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ABSTRACT
In order to understand the nature of the lenses that generate microlensing events, one would like to

measure their mass, distance, and velocity. Unfortunately, current microlensing experiments measure
only one parameter of the events, the characteristic timescale, which is a combination of the underlying
physical parameters. Other methods are required to extract additional information. Parallax measure-
ments using a satellite in an Earth-like orbit yield the projected velocity of the lens : where¿8 \¿/(1 [ z),

is the transverse velocity (speed and direction) of the lens relative to the Earth-source line of sight, and¿
z is the ratio of the distances to the lens and the source. A measurement of could distinguish between¿8
lenses belonging to the bulge and disk populations. We show that for photometric precisions of 1%È2%,
it is possible to measure the projected speed, to an accuracy of ¹10% for over 70% of disk lenses andv8 ,
over 60% of bulge lenses. For measuring the projected velocity the percentages are 40% and 30%,¿8 ,
respectively. We Ðnd lines of sight greater than 2¡ away from the ecliptic are preferable, and an Earth-
satellite separation in the range 0.7 AUÈ1.9 AU is optimal. The requirements of the satellite for measur-
ing the projected velocities of events toward the bulge are similar to those for measurements toward the
LMC.
Subject headings : astrometry È Galaxy : stellar content È gravitational lensing

1. INTRODUCTION

Four ongoing microlensing searches have detected more
than 100 candidate events, the great majority toward the
Galactic bulge. The MACHO collaboration (Alcock et al.

have reported eight candidate microlensing1995b, 1996b)
events of stars in the Large Magellanic Cloud (LMC), more
than expected by the known luminous stars of the Milky
Way et al. Bahcall, & Flynn(Bahcall 1994 ; Gould, 1996)
and LMC but less than expected from stan-(Gould 1995b),
dard spherical halo models (Paczyn� ski 1986 ; Griest 1991).
The EROS collaboration et al. et al.(Aubourg 1995 ; Ansari

have reported two candidate events toward the LMC.1996)
The MACHO (Alcock et al. OGLE1995a, 1996a), (Udalski
et al. and DUO collaborations have1994), (Alard 1996)
reported more than 100 candidate events of stars toward
the Galactic bulge. This is also more than expected by
known stars. These discrepancies suggest that a revision of
the current models of the structure of the disk, bulge, and
halo may be in order.

The light curve generated by a microlensing event is
described by the magniÐcation A(x) \ (x2] 2)/x(x2] 4)1@2,
where x(t) is the position of the lens in the Einstein ring as a
function of time, and is given by x(t) \ [u2(t [ t0)2] b2]1@2. Here is the time of maximum magniÐcation, bt0is the impact parameter in units of the Einstein ring radius,
and is the inverse Einstein ring crossing time. Thusu\ t

e
~1

the magniÐcation curve is Ðtted by three parameters, u, b,
Of these three parameters, only u yields any informationt0.about the lens itself ; b and reÑect only the geometry oft0the event. The timescale is related to the Einstein ring radius

and velocity of the lens by Here is thet
e
\ r

e
/v. v\ o ¿ o

magnitude of the transverse velocity of the lens along the

1 Alfred P. Sloan Foundation Fellow.

Earth-source line of sight,
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where and are the transverse velocities of the¿
s
, ¿

l
, ¿

osource, lens, and observer, respectively, and are thedol dosdistances to the lens and source, and is the distancedlsbetween the lens and the source. The Einstein ring radius is
deÐned as

r
e
2\ 4GM

c2 dos z(1 [ z) , z\ dol
dos

. (1.2)

Thus the timescale is a combination of the lensÏs physical
characteristics : M, and v. Because the bulge and disk ofdol,the Galaxy are characterized by di†erent speed and distance
distributions, separate measurements of v and woulddolallow one to determine the component to which the lens
belongs. Measurement of M would yield the mass spectrum
of lenses in these components. Unfortunately, a measure-
ment of alone provides no direct information about theset

echaracteristics. Some information can be obtained by con-
sidering probability distributions, but this method is inher-
ently statistical in nature. Furthermore, lenses belonging to
the Galactic bulge will produce events with timescales very
similar to those produced by lenses belonging to the Galac-
tic disk. As a result, measurements of alone di†erentiatet

epoorly between these two components.
In order to discriminate between the bulge and disk com-

ponents, one must consider methods of extracting more
information from each event. Several methods have been
proposed, including using parallax to measure the projected
velocity of the lens, There are two basic¿8 4 ¿/(1 [ z).
methods of acquiring information from parallax : ground-
based measurements and space-based measurements. The
projected velocity of one lens has already been measured
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using ground-based parallax et al. However,(Alcock 1995c).
ground-based parallax is limited to those events for which
the crossing time is large, months ; it is only for theset

e
Z 2

events that the motion of Earth induces measurable asym-
metries in the light curve. Unfortunately, most of the events
that have been detected so far have timescales signiÐcantly
smaller than those required for ground-based parallax.

Ground-based parallax illustrates a generic problem
inherent in most of the methods that have been proposed
for measuring the physical characteristics of lenses. These
methods are e†ective only for a small fraction of events.
Furthermore, those events for which these methods are
viable typically represent a very biased subsample. Mea-
surements of proper motions are biased toward bulge
events, color-shift measurements are biased toward bright
lenses, and ground-based parallax measurements are biased
toward events with long durations. In contrast, satellite-
based parallax measurements are e†ective for a majority of
events and are not biased toward a particular class of
events.

Two basic methods have been suggested of measuring the
proper motion of the lens, These are photometrick \ v/dol.& Wickramasinghe &(Gould 1994 ; Nemiro† 1994 ; Witt
Mao & Sasselov &1995 ; Witt 1995 ; Loeb 1995 ; Gould
Welch and spectroscopic & Gould1996) (Maoz 1994).
Ideally one would like to combine measurements of both
the proper motion and the parallax to determine both andv8
k. These two parameters, along with the timescale, com-
pletely determine M, and v (Combineddol, (Gould 1996).
measurements of the proper motion and parallax can be
used to determine the true velocity of the lens only if the
projected velocity, is determined, and not just the project-¿8 ,
ed speed As we discuss below, parallax measurementsv8 .)
can be used to determine in a signiÐcant fraction of events.¿8
Thus the mass spectrum, physical distribution, and velocity
distribution of lenses could be determined if both the paral-
lax and proper motion of events could be measured. Unfor-
tunately, while optical interferometers may be able to
measure proper motions for many events in the relatively
near future, events for which proper motion can currently
be measured are rare.

It is not strictly necessary, however, to measure both k
and in order to distinguish between component popu-v8
lations of lenses. & Gould demonstrated that,Han (1995)
for events toward the Galactic bulge, the typical values of v8
are reasonably well separated. Thus a measurement of v8
alone, gathered from parallax information, can be used to
determine the component to which the lens belongs. Fur-
thermore, parallax measurements can often be used to
determine not only but also the projected velocity of thev8 ,
lens, Information about is even more useful in dis-¿8 . ¿
tinguishing between bulge and disk populations &(Han
Gould 1995).

Space-based parallax is the most promising method of
extracting information about lenses. demon-Gould (1995a)
strated the basic method of using information obtained by a
satellite in an Earth-like orbit to measure and also gave a¿8 ,
rough estimate of the photometric precision needed. Due to
parallax, the light curve of a particular microlensing event
will be di†erent as seen from Earth and the satellite. This
di†erence is given by the vector displacement of the lens in
the Einstein ring, *x 4 (u*t, *b). Here *t is the di†erence
between the time of maximum magniÐcation for the Earth
and satellite, and *b is the di†erence between*t \ t0@ [ t0,

the impact parameters, *b\ b@[ b. The vector displace-
ment is related to the Earth-satellite separation by

*x \ r
r8
e
, (1.3)

where r is the projection of the Earth-satellite separation
vector R, onto the plane of the sky (perpendicular to the
source vector and is the projected Einstein ring radius,sü ), r8

e

r8
e
\ r

e
1 [ z

. (1.4)

Thus by measuring and b for Earth and the satellite, onet0can determine the projected Einstein ring radius, and this,
combined with the timescale can be used to calculate thet

e
,

projected velocity of the lens, ¿8 .
Complications arise from the fact that there is a fourfold

degeneracy inherent in the determination of including a¿8 ,
twofold degeneracy in the projected speed, These degen-v8 .
erate cases arise from the fact the one does not know a
priori which side of the lens-source line the Earth and the
satellite are on. Thus *b can have two magnitudes, *b

B
\

o b@^ b o, and two distinct signs, for a^*b
B

\ ^o b@^ b o,
total of four degenerate cases. This degeneracy can, in prin-
ciple, be broken by measuring the small di†erence in inverse
timescales, *u\ u@[ u, caused by the relative velocity of
Earth and the satellite (Gould 1995a).

Launching a satellite for observing microlensing would
be a major undertaking. It is often suggested that the most
economical approach would be to attach the telescope to an
already planned mission. It turns out, however, that the
stability requirements for observations of microlensing
events are such that it would be more economical to launch
a dedicated satellite. The primary concern, therefore, is that
such a dedicated satellite would be sufficiently versatile and
beneÐcial to justify the expense. We have already discussed
what could be gained from a measurement of of lenses,¿8
but it remains to be shown that a satellite with reasonable
speciÐcations will actually enable one to measure and¿8 ,
whether these measurements could be made for a large class
of microlensing events. There is the further consideration
that there are two distinct lines of sight of microlensing
observations, the LMC and the Galactic bulge. The times of
year when these two lines of sight can be observed from the
ground are complementary, and one would like one satellite
to be able to make measurements for both cases. Since the
two cases are markedly di†erent in the nature of events that
are expected, the brightness of the source stars being
observed, and in the geometry of the parallax measure-
ments, it is not obvious that a satellite with speciÐcations
suited to LMC parallax measurements will also be able to
make parallax measurements toward the Galactic bulge.

It is interesting to ask what the required lifetime of a
parallax satellite would be to achieve a reasonable sta-
tistical sample of microlensing events. esti-Gould (1995a)
mated that D100 giant star events will be seen toward the
bulge during each D6 month bulge season. To observe each
event 80 times requires observing D44 events per day, or
one event every D30 minutes. The source stars will be typi-
cally thus to achieve 2% photometry requiresI[ 17,
observations of D10 minutes on a 25 cm telescope. It is
therefore possible to make measurements with 2% photo-
metry for all D100 events. As we discuss below, it is possible
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to measure the projected speed for D70% of these events.
estimates that D15% of giant events couldGould (1996)

yield measurements of the proper motion, k. Thus for a
satellite lifetime of 3 yr, we could expect to use combined
parallax and proper motion information to measure the
mass and distance of D45 lenses.

In our analysis, we choose to assume that the satellite is
on an Earth-like orbit, separated from Earth by a distance

As we show in the this orbit well approx-dsat. Appendix,
imates a realistic orbit in which the satellite has a small
velocity relative to Earth at the time of launch. Such an
orbit is attractive on practical grounds since it requires the
least amount of energy to attain. Other orbits, such as those
inclined to the ecliptic plane, or with highly eccentric orbits,
require a much larger velocity relative to Earth at the time
of launch, and are therefore more expensive to achieve. An
Earth-like orbit is therefore optimal for the analysis because
it is simplest to study and is the most feasible. As we demon-
strate below, such an orbit is also advantageous because it
allows for parallax measurements toward the LMC and
bulge equally well.

In a earlier paper, & Gould used MonteBoutreux (1996)
Carlo simulations of observations of microlensing events in
the direction of the LMC to determine the conditions
needed to measure the projected speed, and the projectedv8
velocity, They found that with photometric precisions of¿8 .
3% for Earth and 4% for the satellite, and an Earth-satellite
separation of greater than 0.5 AU that it was possible to
measure for 70% and for 50% of LMC events. Theyv8 ¿8
found that larger was preferable, and that parallax mea-dsatsurements were possible for a broad range of lens masses.

In this paper, we extend the Monte Carlo analysis of
& Gould to observations of microlensingBoutreux (1996)

events in the direction of the bulge in order to determine if
similar satellite requirements are needed for bulge and
LMC observations. We have determined the conditions
needed to break the degeneracy for a majority of events,
and thus to measure the projected speed, and the project-v8 ,
ed velocity, to an accuracy of ¹10%. We consider the¿8
e†ects of the satellite requirements, the photometric preci-
sion and Earth-satellite separation, as well as the mass of
the lens and the position of the source star, in order to
ensure that the parallax measurements will be sensitive to a
broad class of events. We also consider the time of year the
observations are made, which, as we show, is a critical
parameter for bulge observations. As we discuss in it is° 2.4,
predominantly for this reason that the analysis of bulge
observations is substantially more complicated than that of
LMC observations. The reader may wish to review

& Gould in order to become familiar withBoutreux (1996)
a similar problem in a simpler setting.

2. MEASURING ¿8
The ability to measure is dependent on a number of¿8

di†erent parameters, several of which are tied together in
intricate ways. In this section, we deÐne these parameters
and use a qualitative comparison between observations
toward LMC and observations toward the bulge to explain
how these parameters a†ect measurement of the projected
velocity. In we justify these ideas mathematically. We° 3
quantify the ability to measure by introducing the degen-¿8
eracy breaking fraction (DBF). The DBF can be thought of
as the percentage of events for which the projected velocity

can be measured to an accuracy of ¹10% for a speciÐed set
of the independent parameters.

In order to measure the projected velocity, one must be
able to break the degeneracy between the four possible solu-
tions. We formulate a constraint (derived from the di†er-
ence in inverse timescales) and discard those solutions
which do not obey this constraint. We require that those
solutions allowed by the constraint have fractional errors
which are small and are close enough that their di†erence is
unimportant. If these requirements are met, we consider the
degeneracy broken. We discuss the DBF quantitatively
in ° 2.3.

2.1. Constraint Condition
We distinguish the four discrete solutions by means of a

constraint on the observables, *t, *b, and *u. Here
*u4 u@[ u is the di†erence in inverse timescales between
the satellite and Earth. Those solutions that are disallowed
by the constraint at the 3 p level are distinguishable. As we
show below, the ability to break the degeneracy is compli-
cated by the fact that the constraint coefficients are strong
functions of the time of year.

The constraint is (Gould 1995a)

u
A

u*t ] u
M

*b[ r *u\ 0 , (2.1)

where u is the relative Earth-satellite velocity projected onto
the plane of the sky, and are the components of uu

M
u
Aperpendicular and parallel to r, and r \ o r o. In order to

derive expressions for and r, we deÐne a as the angleu
M
, u

A
,

between the source vector and the south ecliptic pole, ands8
t as the phase of the orbit such that when t\ 0, the pro-
jected displacement vector r is most closely aligned with sü .
We deÐne yr~1, and R\ o R o as the magnitude of)

^
\ 2n

the Earth-satellite separation vector. The geometry is
shown schematically in Using these deÐnitions, weFigure 1.
Ðnd

r \ R[1 [ sin2 a cos2 t]1@2 ,

u
M

\ [)
^

R
R
r

cos a , (2.2)

u
A

\ [)
^

R
R
r

sin2 a
sin (2t)

2
.

Note that in the sign of was incorrectlyGould (1995a) u
Agiven as positive. We now recast the constraint equation in

the form

;
i/1

3 a
i
a
i
\ 0 , (2.3)

where are the coefficients of the constraint, and are thea
i

a
ievent observables

a
i
\ (*t, *b, *u) . (2.4)

Using this, we Ðnd the simplest form for the constraint
coefficients is

a
i
\
C
)

^
u sin2 a

sin (2t)
2

, )
^

cos a, (1[ sin2 a cos2 t)
D

.

(2.5)

In order to break the degeneracy, the constraint equation
must distinguish between the four degenerate solutions(2.3)
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FIG. 1.ÈGeometry of the orbits of Earth and the satellite. Note in
particular the angle t, deÐned as the angle such that when t\ 0, the
projected displacement vector r is most closely aligned with the line of
sight.

at the 3 p level. But, as we have shown above, the constraint
coefficients are dependent on a and t, the line of sight ofa

iobservations and the phase of the orbit. Furthermore, from
equations and we see that the vector displacement(1.3) (2.2),
*x is a function of a and t. Thus, because *x 4 (u*t, *b),
the event observables are also functions of a and t. All ofa

ithese contributions are obviously difficult to disentangle,
and thus it is not a straightforward matter to describe the
conditions under which the constraint canequation (2.3)
break the degeneracy.

2.2. Fractional Error
We deÐne the fractional di†erence as the di†erence

between the allowed solution and the true solution, divided
by the true solution. In order that the degeneracy be
broken, we require that the fractional errors in the allowed
solutions be less than 10%. The behavior of the fractional
errors is easier to understand than the behavior of the con-
straint. Roughly speaking, as *x decreases, the fractional
errors rise. Thus, from we can see that as requation (1.3)
decreases, or as increases, the fractional errors rise. Fromr8

e

we see that the projected Earth-satelliteequation (2.2),
separation, r, is a function of direction of the source, a, and
the phase of the orbit, t. Therefore these parameters a†ect
the fractional error and thereby a†ect the DBF.

2.3. DBF and Errors
We deÐne the DBF as the fraction of events for which the

degeneracy can be broken for a speciÐed set of parameters.
We consider that the degeneracy is broken if the di†erence
between all allowed solutions and the true solution is less
than 20% of the true solution, and the fractional error in *x
of each allowed solution is less than 10%. In principle, it
could be difficult to characterize the errors in the DBF
precisely. This is because there are two distinct types of
errors that must be considered. The Ðrst is an intrinsic error
that arises from the uncertainty in the values of each distinct
solution. This error is approximately Gaussian distributed.
The second error is characterized by two discrete allowed
solutions and hence is highly non-Gaussian. Taken
together, these errors cannot be described simply.

We would like to be able to characterize our errors as
10% at the 1 p level. We then consider all possible events
with 10% fractional error but with multiple allowed solu-
tions. If two allowed solutions are separated by 20%, then
the 1 p error contour is strongly perturbed by the presence
of a second solution, while the 3 p contour is barely a†ected.
On the other hand, if the discrete solutions are 5% apart,
then even the 1 p contours are essentially una†ected. Thus,
at Ðrst sight, the threshold for the allowed separations of
distinct solutions appears to depend sensitively on the error
contour of interest. In practice, however, the DBF is very
nearly the same for 5% and 20% thresholds. See Figure 2.
In this paper we adopt 20%, which corresponds roughly to
focusing on the error contours at the 2 p level.

FIG. 2.ÈDegeneracy breaking fraction (DBF) as a function of t for
disk-bulge events (solid bold curve) and bulge-bulge events (dashed curve).
All other parameters are Ðxed at 2%), M \ 0.3nobs \ 20, (p

E
, p

S
)\ (1%,

and a \ 84¡. DBF is the fraction of events forM
_

, dsat \ 60¡, bmax \ 0.7,
which the allowed solutions di†er by less than 20%, and each of these has
intrinsic error less than 10%. Lower solid curve is the DBF as a function of
t when allowed solutions di†er by less than 5%, and each has intrinsic
error less than 10%.
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2.4. L MC versus Bulge
Observations toward the Galactic bulge are markedly

di†erent from those toward the LMC. For observations
toward the bulge, the results are complicated by the fact
that the ability to break the degeneracy is a strong function
of the time of year ; this is not the case for observations
toward the LMC.

For observations toward the LMC, a D 0, and from
we Ðnd r \ R, andequation (2.2) u

A
\ [R)

^
, u

M
\ 0.

These expressions are obviously independent of t. Using
the constraint coefficients becomeequation (2.5), a

i
\ (0,

1). Thus the ability to distinguish between the degener-)
^

,
ate solutions is independent of the phase of the orbit and
depends only on the photometric precision, the number of
observations per crossing time, and the Earth-satellite
separation. Given a certain set of parameters, it is therefore
possible to quantify the fraction of events for which the
degeneracy can be broken, regardless of the phase of the
orbit. Furthermore, because r does not vary with t, for any
given event the fractional errors are also constant through-
out the orbit.

The situation is considerably more complicated for bulge
observations. For this case, a D 90¡. From equation (2.2),
we Ðnd that the values of r and vary as a function of t.u

MTherefore the coefficients of the constraint equation (2.5),
and hence the ability of the constraint to distinguish
between the solutions, are a strong function of the phase of
the orbit. For example, consider BaadeÏs window, for which
a \ 84¡. For t\ 0 or 180¡, we can approximate the con-
straint equation as

*b^ [ *u
10)

^

, (2.6)

whereas for t\ 90¡ or 270¡,

*b^ [ 10 *u
)

^

. (2.7)

We can see from these relations the e†ect of t on the ability
of the constraint to distinguish between the degenerate
values of *b. For a speciÐed uncertainty in the value of *u,
the uncertainty in *b is 100 times less when t\ 0 or 180¡,
than when t\ 90¡ or 270¡. Thus we can expect that, in
general, it is easier to distinguish between the degenerate
solutions when t\ 0 or 180¡ than when t\ 90¡ or 270¡.
For intermediate values of t, we can interpolate the behav-
ior of the constraint accordingly.

For bulge observations, the intrinsic errors are also
strongly dependent on t. From we see that,equation (2.2)
for observations near a \ 90¡, the projected Earth-satellite
separation, r, varies approximately as sin t. Thus, from

for tD 0 or 180¡, the value of *x is com-equation (1.3),
paratively small, and therefore the fractional errors are
comparatively large, whereas for tD 90¡ or 270¡, the value
of *x is comparatively large, and thus the fractional errors
are comparatively small. As before, we can interpolate the
behavior of the fractional errors for intermediate values
of t.

The e†ects of t on the constraint condition and fractional
errors are in competition with each other. We therefore
expect the DBF, which is a combination of both of these
considerations, to have four minima: when the fractional
errors dominate, at t\ 0 or 180¡, and when the constraint

on *b is poor, at t^ 90¡ or 270¡. We expect the maximum
values of the DBF to occur where the fractional errors are
not dominant, yet the constraint still distinguishes between
the degenerate solutions reasonably well. In the next
section, we review these qualitative arguments in a more
precise form.

3. ERROR ANALYSIS

In this section we give an overview of the mathematical
analysis underlying the Monte Carlo code. For a more
complete description, we refer the reader to of° 2 Boutreux
& Gould much of the analysis given therein is(1996) ;
entirely applicable to the present considerations. The reader
who is primarily interested in the results can skip this
section entirely.

The Ñux F(t) from a microlensed star is a function of Ðve
parameters, b, u, B), with the form,a

i
\ (t0, F0,

F(t ; t0, b, u, F0, B) \ F0A[x(t ; t0, b, u)]] B , (3.1)

where is the unlensed Ñux, and B is the light from anyF0additional unlensed sources that are not resolved. The Ñux
from the satellite can also be described in this manner, by
Ðve additional parameters b@, u@, B@ ). Usinga

i
@\ (t0@ , F0@ ,measurements simulated by our Monte Carlo method, we

then Ðt the parameters by minimizing s2. By di†erentiating
s2 in the neighborhood of the solution, one can obtain c

ij
,

the covariance matrix of the for both Earth and thea
isatellite.

We assume that the Earth and satellite have the same
Ðlters, implying that and B\ B@. Each of theseF0 \F0@constraints can be written where are now;

i/110 a
i
a
i
\ 0, a

ithe 10 parameters for Earth and the satellite, and are thea
iconstraint coefficients. The constraint coefficients for F0\

are 0, 0, 1, 0, 0, 0, 0, [1, 0). We impose theseF0@ a
i
\ (0,

constraints on the 10 ] 10 covariance matrix forming ac
ij
,

new matrix c8
ij
,

c8
ij
\ c

ij
[;

l/1,k10 c
il
a
l
c
jk

a
k

;
m,n/110 c

mn
a
m

a
n

. (3.2)

Neglecting the relative Earth-satellite motion, we Ðnd
that there is a twofold degeneracy in the magnitude o*b o\

and another twofold degeneracy in the sign. Thus*b
B

,
there are four possible solutions, In our simulations,^*b

B
.

we know the true solution, which for the illustrations given
here we take to be or ([]) for short. However, we]*b~initially assume that only the magnitudes of b and b@ are
known, thus making all four possible values of *b equally
probable. We use the constrained covariance matrix, tocü

ij
,

form a new covariance matrix of the quantities *b,a
i
\ (*t,

*u) ; we call this new matrix Because there are fourc
ij
~`.

possible values of *b, we form four di†erent matrices c
ij
BB.

We then test to see if the solutions are distinguishable from
the true solution, using the constraint imposed by the rela-
tive motion of Earth and the satellite, equations (2.3)È(2.5).

The general form of s2 can be written as

s~`
2 \ (a2 db~`)2

;
m,n/13 c

mn
~` a

m
a
n
, (3.3)

where the are the coefficients from the constraint condi-a
i
Ïs

tion, and db~` is the di†erence between the true and trial
values of *b. Because s2 is a strong function of the phase of
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the orbit, it is not possible to give s2 in a simple form. It is
illuminating, however, to examine the form of s2 at the
values of t for which it is at maximum and minimum. For
t\ (90¡, 270¡), the constraint coefficients are

a
i
\ (0, )

^
cos a, 1) , (3.4)

and for t\ (0, 180¡),

a
i
\ (0, )

^
, cos a) . (3.5)

We deÐne where andq \ (pu/pb t
e
)

^
), pu \ c331@2te pb \

Using these expressions, and assuming (as is generallyc221@2.the case), that the o†-diagonal covariances are(c
ij
, i D j )

small, the equation for s2 can be written for each case as

smin2 \ s2(90¡, 270¡) \ db/pb
1 ] (q/cos a)2 ,

smax2 \ s2(0, 180¡) \ db/pb
1 ] (q cos a)2 .

(3.6)

For typical events, q D 6 for the solutions ; this value^*b~is roughly independent of t.
Note that a/q)2 (for typical timescales).smin2 /smax2 D (cos

Thus for observations toward the bulge, a ^ 84¡, s2 can
vary by a factor of 102È104 over the course of the orbit.

We calculate the s2 for all four solutions, and consider
only those solutions for which s2¹ 9. We then calculate the
intrinsic error for these allowed solutions. The fractional
error in the scalar solution can be approximated by
S(d *x)2T1@2/*x, where again *x 4 (u*t, *b) \ (a1, a2),and *x \ o*x o. Using the analog of equation (3.2),
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we apply the to c~` to form where isconstraint (2.3) c8~`, a
inow given by and *b, *u). In termsequation (2.5), a
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\ (*t,

of the fractional error becomesc8
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i
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(a1)2] (a2)2
. (3.8)

From this we can see that as the quantities become(a1, a2)small, the fractional error in the solutions rise. Recall that
for tD 0, the projected Earth-satellite separation is small
(relative to the true separation), and therefore *x is small.
Thus the intrinsic errors in the solutions become more
important near t\ 0.

We approximate the fractional error in the vector solu-
tion by S(d *x)2T1@2/*x. This can be written as

S(d *x)2T1@2
*x

\
Cc8 11~` ] 2c8 12~` ] c8 22~`

(a1)2 ] (a2)2
D

. (3.9)

4. BULGE AND DISK MODELS

In order to calculate the DBF using the Monte Carlo
simulation, we adopt appropriate models for the velocity
and density distributions of the disk and bulge of the Milky
Way.

For the density distributions, we choose a Bahcall model
for the disk. For the bulge, we adopt a ““ revised ÏÏ COBE
model. This model uses a barred bulge density distribution

for the outer parts of the bulge (r [ 0.7 kpc) and a Kent
model for the inner part of the bulge. For a more detailed
description, see Table 3 from & GouldHan (1995).

We assume the velocity distributions to be Gaussian,
with mean velocity and velocity dispersion p. For thev6 ,
disk, we use 220, 0) ; with dispersions of(v6

x
, v6

y
, v6

x
) \ (0, (p

x
,

30, 20) km s~1. For the bulge,p
y
, p

z
) \ (40, (v6

x
, v6

y
, v6

x
)\

(0, 0, 0), while 82.5, 66.3) km s~1.(p
x
, p

y
, p

z
)\ (110,

The motion of the Sun is also taken into account, and is
231, 16) km s~1 & Binney(v

x
, v

y
, v

z
) \ (9, (Mihalas 1981).

There are two distinct types of events that are seen
toward the bulge. These are bulge-bulge events, where a
bulge star is being lensed by bulge lens, and disk-bulge
events, where a bulge star is being lensed by a disk lens.
These two situations produce dissimilar events, and we
therefore consider them separately.

For disk-bulge events, the position of the source star, dos,is conÐned to a relatively narrow range as compared to
the range of possible values for Thus we can approx-dol.imate the location of the source stars as being Ðxed at the
galactocentric radius, kpc. The frequency of lensingR0 \ 8
events scales as where v is theo(r

l
)r
e
vP o(r

l
)[z(1 [ z)]1@2v,

transverse velocity of the lens, is the distance of the lensr
lfrom the Galactic center (for lines of sight near the Galactic

center, and is the mass density at Thus tor
l
^ dls), o(r

l
) r

l
.

simulate an event, we draw the distance to the lens random-
ly from the probability distribution Theo(r

l
)[z(1 [ z)]1@2.

velocities of the lens and the source are then drawn random-
ly according to the parameters described above, and the
transverse velocity calculated. We weight the DBF by the
transverse speed in order to include its e†ect on the event
rate.

For bulge-bulge events, the frequency of lensing events
depends on the mass density at the position of the source,
the mass density at the position of the lens, the size of the
Einstein ring, and the transverse velocity of the lens. In
addition, as the distance from the observer increases, the
volume element along the line of sight also increases, and
therefore so does the total number of stars. Thus the event
rate scales as Here is the distance of theo(r

s
)o(r

l
)r
e
dos2 v. r

ssource from the Galactic center, and provides the contri-dos2bution due to the increasing volume element. Thus, the
source-lens pair position is drawn randomly from(dos, dol)the distribution The resulting DBFo(r

s
)o(r

l
)[z(1 [ z)]1@2dos2 .

is weighted by the transverse velocity, as above.

5. MONTE CARLO

For the simulation, we assume that the observations
begin when the source enters the Einstein ring radius as
seen from Earth. The observations continue until the
source-lens separation is as seen from both Earth andº3r

ethe satellite. The impact parameter, b, is either Ðxed, or
chosen randomly in the range 0 \ b \ 0.7. This range of b
is consistent with that of observed microlensing events.
Those events for which the time of maximum magniÐcation
for the satellite has already passed when the observations
begin, that is, (1[ b2)1@2\ u *t, are considered unre-
solvable. Those events for which b@[ 1.5 are also con-
sidered unresolvable.

The four possible solutions are considered separately,
and the s2 calculated for each. Those solutions for which
s2[ 9 are distinguishable from the true solution and are
therefore unallowed. We then determine if the allowed solu-
tions are sufficiently similar that it is unimportant to break
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the degeneracy, and if the fractional errors in the solutions
are intolerably large. The scalar di†erence between the solu-
tions is given by

d(*x) \ o*x oallowed[ o*x otrue , (5.1)

whereas the vector di†erence is given by

d(*x) \ o*xallowed [ *xtrue o. (5.2)

If the di†erence between all allowed solutions and the true
solution is less than 20% of the true solution, and if the
fractional error in *x of each allowed solution is less than
10%, we consider that the degeneracy is broken. For each
set of parameters, the Monte Carlo simulation was run 5000
times, resulting in errors of less than 1%.

6. OBSERVATIONAL CONSIDERATIONS

Because the bulge is located at ecliptic angle a D 90¡,
there will be times of the year that observations will be
impossible, due to the position of the Sun. To quantify this
e†ect, we deÐne an allowed range of the ecliptic longitude,
", for the Earth and the satellite. When the position of
Earth or the satellite is within this range, observations are
considered impossible. The full width of this range is chosen
to be 90¡ (3 months) for Earth, and 60¡ (2 months) for the
satellite. In our simulations, we consider lines of sight
toward the bulge, for which "\ 270¡. The forbidden ranges
for Earth and satellite are then

90¡ [ 45¡ ¹ "
E
¹ 90¡ ] 45¡ ,

90¡ [ 30¡ ¹ "
S
¹ 90¡ ] 30¡ . (6.1)

Note that "\ 0 is the vernal equinox. The time of the year
when either Earth or the satellite is within the forbidden
range is dependent on the Earth-satellite separation, dsat.For the forbidden ranges of Earth and satellitedsat ¹ 75¡,
overlap. Conversely, for the forbidden ranges aredsat º 75¡,
separated by a gap of Thus values of*"\ dsat [ 75¡.

are somewhat less desirable due to the fact thatdsatº 75¡
the times of year when observations are possible are
separated into two ranges, thereby increasing the probabil-
ity that the observations of an event will be foreshortened
due to Earth or the satellite moving behind the Sun. We will
consider this issue more fully in when we discuss the° 7.1,
optimal Earth-satellite separation.

7. RESULTS

There are eight parameters that a†ect the degeneracy
breaking fraction ; a, the angle between the source and the
south ecliptic pole ; t, which is related to the phase of the
orbit ; and the photometric precisions of the Earthp

E
p
S
,

and satellite observations, respectively ; b, the impact
parameter as seen from Earth ; the Earth-satellitedsat,separation distance ; M, the mass of the lens ; theNmeas,number of measurements per Einstein ring crossing time.

For all of the parameters (neglecting t for the moment),
we choose typical values that we consider to be realistic.
These values are used in all simulations unless varied explic-
itly. A value of corresponds to frequency of mea-Nmeas\ 20
surements in the range of 0.5 to 4.0 days for typical events.
We choose 2%) as our photometric preci-(p

E
, p

S
) \ (1%,

sion. The photometric precision obviously depends on the

magnitude of the source star ; these are typical values of
photometric precision for giant sources. We choose
M \ 0.3 as a representative mass of lenses for obser-M

_vations toward the bulge. The default Earth-satellite
separaion is (2 months). The maximum impactdsat \ 60¡
parameter is set at For BaadeÏs window,bmax\ 0.7.
a \ 84¡.

Observations toward the bulge are unique in that they
are a strong function of the time of year, as discussed above.
Due to this intrinsic dependence of the DBF on t, we
include t as a free parameter in all further calculations.

In order to elucidate the e†ect of the time of the year on
the DBF, we present in the DBF against t for ourFigure 2
Ðducial parameters. Included in are the results forFigure 2
both the disk-bulge and bulge-bulge cases. Also included is
the DBF against t for a fractional di†erence threshold of
5% (see Within the limits of the Monte Carlo errors,° 2.3).
we Ðnd that in the range 0 ¹ t¹ 180¡ the curve is equiva-
lent to that for the range 180¡ ¹ t¹ 360¡. We utilize this
symmetry by restricting the range of t in further calcu-
lations to 0 ¹ t¹ 180¡. There is, however, a slight asym-
metry around t\ 90¡ (and similarly around t\ 270¡). For
the speed degeneracy, this asymmetry makes no signiÐcant
contribution, and we disregard it. We will consider this
e†ect more fully in where we discuss the velocity degen-° 8,
eracy. For tD 0, 180¡, we see from that theequation (2.2)
projected Earth-satellite velocity is at a maximum, and as a
result the constraint given in is very e†ectiveequation (2.1)
in distinguishing between the possible solutions. The pro-
jected Earth-satellite separation is at a minimum, however,
driving up the fractional errors in the solutions. Thus near
tD 0, 180¡, the DBF is dominated by the intrinsic errors.
As t increases, the projected Earth-satellite velocity
decreases as t increases, and as a result the constraint
becomes less e†ective in distinguishing between the degen-
erate solutions. For t^ 20¡ the DBF is at a maximum; the
constraint still distinguishes between the solutions for a
majority of the events, while the intrinsic errors are typically
¹10%. When t\ 90¡, the projected Earth-satellite separa-
tion is equal to the true Earth-satellite separation, and the
intrinsic errors are typically ¹5%. The projected Earth-
satellite velocity is at a minimum at t\ 90¡, and the con-
straint distinguishes poorly among the solutions (as
compared to tD 0). Thus, at t\ 90¡, the DBF is domi-
nated by the difficulty in distinguishing between the individ-
ual solutions. The analysis of the DBF curve in the range
0 ¹ t¹ 90¡ is identical to that for the rest of the orbit.

The analysis of bulge-bulge events is exactly the same as
for disk-bulge events. We can understand how disk-bulge
and bulge-bulge events di†er by considering the typical size
of the projected Einstein ring in each case. For disk-bulge
events, the median value for the distance to lens is dolD 5
kpc, and the distance to the source is kpc, thus, fromdos\ 8
equations and we Ðnd that, for disk lenses,(1.2) (1.4), r8

e
^

6.0AU(M/0.3 For bulge-bulge events, kpc,M
_
)1@2. dolD 7

kpc, so that ThereforedosD 9 r8
e
^ 9.0AU(M/0.3 M

_
)1@2.

the typical size of the projected Einstein rings will be larger
for bulge-bulge events by a factor of D1.5. This will a†ect
the value of the DBF in two distinct ways. For phases of the
orbit such that tD 0, where intrinsic errors dominate, the
DBF for bulge-bulge events will be smaller than that for
disk-bulge events, due to the larger typical values of (andr8

etherefore larger fractional errors). For phases of the orbit
such that tD 90¡, we expect that the DBF for bulge-bulge
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events will be, in general, higher than the corresponding
DBF for disk-bulge events, due to the fact that the degener-
ate *b solutions are better separated in the case of the
bulge-bulge events than those for disk-bulge events.

For disk-bulge events, we Ðnd that, for our Ðducial
parameters, it is possible to resolve greater than 87% of the
events during most times of the orbit, and greater than 70%
of the events over the entire orbit. For bulge-bulge events,
we Ðnd values of greater than 90% for most of the orbit and
greater than 60% for the entire orbit.

represents the DBF as a function of t and b forFigure 3
disk-bulge events. For this Ðgure, b is not randomly chosen,
but rather held Ðxed for each point in the curve. Contrary
to the results for the LMC & Gould where(Boutreux 1996),
it was found that events with b º 0.7 are much harder to
resolve, there is no one value of b for which the DBF drops
below a certain value. In fact, for t\ 90¡, even those events
for which b D 0.9 are resolvable 80% of the time, whereas
less than 20% of these events are resolvable when t\ 10¡.
In other simulations, we choose b randomly between
0 ¹ b ¹ 0.7 because the majority of events seen so far have
values of b that are in this range, but we emphasize that,
under the proper conditions, even those events that have
b [ 0.7 may still be resolvable.

represents the DBF as a function of t and M forFigure 4
disk-bulge events. For the mass, we focus on the range
0.01È1 this corresponds to the best estimate of theM

_
;

range of masses for events already observed. For our Ðdu-
cial value, M \ 0.3 the DBF is D90% for the majorityM

_
,

of the orbit. For disk-bulge events, the projected Einstein
ring radius is Consider Ðrstr8

e
^ 6.0AU(M/0.3 M

_
)1@2.

phases of the orbit for which tD 0, where the fractional
errors dominate the behavior of the DBF. For these values
of t (and RD 1AU), the projected Earth-satellite separa-
tion is r D 0.1AU. The fractional errors become important
when *x > 1. A quick calculation shows that, for masses
greater than M º 0.1 the magnitude of the vector dis-M

_
,

FIG. 3.ÈDBF as a function of t and b for disk-bulge events. Labeled
bold contour represents a DBF of 90%. Other bold contours represent
DBFs of 50% and 10%. Intermediate contours are spaced at intervals of
10%. All other parameters are held Ðxed at our Ðducial parameters, as in
Fig. 2.

FIG. 4.ÈDBF as a function of t and log for disk-bulge events.M/M
_Contours are the same as those in Fig. 3.

placement is and thus the fractional errors*x \ r/r8
e
\ 0.1,

begin to dominate, thereby lowering the DBF. For masses
M ¹ 0.03 and thus the fractional errorsM

_
, *x \ r/r8

e
D 1,

are unimportant, and the DBF is greater than 90%. Con-
sider now phases of the orbit for which tD 90¡. For the
range of masses considered here, *x º 1, and thus the frac-
tional errors are never large. Considering increasingly
smaller masses, we Ðnd that more of the events are unre-
solvable, due to the fact that the projected Earth-satellite
separation, r, becomes increasingly larger than the Einstein
ring radius, and the event as seen from the satellite willr8

e
,

more frequently fall outside of the Einstein ring. Thus the
DBF drops rapidly from 90% to 40% from M \ 0.3 toM

_M \ 0.03 M
_

.
represents the DBF as a function of t and B, theFigure 5

ecliptic latitude (B\ a [ 90¡), for disk-bulge events. For
this Ðgure, we hold the ecliptic longitude Ðxed at "\ 270¡,

FIG. 5.ÈDBF as a function of t and B for disk-bulge events. Contours
are the same as those in Fig. 3.
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and vary B in the range [10¡ ¹ B¹ 10¡. In galactic coor-
dinates, this corresponds to the range (l, b) \ ([2¡, [5¡)
[ (16¡, 4¡). For BaadeÏs window, B\ [6¡, the DBF is
greater than 90% for the entire orbit. Note that for B\ 0, it
is impossible to break the degeneracy. This is due to the fact
that, at B\ 0, the constraint given in equation (2.1)
becomes and thus;

i/i
3 a

i
a
i
\ *u ] )

^
u*t cot t\ 0,

does not constrain the value of *b at all. Similarly, for small
values of oB o, the value of *b is poorly constrained. Thus,
there is a range of ecliptic latitude, oB o\ 1¡, where the DBF
is less than 40% for a majority of the orbit ; this range
should be avoided when making observations. Lines of
sight where oB o[ 2¡ are optimal.

represents the DBF as a function of t andFigure 6 dsat,the Earth-satellite separation, for disk-bulge events. Also
shown is the range of t for which observations are impossi-
ble due to the position of the Sun. This range is a function of

thus by considering simultaneously how this range anddsat ;the DBF vary as function of we can Ðnd an optimaldsat,Earth-satellite separation. For the range wheredsat ¹ 30¡,
observations are impossible is smallest (D90¡), but the DBF
is never greater than 80%. For the observa-dsat \ 60¡,
tionally forbidden range is only slightly larger (D130¡),
and the DBF is greater than 90% for the majority of the
orbit. For the forbidden ranges for Earth and thedsat [ 75¡,
satellite begin to diverge, and the times of the orbit where
observations are possible become separated. Thus, although
the DBF continues to improve as increases, there is andsatincreased likelihood for these ranges that an observation
will be foreshortened due to Earth or the satellite moving
behind the Sun. We consider 20¡È75¡ to be the optimal
range for the Earth-satellite separation. For thedsat \ 20¡,
DBF is unacceptably low.

We also considered the dependence of the DBF on the
parameters b, M, B, and for bulge-bulge events. We Ðnddsatthe results to be almost identical to those for disk-bulge
events, with variations of at most D10%, when the phase of
the orbit is tD 0 or 180¡, but typically the variations are

FIG. 6.ÈDBF as a function of t and for disk-bulge events. Thedsaty-shaped area of the graph between the heavy lines represents the range of
t for each value of where observations are impossible due to thedsatposition of the Sun. The other contours are the same as those in Fig. 3.

much smaller. For reasons discussed above, the DBF is, in
general, somewhat higher when tD 90¡, and somewhat
lower when tD 0 for bulge-bulge events. As with disk-
bulge events, we Ðnd that there is no natural cuto† value for
b ; for our Ðducial value of M \ 0.3 the DBF is D90%M

_
,

for the majority of the orbit ; for BaadeÏs window, B\ [6¡,
the DBF is greater than 90% for the majority of the orbit ;
and the optimal range of is 20¡È75¡. Overall, the di†er-dsatences between bulge-bulge and disk-bulge events are minor,
and will not signiÐcantly a†ect the observations.

8. THE VELOCITY DEGENERACY

In the previous section, we discussed the observational
requirements of a satellite to break the twofold degeneracy
in the projected speed, While measuring the projectedv8 .
speed is helpful in distinguishing between component popu-
lations, a measurement of the projected velocity, would¿8 ,
provide a more conclusive distinction.

In this section we present the results for breaking the
fourfold velocity degeneracy, adopting the Ðducial param-
eters used in the previous section : Nmeas\ 20, (pE, p

S
) \

(1%, 2%), M \ 0.3 (2 months),M
_

, dsat \ 60¡ bmax\ 0.7,
and a \ 84¡. We calculate the di†erence between the
allowed solutions using and the fractionalequation (5.2),
error in each allowed solution using As in theequation (3.9).
previous section, if the intrinsic errors in all allowed solu-
tions is less than 10%, and if the di†erence between the
allowed solutions is less than 20% of the true solution, we
consider the degeneracy to be broken. Here we present the
results for both disk-bulge and bulge-bulge type events.

represents the vector DBF as a function of t forFigure 7
disk-bulge events and bulge-bulge events. The scalar DBF
is also shown for comparison. We Ðnd that for disk-bulge
events the DBF is greater than D40% for the entire orbit,
and greater than D55% for about half the orbit. We Ðnd
that for bulge-bulge events the vector DBF is overZ30%
the entire orbit, and over half the orbit. In general,Z40%
the analysis of the vector DBF curve is the same as that for

FIG. 7.ÈVector DBF as a function of t for disk-bulge events (bold solid
curve) and for bulge-bulge events (bold dashed curve). Also shown is the
corresponding scalar DBF. All other parameters are Ðxed at nobs \ 20,

2%), M \ 0.3 and a \ 84¡.(p
E
, p

S
) \ (1%, M

_
, dsat \ 60¡, bmax \ 0.7,
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scalar DBF curve : there are minima at t\ 0 and 180¡
where the intrinsic errors dominate the DBF, and a
minimum at t\ 90¡ where the ability of the constraint to
distinguish between the degenerate solutions dominates the
DBF. There are two unique features of the vector DBF,
however. The Ðrst is that the minimum value of the DBF
occurs at tD 90¡, where the limiting factor is the ability to
distinguish between the solutions. In the scalar case, dis-
tinguishing between the solution is unimportant,^*b~due to the fact that these solutions are essentially the same.
To break the vector degeneracy, however, one must dis-
tinguish between the solutions, which is often diffi-^*b~cult when tD 90¡, where the constraint is the least e†ective.
We also Ðnd a signiÐcant asymmetry in the vector DBF
curve around t\ 90¡, the largest asymmetry being a di†er-
ence of D15% between the DBF at t\ 15¡ and 165¡. This
asymmetry is caused by fact that lenses in the disk have a
preferred direction of motion, and, to a lesser extent, from
the motion of the Sun around the Galactic center. For a
given event, where is the component of the*bP v8

M
, v8

Mtransverse velocity perpendicular to the projected Earth-

satellite separation, r. As t changes, the direction perpen-
dicular to the projected Earth-satellite separation, r. As t
changes, the direction perpendicular to r changes with
respect to the preferred direction of disk. Thus a preferred
direction for will translate into an asymmetry in the dis-¿8
tribution of values of *b around t\ 90¡. SpeciÐcally, the
values of *b are typically smaller when t\ 90¡ than when
t[ 90¡. Therefore, because the solutions are, on^*b~average, more closely spaced when t\ 90¡, the constraint
is less likely to distinguish between them, and the DBF is
smaller. This asymmetry does not arise in the scalar DBF
curve because it is not necessary to distinguish between the

solutions. Note the smaller asymmetry around^*b~t\ 90¡ for bulge-bulge events. This is due to the fact that,
in bulge-bulge events, there is no preferred direction of
motion of the lens as there is in disk-bulge events.

We would like to thank C. Han for making helpful sug-
gestions. This work was supported in part by grant AST
94-20746 from the NSF and by grant NAG5-3111 from
NASA.

APPENDIX

GENERALIZED SATELLITE ORBITS

For our Monte Carlo simulations, we assumed that the satellite is in an Earth-like orbit, and that both the orbit of Earth
and the orbit of the satellite are circular. In reality, a satellite launched from Earth will not be in an Earth-like orbit, but will
actually be in an elliptical orbit. This implies that the true velocity of the satellite will di†er from the assumed velocity for each
value of the Earth-satellite separation. In this Appendix, we show that, for a reasonably small deviation from a circular orbit,
the di†erence between the true and assumed Earth-satellite velocity will be small, and that therefore our results are sufficiently
generic to be applicable to a large class of orbits.

When launched from Earth, the satellite will have some velocity with respect to Earth. We assume the direction of the
satelliteÏs velocity is parallel to that of Earth (i.e., the orbit of the satellite is in the plane of EarthÏs orbit, and the satelliteÏs
perihelion is at the distance of Earth). That is, We assume that the orbit of Earth is circular ; therefore, avsat \ v

^
] dv.

nonzero value of dv implies that the satellite will have an elliptical orbit with a period di†erent from that of EarthÏs and it will

FIG. 8.ÈEarth-satellite velocity as a function of time from launch. Shown are the Earth-satellite velocity assuming a circular orbit (dotted line), and the
real Earth-satellite velocity (solid line).
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drift away from Earth over time. Using KeplerÏs laws, one Ðnds that the di†erence between the period of Earth and the
satellite is given by

dP
P
^

\ 3 dv
v
^

. (A1)

In we determined that the optimal Earth-satellite separation was in the range 20¡È75¡, or months. We° 8.2, 23 monthÈ212would like the Earth-satellite separation to vary in this range over the course of D3 yr. For deÐniteness, we choose the
Earth-satellite separation to be 3 months after 3 yr, i.e., Thus, from and using km s~1dP/P

^
D 1/12. equation (A1), v

^
\ 30

we Ðnd dvD 0.8 km s~1. The orbit is nearly circular, with an eccentricity of e\ 0.06.
Using the parameters of the orbit, we can now calculate the di†erence between the true value of the Earth-satellite velocity

and the value used in our simulation (which assumed a circular, Earth-like orbit for the satellite). We set t \ 0 as the time of
launch, and at each point in time, we calculate the true Earth-satellite separation and velocity. We then calculate what the
value of the Earth-satellite velocity would be if the satellite were in an Earth-like orbit, separated from the Earth by an
amount equal to the true Earth-satellite separation. This corresponds to the velocity used in our Monte Carlo code. Figure 8
shows the Earth-satellite velocity for both cases in the range 0 ¹ t ¹ 3 yr. Focusing on t [ 0.5 yr, we Ðnd that the true velocity
is systematically smaller than the assumed velocity by D6%, but varies from being D18% smaller to D6% larger.

Here we have calculated the di†erence between the true Earth-satellite velocity and that assuming an Earth-like orbit for
the satellite. For the purposes of degeneracy breaking, however, it is the projected Earth-satellite velocity that is important. In
the case of an elliptical orbit, the magnitude of the projected Earth-satellite velocity is dependent on the time of year in which
the satellite is launched. Since we do not know a priori when this will be, we cannot Ðnd precisely the di†erence between the
true and assumed projected Earth-satellite velocity. This is not strictly necessary, however, since the di†erence between the
projected velocities will be of the same order as the di†erence between the space velocities. Since the ability to break the
degeneracy is roughly proportional to the projected Earth-satellite velocity, we conclude that the error introduced in our
simulation by assuming an Earth-like orbit for the satellite is of order the error in the Earth-satellite velocity, D6%.

We conclude that the results obtained in our simulations are applicable to likely satellite orbits. If, however, one would like
to consider satellite orbits that are either highly inclined to EarthÏs orbit, or highly eccentric, then our results are not
applicable. These situations will need to be analyzed individually.
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