized to the Ðducial error given by the scaling(dI/I)0relation in eq. (13), as a function of the square of the normalized radius of the afterglow. Each line shows various assumptions of the beginning andX \ r/R
sduration of observations relative to the time of the peak of the microlensing event. Top: Varying the end of observations relative to Bottom:tpeak tpeak .Varying the beginning of observations relative to tpeak.

see eq. [10]). Clearly, observations before the peak of the
event provide little information on the intensity proÐle.
Moreover, the afterglow need only be monitored until t D

to resolve the outer two-thirds of the source radius.7tpeakThe bottom panel of Figure 2 shows the expected errors
when is varied. Delaying observations even somewhatqstartpast the peak of the event will result in seriously degraded
information.

We conclude that measurements from untiltpeak D7tpeakwill provide almost as much information as continuous
measurements from the GRB trigger until late times. Since
for typical parameters day, the afterglow need onlytpeak D 1
be aggressively monitored for about 6 days. This suggests
the following detection strategy for maximizing the number
of lensed GRBs for which the intensity proÐle can be recov-
ered. Since the sampling necessary to determine that the
GRB is being microlensed is not as dense as that needed to
recover the intensity proÐle, a large number of bursts can be
monitored relatively infrequently from a global network of
small telescopes. With real-time reduction, this network
should be able to ““ alert ÏÏ microlensing events before or near
the peak time. Larger telescopes could then be used to

densely sample the microlensed afterglow for the D6 days
necessary to resolve the intensity proÐle. This is similar to
the way Galactic microlensing observations are coordi-
nated (Udalski et al. 1994 ; Alcock et al. 1996).

4.2.2. Realistic Intensity ProÐles

In this section we explore the e†ects of realistic intensity
proÐles on the resultant errors. The optical image of the
afterglow is expected to be limb brightened because light
from the edge of the afterglow su†ers the longest time delay
and thus was emitted at earlier times when the Ðreball was
brighter (Waxman 1997b ; Sari 1998 ; Panaitescu & Mes-
zaros 1998 ; Granot et al. 1999a, 1999b). The contrast
between the center and edge of the afterglow, as well as the
sharpness of the cuto† in intensity at the outer edge of the
afterglow, depends on the location of the observed fre-
quency relative to the various spectral breaks in the broken
power-law spectrum of afterglows (Granot et al. 1999a,
1999b ; Granot & Loeb 2001). The exact shape of the rela-
tive intensity proÐle will a†ect the shape of the light curve,
as well as the resultant errors, with the errors expected to be
larger near the center (where the relative intensity is smaller)
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than those calculated assuming a uniform source. Previous
studies of microlensing (Loeb & Perna 1998 ; Garnavich et
al. 2000 ; Mao & Loeb 2001) have parameterized the inten-
sity proÐle as a uniform inner disk bounded by a uniform
outer ring, with two parameters specifying the width W and
contrast C of the ring. Of course, realistic intensity proÐles
do not exhibit such discontinuous features. The precise cal-
culation of these proÐles for the di†erent spectral regimes of
GRB afterglows is presented elsewhere (Granot & Loeb
2001). Here we adopt a parameterized form for the relative
intensity proÐle that captures the qualitative aspects of rea-
listic proÐles,

I(X)\I0(1[ cJ1 [ X2)(1[ Xn) , (14)

where c and n are free parameters that deÐne the shape of
the proÐle and is the normalization such thatI0The index n deÐnes the sharpness of the/01 X dXI(X)\ 1.
cuto† and is roughly analogous to the width of the ring W .
The coefficient c is related to the intensity at X \ 0 and is
roughly analogous to the contrast C. Note that for c\ 0
and n ] O, this form reduces to a uniform source.

The top panel of Figure 3 shows I(X) for a relatively
gradual cuto†, n \ 20, and various values of c. The bottom
panel of Figure 3 shows the fractional errors relativedI/I0to the Ðducial errors for a uniform source in equation (13),
given the image proÐles shown in the top panel. Note that
we normalize the variances dI to the mean intensity I0rather than the intensity in that bin in order to avoid the
fractional errors dI/I blowing up when I] 0 for large c.
In general, the resultant errors are a factor worse than[3
the uniform source case. In the most extreme example
where I(X) ] 0 at the center of the image, the fractional
errors can become quite large, but only for the innermost
bin. For the outer half of the area of the image, the errors
can be smaller than the uniform source case. Thus, in this
case, measurements will result in a robust upper limit to the
intensity at the center of the image, with a clear measure-
ment for the outer part of the image. Therefore, the ringlike
structure of the image will be accurately recovered. We have
also calculated, but do not show, the errors for the case of a
sharp outer cuto†, n \ 500. The results for this case are
qualitatively and quantitatively similar to the results for

FIG. 3.ÈTop: Normalized intensity proÐle of the source as a function of the normalized radius assuming a cuto† parameter n \ 20 andI(r)/I0 X \ r/R
s
,

for several di†erent values of the parameter c (see text and eq. [14] for details). Bottom: Fractional error in the recovered intensity proÐle normalizeddI/I0to the Ðducial error given by the scaling relation in eq. (13), as a function of the square of the normalized radius of the afterglow, for the intensity(dI/I)0proÐles shown in the top panel.
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n \ 20. We conclude that realistic intensity proÐles will not
result in signiÐcantly inÑated errors relative to the uniform
source estimate (eq. [13]), at least for the majority of the
source area.

4.3. External Shear and Binary L enses
We now consider more complicated models for the lens.

The majority of lenses are likely to reside in galaxies, and a
signiÐcant fraction of these may be in binary systems.
Therefore, the assumption of an isolated single lens with no
external shear used in the previous sections will not be
valid. We therefore consider two other types of lenses : a
single lens with external shear (Chang & Refsdal 1979) and
a binary lens (Schneider & Weiss 1986). The former case is
appropriate for a lens perturbed by either a wide binary
companion or the potential of its host galaxy. The latter is
appropriate for binary lenses with separations orO(hE)smaller. For a lens residing in a region of high optical depth,
i.e., near the center of a galaxy, the magniÐcation structure
will not be well approximated as either an isolated lens with
external shear or a binary lens. In this case one may only be
able to draw statistical inferences about the surface bright-
ness proÐle of the source, as it will be difficult to reconstruct
the magniÐcation structure of the lens from the light curve
alone. We will not consider this regime here. We compute
the fractional errors in the recovered intensity proÐles in the
same manner as before, except that we must replace ( in
equation (10) with the uniform source magniÐcation appro-
priate for the given lens model. We compute this magniÐ-
cation using the inverse ray-shooting method (see, e.g.,
Wambsganss 1997) as follows. The generalized lens equa-
tion for point masses and external shear can be expressed in
complex coordinates on the plane of the sky as (Witt 1990)

f\ cz6 ] z] ;
k

N v
k

z6
k
[ z6

, (15)

where f is the complex source position, z is the complex
image position, c is the shear, is the fractional mass of lensv

kcomponent k, and is the position of this component. Allz
kdistances are expressed in units of the angular Einstein ring

of the combined mass of the system. For a single lens,
N \ 1, and For a binary lens with no exter-v1 \ 1, z1\ 0.
nal shear, c\ 0, N \ 2, the mass ratio is theq \ v1/v2,dimensionless projected separation is and wed \ o z1[ z2 o ,
choose the origin to be the midpoint of the binary.

We sample the image plane uniformly and densely,
solving for the source position using the appropriate form
of equation (15). These positions are then binned in the
source plane. The magniÐcation of each bin is then just the
surface density of rays in the image plane divided by the
surface density of rays in the source plane. Since this pro-
cedure conserves Ñux, the resulting magniÐcation map can
then be convolved with a source of arbitrary size to
compute the magniÐcation of the extended source. We cal-
culate magniÐcation maps for c\ 0.1, 0.2, 0.3, and 0.4 and
one binary-lens conÐguration with d \ 0.8 and q \ 1. For
the single lens with external shear, parameters areN

r
] 7

needed to specify the light curve, namely, the relativeN
rintensities plus a, the shear c, and twoI

i
, F0,l, Fbg, R0,

parameters that specify the position of the GRB with
respect to the lens, which we denote as (x, y). For the binary
lens, we assume that c\ 0 ; however, two additional param-
eters are needed to describe the topology of the lens,

namely, d and q, and so there are a total of param-N
r
] 8

eters. When calculating the errors on the parameters weI
i
,

will again assume that all other parameters are perfectly
known. Here this assumption is somewhat less justiÐed than
the single-lens case, not only because there are more param-
eters but also because the e†ects of these parameters are in
general not directly related to features in the light curve and
are likely to be subject to degeneracies or correlations,
which will inÑate the errors in the recovered SuchI

i
.

degeneracies or correlations are known to inÑate the errors
in limb-darkening measurements of stars using Galactic
binary-lens events, although not greatly so for well-mea-
sured light curves (Afonso et al. 2000 ; Albrow et al. 2001a).
In the Galactic binary-lens case, determination of all
parameter combinations that correspond to solutions to the
observed light curve, and therefore identiÐcation of degen-
eracies and correlations between Ðt parameters, is a formi-
dable task (Mao & di Stefano 1995 ; di Stefano & Perna
1997 ; Albrow et al. 1999b). This is likely to also be true for
GRB afterglows. A comprehensive study of parameter space
is beyond the scope of this paper, and so we will simply
assume that the binary-lens parameters are known. This
assumption facilitates comparison with the isolated single-
lens case, which is the main purpose of our discussion here.
We stress that the errors we derive under this assumption
are almost certainly underestimates. In both the external
shear and binary-lens case, we will assume a uniform after-
glow image (see Mao & Loeb 2001 for other examples).

In Figure 4 we show the magniÐcation light curves for the
case of a single lens with external shear along the x-axis of
magnitudes c\ 0,0.1, 0.2, 0.3, and 0.4, for both a source
centered on the x-axis of the lens, (x, y) \ (1, 0), and a
source centered on the y-axis of the lens, (x, y) \ (0, 1). Note
that the caustics are most highly elongated along the x-axis,
and thus for a given c, light curves where the source is
centered on the x-axis should show more dramatic devi-
ations from the c\ 0 case than for sources centered on the
y-axis (Mao & Loeb 2001). Figure 5 shows the resultant
errors relative to the Ðducial error estimate in equation (13).
In general, sources centered on the x-axis show more dra-
matic variations in the expected errors than sources cen-
tered on the y-axis. In all cases the fractional errors are
within a factor of 2 of the c\ 0 expectation. Thus, at least
for modest values of c¹ 0.4, we conclude that an external
shear will not result in signiÐcantly inÑated statistical
errors, assuming that the covariances with the afterglow
and microlensing parameters are small.

In Figure 6 we show the magniÐcation as a function of
time for the binary lens with d \ 0.8 and q \ 1, and a source
centered at (x, y) \ ([0.16, [ 1). We also show the fraction
of total Ñux contributed by Ðve equal area bins as a function
of time. For times t [ 1 day, the light curves resemble that
for a single lens (compare with Fig. 1), as the annuli become
comparable to or larger than the caustic features. The
bottom panel of Figure 6 shows the resultant errors relative
to the Ðducial single-lens case. Again, the statistical errors
di†er by less than a factor of 2 from the Ðducial estimate in
equation (13).

4.4. Finite Unresolved Flux
Observed afterglows often show evidence for a Ñattening

of the light curve to a constant Ñux at late times. This is
usually interpreted as being due to unresolved Ñux from the
host galaxy of the GRB. Even if the Ñux from the host
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FIG. 4.ÈMagniÐcation as a function of time for a uniform source with and b \ 1 for a single lens with external shear along with x-axis ofR0\ 1
magnitude c for various values of c. Top: Assuming that the center of the source is located on the x-axis of the lens. Bottom: Assuming that the center of the
source is located on the y-axis of the lens.

galaxy is small, the sky background will eventually domi-
nate over that of the afterglow. In other words, it is inevita-
ble that at late times. For ground-based infraredFl(t)\ Fbgobservations, the background Ñux is likely to be larger than
the afterglow Ñux at all relevant times. A Ðnite background
Ñux will increase the errors on the recovered parameters I

i
,

and preferentially so for smaller radii, since the information
on smaller radii comes at later times, when the background
is more signiÐcant. We explore this e†ect by introducing a
background Ñux that amounts to some fraction of forFl,0the afterglow. Figure 7 shows the expected fractional errors
on the recovered intensity proÐle relative to the Ðducial
value in equation (13), assuming a power-law Ñux index of
a \ 1 for the afterglow, for relative background Ñuxes of

0.1, 0.4, 1.0, 2.5, and 10.0. At opticalÈFbg/Fl,0\ 0.01,
infrared frequencies, this corresponds to a background of
magnitude 5, 2.5, 1, 0, [1, [2.5 relative to the (unlensed)
afterglow at 1 day. As expected, the errors generally increase
as the background Ñux increases, especially for smaller
radii. However, unless the background Ñux is higher than

the expected errors are times greater than theFl,0, [3
Ðducial estimate. In other words, for optical frequencies, the

background Ñux should not compromise the measurement
of the intensity proÐle. However, for, e.g., ground-based
observations in the near-infrared, where the sky back-
ground can be many magnitudes brighter than the after-
glow Ñux at 1 day, the accuracy with which the intensity
proÐle can be measured will be considerably larger than the
Ðducial estimate (eq. [13]). Thus, spaced-based near-
infrared observations would improve the accuracy of the
recovered intensity proÐle.

4.5. A Worked Example
As discussed in ° 4.1, the results we have presented so far

are quite general. We now estimate the errors expected
under realistic observational conditions and a realistic
model. To do so, we make estimates of the various terms in
equation (13) by adopting the parameters for the observed
afterglow of GRB 000301C. Garnavich et al. (2000) Ðt the
optical and infrared photometry of GRB 000301C to
double power-law Ñux decline magniÐed by the simple
microlensing model of Loeb & Perna (1998). They Ðnd best-
Ðt parameters of and for the power-lawa1\ 1.1 a2\ 2.9
Ñux indices, similar to the values found originally by Sagar
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FIG. 5.ÈFractional error in the recovered intensity proÐle dI/I normalized to the Ðducial error given by the scaling relation in eq. (13), as a(dI/I)0function of the square of the normalized radius of the afterglow for various values of the external shear c along the x-axis. We have assumedX \ r/R
s

R0\ 1,
b \ 1, and a uniform source. Top: Assuming that the center of the source is located on the x-axis of the lens. Bottom: Assuming that the center of the source is
located on the y-axis of the lens.

et al. (2000) without including the microlensing modiÐ-
cation. For simplicity, we ignore the break and simply
adopt a single power law of slope a \ 1.1. We adopt the
best-Ðt microlensing parameters for the entire data set of

and b \ 1.04.3 Finally, we extrapolate by eye theR0\ 0.49
unlensed Ñux of the afterglow back to t \ 1 day for the U,
B, V , R, I, J, and K bands. Table 1 shows the demagniÐed,
extrapolated magnitudes at t \ 1 day of the afterglow of
GRB 000301C, along with the assumed sky brightness, and

the number of photons per second per square meter!l/AT
,

of collecting telescope area Note that, for andA
T
. R0\ 0.49

b \ 1.04, the peak of the microlensing event (for a uniform
source) occurs at days. We calculatetpeak\ (b/R0)8@5B 3
the expected errors dI/I assuming a 4 m telescope, a seeing
of 1A, a uniform source, and observations between the peak,

3 B. S. Gaudi et al. (2001, in preparation) Ðnd that the impact parameter
in GRB 000301C is not well constrained but is in the range 0.2 [ b [ 0.7,
somewhat smaller than that found by Garnavich et al. (2000). For illustra-
tive purposes, we will simply adopt the Garnavich et al. (2000) value of
b \ 1.04.

days and days. We adopt at \ tpeak\ 3 t ^ 9tpeak ^ 30
uniform source in order to provide a model-independent
estimate of the fractional errors expected for realistic
observing conditions. Image proÐles in the optical and

TABLE 1

ADOPTED FLUXES FOR GRB 000301C

ksky !l/AT
b

Filter Apparent Magnitudea (mag arcsec~2) (c s~1 m~2)

U . . . . . . 20.1 22.8 43
B . . . . . . 20.6 22.5 77
V . . . . . . 20.1 21.5 78
R . . . . . . 19.7 20.8 130
I . . . . . . . 19.3 19.3 128
J . . . . . . 18.3 15.9 194
K . . . . . . 16.8 13.7 540

a DemagniÐed apparent magnitude of GRB 000301C extrapolated to
1 day after the burst.

b Number of photons per second per square meter of collecting area
A

T
.
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FIG. 6.ÈTop: MagniÐcation as a function of time for a uniform source with The solid line is for a binary lens with mass ratio q \ 1 and aR0\ 1.
separation of d \ 0.8 in units of the combined Einstein ring radius. The source is centered on ([0.16, [1). The dotted line is for a single lens with impact
parameter b \ (0.162] 12)1@2\ 1.013. Middle : Fraction of total Ñux contributed by Ðve equal-area annuli as a function of time in days for the binary-lens
light curve shown in the top panel. Bottom: Fractional error in the recovered intensity proÐle dI/I normalized to the Ðducial error given by the(dI/I)0scaling relation in eq. (13), as a function of the square of the normalized radius of the afterglow.X \ r/R

s

infrared are unlikely to be well represented by a uniform
source (Granot & Loeb 2001) ; however, this will not a†ect
the errors in the recovered proÐle by more than a factor of
D3 (see ° 4.2.2). The results are shown in Figure 8. For
observations in the optical, the relative intensity proÐle can
be recovered accurately, For observations indI/I[ 3%.
the infrared, where the sky background is dominant, the
expected errors are D10%. Although we do not speciÐcally
consider other wavelengths here, we note that radio after-
glows peak later and last longer than afterglows at shorter
wavelengths (Kulkarni et al. 2000 and references therein).
This, combined with the lower energy of the photons,
implies that the photon Ñux at a given time is larger in the
radio than in the optical. At sufficiently high radio fre-
quencies where the e†ect of scintillations is subdominant,
radio observations may provide more accurate measure-
ments of the afterglow image. Since the afterglow image is
expected to be di†erent at radio frequencies (Granot &
Loeb 2001), we advocate performing measurements over as
wide a range of frequencies as possible.

Given that the fraction of afterglows that exhibit micro-
lensing events with impact parameter ¹b scales as b2, it is

interesting to consider what kind of errors one would expect
for the speciÐc example of GRB 000301C considered above,
but with larger impact parameters. We therefore repeat the
calculation above with the same parameters, except we now
vary the impact parameter. SpeciÐcally, we consider b \ 1,
2, 3, 4, and 5, as would be expected in D1%, 4%, 9%, 16%,
and 25% of all GRB afterglows. In Figure 9 we show the
results for the U band (where the background is the
smallest), assuming that observations are taken from peak,

days until days.t \ tpeak\ 3b5@8 t ^ 9tpeak^ 30b5@8
For b ¹ 3, the fractional errors in the recovered intensity

proÐle are for the majority of the area of the image.[10%
Thus, it should be possible to recover the intensity proÐle to
an accuracy of for D10% of all afterglows. To test[20%
the robustness of this conclusion, we also show in Figure 9
the results for the b \ 3 case, but considering a band with
larger background Ñux (R band), and also a nonzero exter-
nal shear (c\ 0.2 with source on the shear axis). We Ðnd
that the error is not greatly inÑated, OfdI/I[ 20%.
course, these results assume that the afterglow can be moni-
tored for many months after the peak of the microlensing
event. Practical aspects aside, such monitoring may not be
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FIG. 7.ÈFractional error in the recovered intensity proÐle dI/I nor-
malized to the Ðducial error given by the scaling relation in eq.(dI/I)0(13), as a function of the square of the normalized radius of the afterglow
for various assumptions about the magnitude of the unresolved back-
ground Ñux relative to the Ñux of the afterglow at t \ 1 day.Fbg Fl,0

possible even in principle in those cases in which the emis-
sion is due to a highly collimated jet. Such afterglows will
eventually exhibit breaks in the light curve and changes in
the image structure when the Lorentz factor of the Ðreball
falls below the inverse of the opening angle of the jet. In this

FIG. 8.ÈFractional error dI/I in the recovered relative intensity
proÐle in percent as a function of the square of the normalized radius

for the afterglow and microlensing parameters of GRB 000301C,X \ r/R
s
,

assuming a uniform source and that observations were made with a 4 m
telescope from the peak of the microlensing event until D30 days after the
peak.

FIG. 9.ÈSame as Fig. 8 for U band, except we have varied the impact
parameter of the microlensing event, b. Note that the fraction of all after-
glows with impact parameter ¹b is D1%b2.

case, the errors on the annuli centered at smaller radii
would be inÑated (see ° 4.2.1). Additional deviations from
our results may occur as the Ðreball decelerates to nonrela-
tivistic speeds (Mao & Loeb 2001).

5. CONCLUSIONS

Microlensing o†ers a unique method for probing the
dynamics of GRB Ðreballs. As the GRB afterglow image
expands, it is di†erentially magniÐed by the lens. Di†erent
annuli of the image are resolved as they cross the lens posi-
tion at di†erent times. Thus, the light curve of the afterglow
during the microlensing event can be inverted to obtain the
radial intensity proÐle I(X), where is the fraction-X \ r/R

sal radius of the circular image. We developed the formalism
necessary to calculate the expected fractional errors on the
recovered intensity proÐle dI/I.

Assuming continuous observations, uniform sources,
single lenses, and zero background Ñux, we Ðnd that the
expected errors follow a general scaling relation (eq. [13]) in
terms of the afterglow Ñux, afterglow radius in units of the
Einstein radius, the angular separation between the after-
glow and the lens, and the number of resolution elements in
the recovered intensity proÐle. We have tested the accuracy
of this relation by, in turn, relaxing the assumptions of con-
tinuous observations, uniform sources, single lenses, and
zero background Ñux. We Ðnd that, for reasonable choices
of the relevant parameters, none of these reÐnements
change the expected errors by more than a factor of D3.
Therefore, the Ðducial scaling relation is fairly robust.

Notably, we have found that observations starting at the
peak of the microlensing event and ending attpeak 7tpeakresult in almost the same accuracy as measurements of the
entire afterglow. Therefore, one can monitor frequently only
those afterglows that are signiÐcantly microlensed by
““ alerting ÏÏ to these events before they reach their peak.

Finally, we calculated the errors expected for obser-
vations in the near-infrared and optical regimes of a speciÐc
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example. Adopting the observed and inferred parameters
for the (possibly) microlensed optical/infrared afterglow of
GRB 000301C, we Ðnd that the relative intensity proÐle can
typically be measured with a resolution of 10 and accuracy
of O(1%) in the optical and O(10%) in the infrared using 4 m
class telescopes. Fluctuations in the light curve due to inho-
mogeneities in the ambient gas distribution are typically
small and should not compromise this precision (Wang &
Loeb 2000 ; Halpern et al. 2000).

In the course of this study, we have had to make a
number of simplifying assumptions. These include the fol-
lowing : (1) the unlensed Ñux of the afterglow is a power-law
function of time ; (2) the radius of the afterglow image scales
as a power law of time (3) the afterglow image isR

s
P td ;

circularly symmetric ; (4) the intensity proÐle is self-similar,
i.e., I(X) is independent of time ; (5) the lens resides in a
region of relatively low optical depth ; and (6) the covari-
ances between the surface brightness proÐle parameters and
the afterglow and microlensing parameters are small. The
Ðrst assumption is a generic prediction of the simplest after-
glow models, provided that the observed frequency does not
cross one of the several spectral breaks and that 1/! is
smaller than the collimation angle of the ejecta. When a
break in the light curve occurs, as a result of either the
crossing of a spectral break or jet e†ects, the intensity
proÐle is also likely to change, thus also violating assump-
tion (4). When the break is due to jet e†ects, or when the
Ðreball becomes nonrelativistic, then the index d of the
power-law form for the image radius will change. Further-
more, breaks in the light curve will produce additional
uncertainties in the microlensing and afterglow parameters
by introducing additional correlations. For example, in the
case of a single power-law Ñux decline, the impact param-
eter b can be found by extrapolating the late-time light
curve (when the afterglow is not lensed) to very early times,
when the afterglow is lensed by an amount that depends
only on b. Clearly, this procedure becomes more uncertain
when the light curve exhibits a break. The assumption of
circular symmetry may be crude at best, especially for colli-
mated outÑows. For single lenses, it is clear that the infor-
mation gathered about the surface brightness proÐle is
inherently one-dimensional, and therefore departures from
circular symmetry will be difficult to detect. Therefore, the
surface brightness proÐle inferred assuming circular sym-
metry will be biased. In principle, binary lenses or single
lenses with external shear would provide more information
about departures from circular symmetry than a simple
single lens ; in practice, however, the additional freedom
introduced by the more complex lens models may make
extracting this information difficult. Our assumption of

small optical depth is likely to hold in the outskirts of gal-
axies. For sight lines passing near the center of an inter-
vening galaxy, the magniÐcation structure of the lens is
unlikely to be well represented by any of the three lenses we
considered : an isolated single lens, a single lens with exter-
nal shear, or a binary lens. In the high optical depth regime,
it may be difficult to reconstruct the relative intensity proÐle
directly, as a result of the complexity of the magniÐcation
structure. Finally, the assumption that the covariances
between the intensity proÐle parameters and the afterglow
and microlensing parameters are small is unlikely to hold in
practice. This means that the errors we calculate are e†ec-
tively lower limits to the true errors. The e†ects of these
various assumptions on the resultant errors on the recov-
ered intensity proÐle are interesting and important topics
for future study.

Our basic results are encouraging. Errors of 1% would
likely provide very stringent constraints on afterglow
models, and even errors of D10% would be interesting (see
Fig. 2 in Granot & Loeb 2001). Errors of the latter magni-
tude can be obtained from events with larger impact param-
eters. For the speciÐc afterglow parameters adopted above,
we Ðnd errors of dI/ID 6%, 10%, and 20% in the U band
for impact parameters in units of of b \ 2, 3, and 4. SincehEthe number of expected events scales as b2, this implies that
interesting results might be obtained for a signiÐcant
sample of afterglows. The forthcoming Swift satellite4 could
provide hundreds of afterglow targets per year. A network
of 1 m class telescopes similar to that used in gravitational
microlensing searches of the Local Group (Albrow et al.
1998 ; Rhie et al. 1999) would provide an ideal method for
““ alerting ÏÏ the community to microlensed afterglows, which
could in turn be intensively monitored to provide informa-
tion about the structure of the afterglow image. Although
this represents a considerable expenditure of resources, the
information gained would be invaluable and furthermore
cannot be currently acquired by any other method.
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work was supported in part (for B. S. G.) by NASA through
a Hubble Fellowship grant from the Space Telescope
Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA
contract NAS5-26555, and (for A. L.) by grants from the
Israel-US BSF (BSF-9800343), NSF (AST-9900877), and
NASA (NAG5-7039).

4 Planned for launch in 2003 ; see http ://swift.sonoma.edu.
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