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IDENTIFYING LENSES WITH SMALL-SCALE STRUCTURE. I. CUSP LENSES
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ABSTRACT

The inability of standard models to explain the flux ratios in many four-image gravitational lens systems
has been presented as evidence for significant small-scale structure in lens galaxies. That claim has generally
relied on detailed lens modeling, so it is both model dependent and somewhat difficult to interpret. We
present a more robust and generic method for identifying lenses with small-scale structure. For a close triplet
of images created when the source lies near an ideal cusp catastrophe, the sum of the signed magnifications
should exactly vanish, independent of any global properties of the lens potential. For realistic cusps, the
magnification sum vanishes only approximately, but we show that it is possible to place strong upper bounds
on the degree to which the magnification sum can deviate from zero. Lenses with flux ratio  anomalies,” or
fluxes that significantly violate the upper bounds, can be said with high confidence to have structure in the
lens potential on scales of the image separation or smaller. Five observed lenses have such flux ratio
anomalies: B2045+265 has a strong anomaly at both radio and optical /near-IR wavelengths; B0712+4472
has a strong anomaly at optical/near-IR wavelengths and a marginal anomaly at radio wavelengths; IRXS
J1131—1231 has a strong anomaly at optical wavelengths; RX J09114+0551 appears to have an anomaly at
optical /near-IR wavelengths, although the conclusion in this particular lens is subject to uncertainties in the
typical strength of octopole density perturbations in early-type galaxies; and finally, SDSS J0924+0219 has a
strong anomaly at optical wavelengths. Interestingly, analysis of the cusp relation does not reveal a
significant anomaly in B14224-231, even though this lens is known to be anomalous from detailed modeling.
Methods that are more sophisticated (and less generic) than the cusp relation may therefore be necessary to
uncover flux ratio anomalies in some systems. Although these flux ratio anomalies might represent either
millilensing or microlensing, we cannot identify the cause of the anomalies using only broadband flux ratios
in individual lenses. Rather, the conclusion we can draw is that the lenses have significant structure in the lens
potential on scales comparable to or smaller than the separation between the images. Additional arguments
must be invoked to specify the nature of this small-scale structure.

Subject headings: cosmology: theory — dark matter — galaxies: formation — gravitational lensing —
large-scale structure of universe

On-line material: color figures

1. INTRODUCTION ratios between the images, at least in lenses with four or
more images,® have long resisted explanation.

Until recently, the persistent problem with flux ratios in
four-image lenses (e.g., Kent & Falco 1988; Falco, Lehar, &
Shapiro 1997; Keeton, Kochanek, & Seljak 1997) received
little attention, perhaps because the number of four-image
lenses was relatively small and because it seemed possible to
appeal to electromagnetic (nongravitational) effects such as
extinction by dust or scattering by hot gas. However, the
number of lenses with apparently anomalous flux ratios is
growing rapidly (e.g., Inada et al. 2003; Sluse et al. 2003;
Wisotzki et al. 2003). Moreover, direct evidence suggests
that electromagnetic effects, while present in some lenses,
cannot explain most of the anomalies (Falco et al. 1999;
Winn et al. 2001, 2002; Koopmans et al. 2003b). The
problem with flux ratios therefore appears to be real.

It also turns out to have interesting and important impli-
cations for astrophysics and cosmology. When Mao &

Gravitational lens modeling has had remarkable success
handling increasingly precise measurements (e.g., Barkana
et al. 1999; Patnaik et al. 1999; Trotter, Winn, & Hewitt
2000) and increasingly sophisticated data sets including
Einstein ring images (Keeton et al. 2000; Kochanek,
Keeton, & McLeod 2001) and/or stellar dynamical data
(Romanowsky & Kochanek 1999; Koopmans & Treu 2002,
2003; Treu & Koopmans 2002a, 2002b; Koopmans et al.
2003a). Lens modeling has even clarified the properties of
complex systems with more than one lens galaxy and/or
more than one background source (Cohn et al. 2001; Rusin
et al. 2001; Keeton & Winn 2003; Koopmans et al. 2003a).
However, the notable success has largely been restricted to
the number and configuration of lensed images. The flux
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Schneider (1998) made the first systematic analysis of the
flux ratio problem, they realized that the anomalies might
be attributed to gravitational effects omitted from standard
lens models, namely, small-scale structure in the lens galaxy.

6 The problem is less apparent in two-image lenses, mainly because the
limited number of constraints leaves more freedom in the models.



LENSES WITH SMALL-SCALE STRUCTURE. 1. 139

The key insight was that since flux ratios are determined by
second derivatives of the lens potential, they are much more
sensitive to small-scale structure than the image positions
(which are determined by first derivatives of the potential),
so models that lack small-scale structure might successfully
reproduce the image positions but fail to fit the flux ratios.

One possible source of small-scale structure is clumps of
dark matter of mass ~10°-10° M, left over from the hier-
archical galaxy formation process in the cold dark matter
(CDM) paradigm (Metcalf & Madau 2001; Chiba 2002;
Dalal & Kochanek 2002). This possibility has generated sig-
nificant interest because it relates to current questions about
the validity of CDM on small scales. The discrepancy
between the predicted abundance of dark matter clumps
and the observed abundance of dwarf galaxy satellites
around the Milky Way has been interpreted as a fundamen-
tal problem with CDM (Klypin et al. 1999; Moore et al.
1999), which may signal a need for new physics for the dark
matter (e.g., Spergel & Steinhardt 2000; Colin, Avila-Reese,
& Valenzuela 2000; Hu, Barkana, & Gruzinov 2000). Alter-
nately, the discrepancy may simply indicate poor under-
standing of the astrophysical processes that determine
whether or not a clump of dark matter hosts a visible dwarf
galaxy (Bullock, Kravtsov, & Weinberg 2000; Benson et al.
2002; Somerville 2002; Stochr et al. 2002; Hayashi et al.
2003). If lens flux ratios can be used to probe dark matter
clumps, that will provide the cleanest way to distinguish
these two very different hypotheses and, more generally, to
resolve the controversy about whether CDM does or does
not overpredict small-scale structure (e.g., Flores & Primack
1994; Moore 1994; Spergel & Steinhardt 2000; Debattista &
Sellwood 2000; de Blok, McGaugh, & Rubin 2001; Keeton
2001a; van den Bosch & Swaters 2001; Weiner, Sellwood, &
Williams 2001; de Blok & Bosma 2002; Kochanek 2003).
Early results indicate that the statistics of flux ratio anoma-
lies imply a clump population that agrees well with CDM
predictions and validates CDM (Dalal & Kochanek 2002;
Kochanek & Dalal 2003), but the importance of the
conclusion demands further study.

A second interesting possibility is that the small-scale
structure implied by flux ratio anomalies is simply stars in
the lens galaxy (Chang & Refsdal 1979; Irwin et al. 1989;
Wozniak et al. 2000; Schechter & Wambsganss 2002). In
this case, flux ratio anomalies offer a unique probe of the
relative contributions of stars and dark matter to the
surface mass density at the image positions (Schechter &
Wambsganss 2002), which would be interesting because the
amount of dark matter contained in the inner regions of
elliptical galaxies is still not well known (e.g., Gerhard et al.
2001; Keeton 2001a; Borriello, Salucci, & Danese 2003;
Rusin, Kochanek, & Keeton 2003a). Yet a third possibility
is that the small-scale structure is not localized like dark
matter clumps or stars but is more global like small disk
components in bulge-dominated systems, Fourier mode
density fluctuations, tidal streams, etc. (e.g., Mao &
Schneider 1998; Evans & Witt 2002; Quadri, Moller,
& Natarajan 2003; Moller, Hewett, & Blain 2003). If this is
the case, then lensing can be used to search for such struc-
tures whether they are traced by the luminous components
of galaxies or not.

These three disparate applications all rest on a common
foundation: the identification of lenses with flux ratio
anomalies that indicate small-scale structure. That identifi-
cation is most unambiguous when time variability (e.g.,

Wozniak et al. 2000; Schechter et al. 2003) or resolved spec-
tra of the images (e.g., Moustakas & Metcalf 2003; Wisotzki
et al. 2003) clearly indicate microlensing by stars in the lens
galaxy, or when the resolved shapes of the images indicate
structure on the scale of dark matter clumps (e.g., Metcalf
2002). Until such data become available for the majority of
lenses, however, we need a method to identify anomalies
using only broadband flux ratios. Besides, such a method
will be needed to select candidates for the expensive
follow-up observations (monitoring, spectroscopy, or
high-resolution imaging).

To date, the usual approach has been to use detailed lens
modeling to interpret broadband flux ratios and draw con-
clusions about, for example, the abundance of dark matter
clumps (e.g., Dalal & Kochanek 2002; Metcalf & Zhao
2002; Kochanek & Dalal 2003). This approach is vulnerable
to the criticism that the results depend on the sorts of lens
potentials used in the modeling. The argument has two
parts. First, many of the commonly used families of lens
potentials implicitly possess global symmetries, which lead
to invariant magnification relations that are * global ”” in the
sense that they involve all four images (Dalal 1998; Witt &
Mao 2000; Dalal & Rabin 2001; Hunter & Evans 2001;
Evans & Hunter 2002). If a fit is poor because the data fail
to satisfy these relations, that does not automatically consti-
tute a flux ratio anomaly; it may simply indicate that the
assumed relations are too restrictive and that small, unre-
markable deviations from the assumed symmetries are
needed. The conceptual difficulty here is that one is trying to
use global relations to draw conclusions about structure on
smaller, more local scales. The second part of the argument
is that there is a large difference in scale between the image
separations (~072-2") and the scales relevant for dark
matter clumps (~1073 arcsec) or stars (~10~° arcsec). If the
flux ratio anomalies are in fact due to structures that are
intermediate between these scales, then they may not neces-
sarily imply the presence of dark matter clumps or stars
(Evans & Witt 2002; Quadri et al. 2003; Moller et al. 2003).

To address the first part of the criticism, we seek a method
of identifying flux ratio anomalies that is local rather than
global, i.e., a method that is sensitive only to structures
smaller than the scales probed by the image positions. For-
tunately, one can do this by appealing to simple, generic
relations between the image magnifications that should be
satisfied for images in “fold” or “cusp” configurations
(defined in § 2). The magnification relations are derived
from local properties of the lens mapping and are in princi-
ple independent of the global mass model. They can be vio-
lated only if there is significant structure in the lens potential
in scales smaller than the separations between the images
(see Mao & Schneider 1998). In practice, however, the situa-
tion is complicated by the fact that the caustics in real lens
systems only approximate ideal folds and cusps in some
low-order expansion of the potential near the critical point;
higher order terms introduce deviations from the fold and
cusp geometries. Real lenses therefore need to obey the ideal
magnification relations only approximately. Because the
accuracy with which the relations should hold depends on
the distance of the images from the critical point and on
properties of the lens potential, it is not straightforward
to judge a priori the significance of an apparent violation.

Our goal is to understand the magnification relations in
realistic lens potentials and to determine how well they can
be used to identify flux ratio anomalies. In this paper we
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focus on cusp configurations because, as the highest order
stable singularities in lensing maps (see Schneider, Ehlers, &
Falco 1992; Petters, Levine, & Wambsganss 2001), cusps
are amenable to analytic study, and cusp configurations are
easy to identify.” We will address fold configurations in sub-
sequent work. We study the degree to which the ideal cusp
relation can be violated as a result of various properties of
the lens potential: the radial density profile, ellipticity, and
multipole density perturbations of the lens galaxy, and the
external tidal shear from the lens environment. Using both
analytic and numerical methods, we derive upper bounds
on the deviation from the ideal cusp relation for realistic
lens potentials that lack significant small-scale structure.
We then argue that finding larger deviations in observed
lenses robustly reveals flux ratio anomalies and indicates the
presence of some sort of small-scale structure.

We assert that, even though we adopt specific families of
lens potentials, our analysis is more general than explicit
modeling. One reason is that we have a better distinction
between global and local properties of the lens potential.
For example, a global m = 1 mode (i.e., nonreflection sym-
metry) would affect conclusions about anomalies in direct
modeling, but not in our analysis. A second reason is that
we consider quite general forms for the lens potential and
take care to understand which generic features affect the
cusp relation. A third point is that our results are less model-
ing dependent, less subject to the intricacies of fitting data
and using minimization routines. A fourth advantage of our
analysis is that, rather than simply showing that standard
models fail to fit a lens, it clearly diagnoses why. We believe
that these benefits go a long way toward establishing that
small-scale structure in lens galaxies is real and can be
understood.

We must address a question that is purely semantic but
nevertheless important: Where do we draw the line between
a normal “smooth” lens potential and * small-scale struc-
ture’? Taking a pragmatic approach, we consider
“smooth ” to mean any features known to be common in
(early-type) galaxies: certain radial density profiles, reason-
able ellipticities, small octopole modes representing
“disky” or “boxy” isophotes, and reasonable external
shears. We consider ‘“ small-scale structure ” to be anything
whose presence in early-type galaxies would be notable.
This can include stars (although stars are obviously abun-
dant in galaxies, detecting the gravitational effects of indi-
vidual stars is still interesting) and dark matter clumps,
which seem to have generated the most interest, but it may
also include tidal streams, massive or offset disk compo-
nents (see Quadri et al. 2003; Moller et al. 2003), large-
amplitude multipole density fluctuations (see Evans & Witt
2002), etc. We emphasize that our analysis, or indeed any
analysis that considers only the image positions and broad-
band flux ratios in individual lenses, cannot distinguish
between these types of small-scale structure. The most gen-
eral conclusion we can draw from flux ratio anomalies is
that the lens potential contains structure on scales compara-
ble to or smaller than the separation between the images.
Further data and analysis are required to determine the
nature of the small-scale structure (e.g., Wozniak et al.

7 A close triplet of images always indicates a cusp configuration, but a
close pair of images could be associated with either a fold or a cusp.

2000; Metcalf 2002; Kochanek & Dalal 2003; Moustakas &
Metcalf 2003; Schechter et al. 2003; Wisotzki et al. 2003).

The layout of the paper is as follows. We begin in § 2 by
reviewing quadruple imaging and introducing a way to
characterize four-image configurations quantitatively. (In
this paper we consider only four-image lenses.) In § 3 we dis-
cuss cusp image configurations and present the generic, uni-
versal relation that should be obeyed by the image
magnifications for sources near an ideal cusp. We then test
this ideal relation, first using analytic results for simple lens
potentials (§ 4) and then with Monte Carlo simulations of
realistic lens populations (§ 5). In § 6 we apply the cusp rela-
tion to observed lenses, using violations of the relation to
identify lenses that require small-scale structure. We offer
our conclusions in § 7. Two appendices present supporting
technical material. In Appendix A we derive the universal
relations between the image positions and magnifications
for sources near an ideal cusp. In Appendix B we obtain
exact analytic solutions of the lens equation for two families
of lens potentials, which can be used to obtain exact analytic
expressions for the realistic cusp relation.

2. CHARACTERIZING FOUR-IMAGE LENSES

Nineteen quadruply imaged lens systems have appeared
in the literature, and they are listed in Table 1. This count
includes only systems that have exactly four images of a
given source and where the images appear pointlike at some
wavelength. It includes the 10-image system B1933+503,
which is complex only because there are three distinct sour-
ces; none of the sources have an image multiplicity larger
than four (Sykes et al. 1998). By contrast, it excludes PMN
J0134—-0931 and B13594-154 because they have multiplic-
ities larger than four as a result of the presence of multiple
lens galaxies (Rusin et al. 2001; Keeton & Winn 2003; Winn
et al. 2003). One other lens, 0047—2808, is almost certainly
quadruply imaged as well (Warren et al. 1996, 1999;
Koopmans & Treu 2003), but its lack of pointlike images
makes it difficult to analyze with the usual techniques used
for pointlike systems.

Mathematically, quadruple imaging can be described in
terms of the critical curves and caustics of the lens potential.
(See the monographs by Schneider et al. 1992 and Petters
et al. 2001 for thorough reviews of lens theory.) Critical
curves are curves in the image plane where the lensing mag-
nification is formally infinite, and caustics are the corre-
sponding curves in the light source plane. The properties of
these curves can be studied with catastrophe theory; for our
purpose the important result is that the astroid-shaped caus-
tic that is associated with quadruple imaging has a generic
shape that leads to three generic configurations of four-
image lenses (see Fig. 1). Sources near a cusp in the caustic
produce “cusp” configurations with three of the images
lying close together on one side of the lens galaxy. Sources
near the caustic but not near a cusp produce ““fold ” config-
urations with two of the images lying close together. Sources
not close to the caustic produce relatively symmetric
““cross ”’ configurations.

Although it may seem easy to label an observed lens as a
fold, cusp, or cross, the categories actually blend together,
so it is important to develop a more quantitative way to
characterize image configurations. To quantify a triplet of
images (as in a cusp configuration), let d be the maximum
separation between the three images, and let € be the



TABLE 1

OBSERVED FOUR-IMAGE LENSES

Rgiy 0 d Rewo
LENS TyPE (arcsec) TRIPLET (deg) (arcsec) Data Model REFERENCES
BO128+437 ..o Radio, fold 0.20 BCD 236.7 0.50 0.30 £0.06 0.40 1
ACD 197.4 0.55 0.52+0.05 0.44
ABD 1233 0.34 0.01 £0.06 0.03
ABC 162.6 0.55 0.51+0.05 0.49
HE 0230—2130....c..ccccveuenene. Optical, fold 0.83 A,BC 197.2 1.66 0.35+0.06 0.09 2
A;BC 231.6 2.19 0.84+£0.02 0.77
AAC 162.8 1.66 0.03£0.07 0.01
A1AB 128.4 2.19 0.28 £0.06 0.41
MG 0414+0534 ..o Near-IR, fold 1.08 A,BC 216.0 2.13 0.40 £0.05 0.57 2
ABC 258.5 2.13 0.77£0.03 0.78
AAC 144.0 2.08 0.04 £0.06 0.09
A1AB 101.5 2.03 0.31£0.06 0.12
HE 0435—1223......cccoveuenee Optical, cross 1.18 BCD 179.0 2.25 0.34+0.05 0.30 3
ACD 201.7 2.56 0.48 £0.05 0.50
ABD 181.0 2.25 0.08 +0.06 0.20
ABC 158.3 2.56 0.43£0.05 0.34
BO7124+472 ..o Radio, cusp 0.65 BCD 200.4 1.27 0.33+0.06 0.62 4,5
ACD 283.1 1.25 0.89+0.01 0.91
ABD 159.6 1.27 0.06 +0.07 0.07
ABC* 76.9 1.05 0.26 £0.06 0.08
BO7124+472 ..o Optical /IR, cusp 0.65 BCD 200.4 1.27 0.44 +0.05 0.62 2,5
ACD 283.1 1.25 0.69 £0.03 0.91
ABD 159.6 1.27 0.32+0.06 0.07
ABC* 76.9 1.05 0.60 £+ 0.04 0.08
RXJ0911+0551 ... Near-IR, cusp 0.96 A,A3;B 179.4 3.26 0.45+0.05 0.44 2
AA3B 290.4 3.08 0.59 £0.04 0.67
AA;B 180.6 3.26 0.14 £0.06 0.38
AjALAS* 69.6 0.96 0.23£0.06 0.00
SDSS J0924+0219 .............. Optical, cross 0.87 BCD 217.7 1.61 0.04 +0.08 0.46 6
ACD 142.3 1.61 0.36 £0.07 0.09
ABD 156.4 1.79 0.89 +0.02 0.29
ABC 203.6 1.79 0.58 £0.05 0.56
PG 11154-080.....c.cccvevennenne. Optical, fold 1.14 A,BC 2333 2.16 0.52+0.05 0.59 7
A;BC 218.8 2.43 0.76 £0.03 0.70
AAC 141.2 2.43 0.32+0.06 0.18
A1A;B 126.7 1.86 0.10 £0.06 0.06
IRXSJ1131-1231 ... Optical, cusp 1.81 BCD 290.5 3.18 0.87 +0.01 0.90 8
ACD 181.0 3.20 0.34+£0.06 0.31
ABD 179.0 3.20 0.15+0.06 0.29
ABC* 69.5 2.38 0.35+0.06 0.06
HST 12531-2914................ Optical, cross 0.54 BCD 172.4 1.04 0.39+0.05 0.28 2,9
ACD 187.6 1.04 0.46 £0.05 0.14
ABD 206.8 1.36 0.31£0.06 0.59
ABC 153.2 1.36 0.17£0.06 0.33
HST 141134521 1.....c..c.... Optical, cross 0.83 BCD 168.9 1.35 0.14 +0.06 0.09 10
ACD 161.3 2.28 0.36 £0.05 0.42
ABD 191.1 1.42 0.15+0.06 0.16
ABC 198.7 2.28 0.67 £0.03 0.63
HI413+117 Near-IR, cross 0.56 BCD 198.6 1.35 0.48 £0.05 0.28 2
ACD 186.2 1.10 0.37+£0.05 0.83
ABD 173.8 1.10 0.26 £0.06 0.78
ABC 161.4 1.35 0.24 £0.06 0.61
HST 14176+5226................ Optical, cross 1.33 BCD 172.8 2.36 0.04 £0.06 0.03 2,9
ACD 198.1 3.26 0.54 +0.04 0.64
ABD 187.2 2.36 0.13+0.06 0.08
ABC 161.9 3.26 0.54 £0.04 0.50
B1422+4231 oo Radio, cusp 0.76 BCD 187.2 1.29 0.35+£0.06 0.35 11,12
ACD 283.0 1.29 0.96 +0.01 0.94
ABD 172.8 1.25 0.05+0.07 0.15
ABC* 77.0 1.29 0.18 £0.06 0.12
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TABLE 1—Continued
Rein 0 d Rour
LENS (arcsec) TRIPLET (deg) (arcsec) Data Model REFERENCES
B1I5554375 oo Radio, fold 0.23 BCD 209.3 0.42 0.14+0.07 0.56 13
ACD 257.4 0.42 0.90 £0.01 0.89
ABD 150.7 0.42 0.21 £0.06 0.03
ABC 102.6 0.41 0.45+0.05 0.14
B1608+656 ......ccveveveeeaneee Radio, fold 0.72 BCD 191.5 2.04 0.16 +£0.06 0.06 14
ACD 168.5 2.04 0.194+0.06 0.24
ABD 261.0 2.10 0.79 £0.02 0.89
ABC 99.0 2.10 0.49 £0.05 0.49
B19334+503 ...ciiiiiiiiiene Radio, fold 0.49 3,4,6 143.0 0.82 0.394+0.05 0.01 15
1,4,6 199.7 1.16 0.70 £0.03 0.63
1,3,6 217.0 0.91 0.21 £0.06 0.29
1,3,4 160.3 1.16 0.72+£0.03 0.42
B20454265 ....oooiieieiene Radio, cusp 1.13 BCD 183.9 1.93 0.05+0.06 0.49 16
ACD 325.1 1.93 0.88 £0.01 0.98
ABD 176.1 1.92 0.21 £0.06 0.19
ACD* 349 0.84 0.52+0.04 0.02
Q22374030..ccueeeeeiieenen. Optical, cross 0.85 BCD 186.5 1.65 0.29 +£0.06 0.18 2
ACD 173.5 1.65 0.20 £0.06 0.12
ABD 146.2 1.83 0.71£0.03 0.39
ABC 213.8 1.83 0.52+£0.05 0.62

NotEes.—Results for image triplets in the 19 published four-image lenses. The second column gives the image configuration (fold, cusp, or
cross) and indicates whether the flux ratios are measured at optical, near-IR, or radio wavelengths. The uncertainties in the observed values of
Reysp are obtained by assuming 10% uncertainties in the image fluxes; see § 6 for more discussion. The predicted values of R, are computed with
standard lens models. For the cusp lenses B0712+472, RX J0911+4-0551, IRXS J1131—-1231, B1422+231, and B2045+-265, the cusp image triplet
is indicated by an asterisk. Note that BO712-+472 appears twice because we report data from both radio and optical /near-IR wavelengths.

REFERENCES.—(1) Phillips et al. 2000. (2) CASTLES (see http://cfa-www.harvard.edu/castles). (3) Wisotzki et al. 2002. (4) Jackson et al.
1998. (5) Jackson et al. 2000. (6) Impey et al. 1998. (7) Inada et al. 2003. (8) Sluse et al. 2003. (9) Ratnatunga et al. 1995. (10) Fischer et al. 1998.
(11) Impey et al. 1996. (12) Patnaik et al. 1999. (13) Marlow et al. 1999. (14) Koopmans & Fassnacht 1999. (15) Cohn et al. 2001. (16) Fassnacht
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FiG. 1.—Three basic configurations of four-image lenses: fold (¢op), cusp
(middle), and cross (bottom). In each panel, the figure on the left shows the
caustics and source position in the light source plane, while the figure on

the right shows the critical curves and image positions in the image plane.

opening angle of the polygon spanned by the three images,
measured from the position of the lens galaxy. Each four-
image lens has four distinct triplets and hence four values of
6 and d. We can identify image triplets associated with cusps
as those where 0 and/or d are small (see Fig. 2). Even
though there is no rigorous definition of when 6 and d are
“small ” enough to indicate a cusp configuration, we shall
see below that these are useful quantities for characterizing
the range of image configurations.

3. UNIVERSAL MAGNIFICATION RELATION
FOR CUSPS

In this section we briefly review the lensing of a source
close to and inside an ideal cusp and present the magnifica-
tion relation used in our analysis. Appendix A discusses
lensing near a cusp in considerably more detail and presents
additional position and magnification relations for cusp
images. This analysis applies to ordinary cusps; it may not
be valid for so-called ramphoid cusps (or cusps of the sec-
ond kind), but such cusps have not been observed and are
expected to be rare in lensing situations of astrophysical
interest (see Petters & Wicklin 1995; M. Oguri et al. 2003, in
preparation).

In the vicinity of a cusp, the lens equation relating the
source position # to the image position # can be written to
third order in @ as a polynomial mapping,

b
up = cO +=03, uy =000, +ab3 . (1)

2

The coordinates # and @ are local orthogonal coordinates



No. 1, 2003

fold

0=109° "
d=2.07

cusp

0=38" n
d=0.98

Cross

0=180" m
d=2.40

| A | &

F1G. 2.—Sample image triplets for the image configurations from Fig. 1,
together with the values of the opening angle 6 and the separation d (in units
of the Einstein radius of the lens). The star shows the position of the lens
galaxy in each system.

that are related to the global coordinates y and x of the lens
system by # = My and 8 = Mx, where the transformation
matrix M depends on the lens potential. For the simple
cases that we study in § 4 and Appendix B, M is the identity
matrix and the @ and u coordinate systems are simply the x
and y coordinate systems translated so the cusp point is at
the origin. The constant coefficients a, b, and ¢ are given by
derivatives of the potential at the critical point (see eq. [A6]
in Appendix A).

Solving for 6, in the left-hand side of equation (1) and
substituting into the right-hand side, one obtains a cubic
equation for 6, that depends on a, b, ¢, and the source posi-
tion u. Inside the caustic, there are three real solutions to this
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cubic equation, and thus three images of the source. It is
possible to derive six independent relations between the
positions and magnifications of these images. Unfortu-
nately, only one of these relations can be recast to depend
only on directly observable properties: the well-known mag-
nification sum rule (Schneider & Weiss 1992; Zakharov
1995; Petters et al. 2001, p. 339),

ot +uy =0, (2)

where the u; are the signed magnifications of the three
images. The other relations depend on properties that are
not directly observable, such as the position of the source or
the mapping coefficients a, b, and c.

4. THE CUSP RELATION IN SIMPLE
LENS POTENTIALS

The derivation of the ideal cusp relation equation (2)
relies on the assumption that the lensing map has the poly-
nomial form of equation (1). Since this form is a truncated
Taylor series expansion near the cusp point, we should
expect the cusp relation to be exact only for sources asymp-
totically close to the cusp. In this section we begin to quan-
tify the deviation from the ideal cusp relation that arises
from the higher order terms in the lensing map, using simple
examples to illustrate the effects of the radial profile, elliptic-
ity, shear, and multipole perturbations of the lens potential.

The magnifications appearing in the cusp relation are not
directly observable, but we can follow Mao & Schneider
(1998) and divide out the unknown source flux by defining
the dimensionless quantity

R — i+ +wsl  [Fi+ B+ B
cusp — - )
Pl F el + | F A+ B+ B

3)

where the u; are the magnifications and the F; are the
observed fluxes, both with signs indicating the image
parities. The parities can be determined unambiguously
because in any triplet of adjacent images the two outer
images have the same parity while the middle image has the
opposite parity (see Schneider et al. 1992; Petters et al.
2001). The ideal cusp relation has the form Reusp = 0.

Note that we have defined R, to be nonnegative.
Several recent studies (Schechter & Wambsganss 2002;
Keeton 2003; Kochanek & Dalal 2003) have pointed out
that small-scale structure tends to suppress negative-parity
images more often than it amplifies positive-parity images,
while global perturbations generally do not distinguish
between images with different parities. In an ensemble of
lenses with flux ratio anomalies, skewness in the signed Reysp
distribution may therefore distinguish local from global per-
turbations. However, the statistical nature of this argument
precludes its use in individual lenses. Since we seek a method
of identifying anomalies in individual lenses, we consider
only the unsigned quantity.

We first study the cusp relation analytically using two
families of lens potentials where it is possible to obtain exact
solutions of the lens equation. In one family, the galaxy is
assumed to be spherical but is allowed to have a general
power-law surface density profile ¥ oc r*~2 and to have an
external shear +. In the other family, the galaxy is assumed
to have an “isothermal” profile 3 oc ~! but is allowed to
have a complex angular structure, including shear; we
specifically consider an ellipsoidal galaxy perturbed by
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the major axis of the galaxy.

multipole density fluctuations. Appendix B describes the
two families of lens potentials in detail and gives solutions
for the positions and magnifications of images correspond-
ing to sources on a symmetry axis of the lens potential.
Figure 3 shows R, versus the opening angle 0 and
separation d of an image triplet, for various potentials with
different radial profiles, ellipticities, and shears. In general,
Reysp is small when 0 and d are small (indicating that the
source is very near a cusp) and grows as 6 and d grow (indi-
cating that the source is moving farther from the cusp). The
analytic results allow us to understand how departures from
the ideal cusp relation depend on properties of the lens
potential. We see that radical changes in the radial profile of
the lens potential, from « = 1 (isothermal) to o = 0 (point
mass), have a negligible effect on the cusp relation. By con-
trast, moderate changes in the ellipticity and shear can affect
the cusp relation by tens of percent. The fact that the cusp
relation is quite sensitive to ellipticity, moderately sensitive
to shear, and not very sensitive to the radial profile makes
sense: reasonable changes in the angular structure of the
potential (e and ) can affect nearby images quite differently,
while reasonable changes in the radial profile cannot.

Incidentally, we note that when considering fixed ellipticity
and shear amplitudes, R, can be larger when the two
are orthogonal than when they are aligned.

The effects of multipole density perturbations are shown
in Figure 4, for lens potentials with an “isothermal”
(a = 1) radial profile. Multipole modes with 1 = 3 or 4 and
amplitudes of a few percent are common in the isophotes of
observed early-type galaxies (Bender et al. 1989; Saglia,
Bender, & Dressler 1993; Rest et al. 2001) and in the isoden-
sity contours of simulated galaxy merger remnants (Heyl,
Hernquist, & Spergel 1994; Naab & Burkert 2003; Burkert
& Naab 2003); in particular, m = 4 modes with amplitudes
aq > 0 can represent small disklike components in bulge-
dominated galaxies, which are not unusual (Kelson et al.
2000; Tran et al. 2003). Such modes might have a significant
effect on the magnifications of lensed images (Evans & Witt
2002; Moller et al. 2003). We find that m = 4 modes do not
significantly increase Rys, for cusp triplets with 6<90°
when the source is on the major axis of the lens potential
(Fig. 4a). However, they can create remarkably large values
of Reysp even for small @ when the source is on the minor axis
(Fig. 4b). At fixed amplitude, higher order modes produce
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0 = 640° /m. The sources lie on the major axis of the lens potential.

progressively larger values of R, at smaller angles (Fig.
4c¢).3 The position of the peak in the Rysp curve for different
values of m can be approximated as €peax ~ 640°/m. This
result describes our fiducial case with e¢=0.3 and
a, = 0.02; varying e and a4 has a small (< 5%) effect on the
position of the peak but a large effect on the amplitude of

8 For the high-order multipole modes we do not show sources on the
minor axis of the potential because on the minor axis the caustics often have
complicated butterfly catastrophes that need not satisfy the cusp relation
(see § B2).
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the peak. Thus, we can say as a rule of thumb that image
triplets with angle 6 are significantly affected only by modes
with m 2 640°/6. We conclude that it is important to con-
sider multipole effects in the cusp relation analysis. But as it
is not clear that real galaxies have percent-level perturba-
tions in modes beyond m = 4, it is equally important to hold
the perturbations to reasonable levels.

So far we have studied only sources lying on a symmetry
axis of the lens potential. For the more general case we turn
to Monte Carlo simulations. We pick random source posi-
tions and solve the lens equation (using the algorithm and
software by Keeton 2001b) to generate a catalog of mock
lenses. We compute 0, d, and R, for each triplet in each
four-image lens and then plot R, versus 6 or d for all trip-
lets. Figure 5 shows sample results for isothermal ellipsoid
galaxies with shear. The most important result is that over
the region of interest for the cusp relation (6 <180° and
d/Rgi, <1.7) there is a firm upper envelope on the values of
Rcusp.9 In fact, there are two envelopes: one each for major-
and minor-axis cusps. Moreover, in lenses with reflection
symmetry the envelope corresponds to sources on the sym-
metry axis. To understand this result, in § B1 we prove that
Rcusp is alocal maximum on the symmetry axis of an isother-
mal sphere plus shear. Messy algebra hinders a rigorous
analysis of other potentials, but intuition and the Monte
Carlo simulations suggest that the result is generally true. In
other words, the analytic results for on-axis sources provide
a simple and important upper bound on Rygp.

To summarize, the ideal cusp relation breaks down for
sources a small but finite distance from the cusp, but in a
way that can be understood and quantified. The realistic
cusp relation is mainly sensitive to the angular structure of
the lens potential, not the radial profile. The important
quantities are the ellipticity, shear, and strength of multipole
density fluctuations. For the subset of cusps that possess a
symmetry axis, sources on that axis provide a strict upper
bound on R, over the interesting range of 6 and d that can
often be derived analytically.

5. THE CUSP RELATION IN REALISTIC
LENS POPULATIONS

If we knew the ellipticity, shear, and multipole perturba-
tions for individual observed lenses, we could use the pre-
vious analysis to compute how much R, can deviate from
zero for smooth potentials and then conclude that larger
values represent flux ratio anomalies. Unfortunately, the
three key quantities are not directly observable. The elliptic-
ity and multipole perturbations of the mass need not be the
same as those of the light (e.g., Keeton, Kochanek, & Falco
1998), and in any case the shear cannot be directly observed.
The three quantities could be constrained with lens models,
but we seek to avoid explicit modeling to the extent possible.
Instead, our approach is to adopt observationally moti-
vated priors on the ellipticity, multipole perturbations, and
shear and use Monte Carlo simulations to obtain a sample
of realistic lens potentials and derive probability distribu-
tions for Rgysp. In this section we describe the priors (§ 5.1)
and methods (§ 5.2) for the simulations.

9 The break at d/Rgi, ~ 1.7 is simple to understand. This separation
corresponds to an image triplet comprising an equilateral triangle inscribed
within the Einstein ring. When the separation reaches this value, the images
are so spread out that they can no longer be associated with a cusp.
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5.1. Input Distributions

We consider only early-type galaxies because they are
expected to dominate the lensing optical depth as a result of
their large average mass (e.g., Turner, Ostriker, & Gott
1984; Fukugita & Turner 1991). Indeed, ~80%-90% of
observed lens galaxies have properties consistent with being
massive elliptical galaxies (Keeton et al. 1998; Kochanek
et al. 2000; Rusin et al. 2003b). The distinction between
elliptical and spiral galaxies is important because disk-
dominated galaxies that are viewed close to edge-on can
produce cusp configurations that deviate significantly from
the cusp relation (Keeton & Kochanek 1998). Several of the
lenses for which we identify flux ratio anomalies are con-
firmed elliptical galaxies, and none of them have properties
suggesting that they are spiral galaxies (Impey et al. 1996;
Burud et al. 1998; Fassnacht et al. 1999; Jackson,
Xanthopoulos, & Browne 2000; Inada et al. 2003; Sluse
et al. 2003; Rusin et al. 2003b).1°

10 Despite a suggestion by Moller et al. (2003) that the lens galaxy in
B2045+265 might be a spiral, its structural and dynamical properties are
fully consistent with being an elliptical (Rusin et al. 2003a), and no disklike
structure is evident in Hubble Space Telescope images (C. Kochanek 2003,
private communication).

We allow the simulated galaxies to have ellipticity and
also octopole (m = 4) perturbations, with distributions
drawn from observations of isophote shapes in early-type
galaxies. Even if the shapes of the mass and light distribu-
tions are not correlated on a case-by-case basis, it seems
likely that their distributions are similar (see Rusin &
Tegmark 2001 for a discussion). Indeed, the distribution of
isodensity contour shapes in simulated merger remnants is
very similar to the observed distribution of isophote shapes
(Heyl et al. 1994; Naab & Burkert 2003; Burkert & Naab
2003). Multipole perturbations beyond m > 5 have gener-
ally not been reported, but it is likely that they must have
relatively low amplitudes to be compatible with observa-
tions. Lower order m = 3 modes have been reported with
amplitudes comparable to m =4 modes (e.g., Rest et al.
2001), but we do not consider them here because they are
not reported in the samples we use and because at fixed
amplitude higher order modes produce larger deviations in
the cusp relation (see Fig. 4). Our approach is formally
equivalent to studies that explicitly include a disklike mass
component (e.g., Moller et al. 2003), since small disks can
be treated as m = 4 multipole perturbations. We use only
isothermal galaxies because the radial profile of the lens
galaxy does not significantly affect the cusp relation. The
galaxy mass is unimportant because it simply sets a length
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scale (the Einstein radius) that can be scaled out by using
the dimensionless separation d/ Rg;y.

We use ellipticity and octopole distributions from three
different samples. Jorgensen, Franx, & Kjaergaard (1995)
report ellipticities for 379 E and SO galaxies in 11 clusters,
including Coma. Their ellipticity distribution has mean
e = 0.31 and dispersion o, = 0.18. Since the Jorgensen et al.
(1995) sample does not include octopole amplitudes, we
consider two smaller samples that do. Bender et al. (1989)
report ellipticities and octopoles for 87 nearby, bright ellip-
tical galaxies. Their ellipticity distribution has e = 0.28 and
o. = 0.15, while their octopole distribution has mean
as = 0.003 and dispersion o,, = 0.011. Finally, Saglia et al.
(1993) report ellipticities and octopole amplitudes for 54
ellipticals in Coma, with ellipticity distribution e = 0.30 and
o.=0.16 and octopole distribution a4 =0.014 and
04, = 0.015. Compared to the Bender et al. (1989) sample,
the Saglia et al. (1993) sample has a higher incidence of gal-
axies with strong disky perturbations (a4 > 0). Considering
all three samples allows us to examine whether our conclu-
sions depend systematically on the input (e, a4) distributions
(although we note that since the Jorgensen et al. 1995 and
Saglia et al. 1993 samples both include galaxies in Coma,
they are not fully independent). Figure 6 shows the different
samples and suggests that ¢ and a4 are correlated such that
highly elliptical galaxies tend to have significant disky per-
turbations. Our analysis includes this correlation explicitly
by using the observed joint distribution of e and ay.

For the shear amplitude we adopt a lognormal distribu-
tion with median v = 0.05 and dispersion 0., = 0.2 dex. This
is consistent with the distribution of shears expected from
the environments of early-type galaxies, as estimated from
N-body and semianalytic simulations of galaxy formation
(Holder & Schechter 2003). It is broadly consistent with the
empirical distribution of shears required to fit observed
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FIG. 6.—Main panel: e and a4 values for the galaxies in the Bender et al.
(1989) and Saglia et al. (1993) samples. Galaxies with as > 0 (a4 < 0) have
disky (boxy) isophotes. Right panel: Histograms of ay. Top panel:
Histograms of e for these samples and also the Jorgensen et al. (1995)
sample.
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lenses, when selection biases related to the lensing cross sec-
tion and magnification bias are taken into account (see
Holder & Schechter 2003). The mean shear is also consistent
with the typical value needed to explain misalignments
between the light and mass in observed lenses (Kochanek
2002). We assume random shear orientations.

5.2. Simulation Methods

We use each input distribution to run a large Monte
Carlo simulation containing ~10¢ four-image lenses. With
the Jorgensen et al. (1995) sample we draw 2000 ellipticities
from the observed ellipticity distribution and give each a
random shear. With the Bender et al. (1989) and Saglia et al.
(1993) samples we use only the observed (e, a4) pairs to
make sure we include the apparent correlation between the
two quantities, but we use each pair with 100 different ran-
dom shears; thus, we consider 8700 and 5400 lens potentials
for the Bender et al. (1989) and Saglia et al. (1993) samples,
respectively, but we need to remember that these represent
only 87 and 54 different ellipticity and octopole measure-
ments. For each potential, we pick random sources with a
uniform density of ~103ng§1 in the source plane and solve
the lens equation using the algorithm and software by
Keeton (2001b). We have verified that our results are not
sensitive to the number of shears and density of sources
used.

To understand how our mock lenses compare to observed
samples, it is important to consider two selection effects.
First, the cross section for four-image lenses is very sensitive
to ellipticity and shear, but our uniform sampling of the
source plane ensures that each lens potential is automatically
weighted by the correct cross section. Second, magnification
bias can favor lenses with higher amplifications. While this
effect is important when comparing four-image lenses to two-
image lenses (e.g., Keeton et al. 1997, Rusin & Tegmark
2001), it is much less important when comparing different
four-image lenses against each other. If anything, it would
favor the sources very near a cusp or fold that yield extremely
magnified lenses that best satisfy the cusp/fold relations,
giving more weight to lenses with smaller deviations from the
ideal relations. We therefore neglect magnification bias and
believe that this is a conservative approach.

We compute 0, d, and R, for each image triplet in each
mock four-image lens and use this ensemble to determine
the conditional probability distributions p(Reusp|6),
P(Reuspld), and p(Reuspld, ), i.€., the probability of having a
particular value of R, given 0, d, or both. For example,
Figure 7 shows curves of constant conditional probability
P(Reusp|0) and p(Reusp|d) versus 0 and d. This figure is basi-
cally a modified version of Figure 5 where we have averaged
over appropriate ellipticity, octopole, and shear distribu-
tions. It is interpreted as saying that 68% of triplets in our
sample of mock lenses lie in the region between the solid
curves, 99% lie between the dashed curves, and so forth. To
the extent that our simulations encompass the range of ellip-
ticities, octopoles, and shears in real populations of early-
type galaxies, we can conclude that any points lying outside
the contours represent flux ratios that are inconsistent with
smooth lens potentials.

6. APPLICATION TO OBSERVED LENSES

We can now use our theoretical analysis to evaluate
observed lenses, seeking to identify systems that violate the
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the lower value of R, corresponds to the radio data, while the higher value (labeled) corresponds to the optical /near-IR data (see text). [See the electronic

edition of the Journal for a color version of this figure.]

cusp relation and therefore have anomalous flux ratios. We
first summarize the data (§ 6.1) and then present our results

(§6.2).

6.1. Data

The data for the 19 published four-image lenses are given
in Table 1. Only five of the lenses are thought to have cusp
configurations, but we can still apply the cusp relation anal-
ysis to all of them to see what we learn. In the table we list
the four different image triplets for each lens, with the open-
ing angle 6, the image separation d, and the observed value
of Reyp for each. If the lens galaxy position is known, the
angle 6 is fully determined by the data; if not, we estimate ¢
using the galaxy position estimated from lens models, which
is a fairly model-independent prediction. The separation d is
determined directly from the data. To normalize it, we need
the Einstein radius Rg;,, which must be derived from a lens
model but is insensitive to the assumed model; different
models generally yield the same Einstein radius with system-
atic uncertainties of just a few percent (Cohn et al. 2001;
Rusin et al. 2003a).

When we measure R, we need to consider systematic
uncertainties due to effects like source variability and the
lens time delay, scatter broadening (at radio wavelengths),
and differential extinction by patchy dust in the lens galaxy
(at optical wavelengths). (Extinction by dust in our own
Galaxy does not affect the flux ratios because it affects all
images equally.) Dalal & Kochanek (2002) advocate adopt-
ing a fiducial estimate of 10% uncertainties in the flux ratios
to account for these effects, but this is likely to be quite con-
servative. For most lenses the uncertainties are irrelevant
because the measured values of R lie well within the
expected distribution, so for Table 1 we use 10% flux uncer-

tainties for simplicity. We want to be more careful about the
error budgets for lenses suspected of having flux ratio
anomalies, so we discuss them individually in the next
section.

For comparison, Table 1 also gives values for R, pre-
dicted by standard lens models consisting of an isothermal
ellipsoid with an external shear.'! Only the image positions
(not the flux ratios) were used as constraints. In MG
041440534, RX J09114-0551, and B1608+656 the lens
models also include the perturbative effects of an observed
satellite galaxy near the main lens galaxy. We stress that the
lens models are not actually used in seeking flux ratio
anomalies (other than for estimating Rp;,, as discussed
above). They are included only as a general indication of
what to expect for R from smooth lens models for these
systems.

6.2. Results

Figure 7 shows the observed values of R, superposed
on the predicted confidence contours. The five cusp lenses
can be identified as the triangles with 6 <80° (B0712+472
appears twice: once for radio data, and once for optical/
near-IR data). Most of the observed lenses lie within the
predicted confidence region, so according to this analysis
they are not obviously inconsistent with smooth lens poten-
tials. We note that the predicted confidence contours are
very similar for the Jorgensen et al. (1995) and Bender et al.

11 The only exception is B1555+375, where the ellipsoid plus shear
model is somewhat ambiguous and we use models with a slightly different
parameterization of the quadrupole moment of the lens potential; see
C. Turner, C. R. Keeton, & C. S. Kochanek (2003, in preparation) for
technical details.
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(1989) input data (and also for the Saglia et al. 1993 input
data, not shown). The main difference is that the presence of
octopole perturbations in the Bender et al. (1989) input data
causes the confidence contours to stretch to higher values of
Reysp at d/ Rgin < 1.7, which is what we expect from the theo-
retical analysis in § 4. (The contours for the Bender et al.
1989 input data are somewhat noisy as a result of the rela-
tively small number of ellipticity and octopole measure-
ments.) Thus, contrary to the claim by Moéller et al. (2003),
we find that adding (properly normalized) disky compo-
nents to elliptical galaxies does not have an enormous effect
on the cusp relation. We explain below which of our conclu-
sions are or are not affected by the presence of octopole
terms or, more generally, by changes in the input data.

Several of the lenses are obvious outliers. The cusp
lens B20454-265 lies outside all contours. The cusp lens
B07124-472 lies outside all p(Rcusp|)) contours and either
outside or just inside the 99.9% confidence contour for
P(Reusp|d), depending on the input data. The cusp lenses
IRXS J1131-1231 and RX J0911+0551 stand out relative
to p(Reusp|d) for the Jorgensen et al. (1995) input data but
not for the Bender et al. (1989) (or Saglia et al. 1993) input
data. [Incidentally, RX J091140551 and B2045+265 are
also responsible for the p(Rcusp|6) outliers at § = 290° and
325°, respectively.] The fifth cusp lens B1422+4-231 does not
stand out in this analysis. Finally, the lens SDSS
J0924+0219 is an outlier with respect to p(Reuspl|6) even
though it is not a cusp configuration.

The joint conditional probability distribution
P(Reusp|d, 8) provides an even more powerful way to identify
outliers. Figure 8 compares the cumulative probability

Prod(> Reusp|d,0) that smooth potentials produce Ry
larger than some value versus the cumulative probability
Pops(< Reusp) that the measurement of Ry, is smaller than
some value, for the six lenses just mentioned. The measured
value of R is compatible with smooth potentials only if
the curves have a significant overlap. B2045+265, 1RXS
J1131-1231, SDSS J0924+4-0219, and B0712+4-472 (optical)
are clear outliers; B0712+472 (radio) and RX J0911+0551
are marginal outliers; and B1422+4-231 is the only case in
which the observed and predicted distributions are clearly
compatible. We now discuss each of these lenses
individually.

6.2.1. B2045+265

Fassnacht et al. (1999) give eight measurements of the
radio fluxes for B2045+265 at 1.4, 5, 8.5, and 15 GHz, from
different radio arrays with different resolutions. The mean
value and scatter in R, are 0.516 +0.018; the scatter is
only slightly larger than the uncertainty that would be
inferred from the quoted flux errors. The fact that the Ry
values from diverse radio data sets are consistent within the
errors argues against any significant nongravitational effects
(e.g., scattering). In addition, for a cusp triplet the time
delays are expected to be very short (predicted to be <6 hr
for B2045+265 and similarly short for the other cusp
lenses), so they should have no effect on the measured value
of Reusp- We therefore believe that £0.018 represents a rea-
sonable estimate of the uncertainty. Koopmans et al.
(2003b) present 41 measurements of B2045+265 at 5 GHz.
Although they observe variability that they attribute to
scintillation, they find a mean and scatter in R, of
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0.501 +0.035, in excellent agreement with the value from
the Fassnacht et al. (1999) data.

The CfA-Arizona Space Telescope Lens Survey'?
(CASTLES; C. Kochanek et al. 2003, private communica-
tion) provides data at optical and near-IR wavelengths from
Hubble Space Telescope imaging. Their data for B2045+265
yield Reysp = 0.501 £0.037 in V" band, 0.531 £0.035 in [/
band, and 0.502 £0.015 in H band. The colors of the
images, as well as the fact that R, remains constant over a
factor of 3 in optical/near-IR wavelength, indicate that
there is little or no differential extinction between the
images. The weighted average of the optical /near-IR data
yields Reysp = 0.506 4 0.013; the excellent agreement with
the radio data suggests that the measured value of R, is
robust and independent of wavelength and that the small
inferred uncertainties on R, are realistic. The weighted
average of all measurements is Reysp = 0.509 & 0.010.

Figures 7 and 8 show that the existence of a flux ratio
anomaly in B2045+265 is beyond doubt. Image B is simply
much too faint to be consistent with smooth lens potentials,
no matter which input ellipticity and octopole distributions
are used. Attempting to explain the value of R, with
multipole perturbations would require a significant
amplitude in a mode with m = 16 (see Fig. 4).

6.2.2. B0712+472

Jackson et al. (1998) give three different measurements of
the radio fluxes for B07124-472 at 5 GHz and one measure-
ment at 15 GHz. The mean and scatter in the value of Ry
from the four data sets are 0.261 + 0.031. The data from 41
measurements at 5 GHz by Koopmans et al. (2003b) yield
Reysp = 0.2554+0.030, in excellent agreement with the
Jackson et al. (1998) value. The weighted average of these
measurements is 0.258 4 0.022.

The optical and near-IR data from CASTLES (also see
Jackson et al. 2000) yield Rcysp = 0.619 £0.050 in ¥ band,
0.572 £0.147 in I band, and 0.473 + 0.092 in H band. The
decline in Ry, with wavelength suggests that there might
be some differential extinction between the images, but the
evidence is weak because the three measurements are for-
mally consistent within the errors. The weighted average of
the optical /near-IR measurements is 0.585 + 0.042.

The difference between the radio and optical results is
very interesting. At radio wavelengths the overlap between
the observed and predicted probability curves in Figure 8 is
small but nonnegligible: the curves overlap at 2.1%-3.7%
depending on the input data used in the Monte Carlo simu-
lations. Thus, there is evidence for a radio flux ratio anom-
aly, but only at the 96%-98% confidence level. At optical/
near-IR wavelengths, by contrast, there is no overlap
between the observed and predicted probability curves and
hence evidence for an optical flux ratio anomaly at high con-
fidence. Both conclusions are unaffected by octopole pertur-
bations in the lens potential and, more generally, by changes
to the input data in the Monte Carlo simulations. The differ-
ence between the radio and optical results could indicate
that the optical flux ratio anomaly is caused by a star
(microlensing) or some other object with a characteristic
size smaller than a typical dark matter subhalo. That possi-
bility makes B07124472 a promising system for optical

12 See http:/ /cfa-www.harvard.edu/castles.
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monitoring to look for variability that would indicate
microlensing.

6.2.3. IRXSJ1131—-1231

Sluse et al. (2003) present three measurements of the opti-
cal flux ratios of 1RXS J1131—1231. Observations from
2002 May 2 yield Reysp = 0.35040.021 in V" band, while
observations from 2002 December 18 yield Reusp =
0.353 £0.031 in V' band and 0.367 & 0.031 in R band. It is
interesting that the total flux of the system varied by
0.29 + 0.04 mag between May and December, yet the flux
ratios and R, values are essentially identical. The likely
explanation is that the source varied over the 7 month time-
scale, but the short time delays between the bright images A,
B, and C (predicted to be less than 1 day) kept the flux ratios
essentially constant. The fact that R is the same at differ-
ent epochs and in different passbands indicates that there
are no large systematic uncertainties due to the time delays
or electromagnetic effects.

The weighted average of the R, values is 0.355 £ 0.015.
Figure 8 shows that this value lies well outside the predicted
distributions, implying a strong flux ratio anomaly, and that
this conclusion is insensitive to changes in the input data in
the Monte Carlo simulations.

6.2.4. RXJ0911+0551

RX J0911+0551 is the only cusp lens that shows signifi-
cant evidence for differential extinction between the images.
In the CASTLES data (also see Burud et al. 1998), image A
has colors V—H =1.24+0.04 and I-H = 0.79 + 0.04,
while images A, and A; both have colors V—H =
1.54 +0.05 and I—H = 1.01 + 0.04. Attributing the color
difference to dust in the lens galaxy, we estimate a differen-
tial extinction between A and the A,/Aj; pair of (0.44, 0.32,
0.12) magin (V, I, H) (following the analysis of Falco et al.
1999, using a redshifted Ry = 3.1 extinction curve from
Cardelli, Clayton, & Mathis 1989).!3 Correcting for the red-
dening changes R, from 0.226 for the raw H-band flux
ratios to 0.192 + 0.011 for the dereddened data.

Figure 8 compares this value with the predictions of
smooth lens potentials. Perhaps the most interesting point is
that RX J0911+0551 is the only system where octopole per-
turbations affect the judgment about a flux ratio anomaly.
The Monte Carlo simulations that include octopole modes
(based on the Bender et al. 1989 or Saglia et al. 1993 input
data) have a long tail to high R, values that is absent from
simulations lacking such modes (based on the Jorgensen
et al. 1995 input data, or rerunning the Bender et al. 1989 or
Saglia et al. 1993 data with the octopole terms removed [not
shown]). The octopole modes apparently allow smooth lens
potentials to create a small but significant number of image
triplets with the same angle 6 and separation d as RX
J0911+4-0551 that have relatively high values of Rc. The
reason we see such an effect here, but not in the other lenses
we study, is that RX J0911+0551 is the only system where
the source lies near a cusp on the minor axis of the galaxy.
As we showed in § 4, octopole perturbations mainly affect
sources near a minor-axis cusp. The octopole modes cause
the observed and predicted probability curves in Figure 8 to
overlap at 1.7% for the Bender et al. (1989) input data or

13 Moller et al. (2003) claim that the extinction correction for RX
J0911+0551 is highly uncertain, but we find that not to be the case.
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Fic. 9.—Results for RX J0911+4-0551 for the “normal shear” and
“cluster shear ” cases, using the Bender et al. (1989) input data.

8.6% for the Saglia et al. (1993) input data. We caution
against overinterpreting these numbers, however. Because
the Bender et al. (1989) and Saglia et al. (1993) samples
include just 87 and 54 ellipticity and octopole measure-
ments, respectively, we may worry about small number
statistics and sample variance. Indeed, the difference
between the R distributions predicted by these two
samples suggests that a robust analysis of the cusp relation
for minor-axis lenses like RX J091140551 will require
larger samples with better determinations of the ellipticity
and multipole distributions.

The analysis of RX J0911+0551 is actually even more
complicated because the lens galaxy lies in a cluster environ-
ment that contributes a large shear v ~ 0.3 to the lens
potential (Kneib, Cohen, & Hjorth 2000). Since this shear is
almost 4 o above the median of our assumed distribution, it
is not likely to be well represented in our fiducial Monte
Carlo simulations. To examine the effects of such a large
shear, we use a new Monte Carlo simulation with the shear
amplitude fixed at v = 0.3. The orientation of the shear is
still random, and we adopt the Bender et al. (1989) input
data for the ellipticity and octopole. Figure 9 shows that
lens potentials with a large shear produce a narrower range
of Reyusp values than lens potentials with the fiducial shear
distribution. The likely explanation is that an octopole term
has the most effect when aligned with the quadrupole
moment of the potential, which cannot happen when the
quadrupole is dominated by a large, randomly oriented
shear. As a result, the R, distribution predicted when the
shear is large no longer overlaps with the observed value of
Reusp-

V\})e believe that the “ cluster shear ” case provides strong
evidence for a flux ratio anomaly in RX J0911+0551. How-
ever, it will be important to examine more carefully whether
multipole modes can compromise this conclusion. The most
straightforward approach will be direct lens modeling. It
will definitely be possible to fit the current data exactly by
allowing enough multipole modes in the models (see Evans
& Witt 2002 for examples). The crucial test would be to
obtain deep near-IR imaging to try to find an Einstein ring
image of the quasar host galaxy (e.g., Impey et al. 1998;
Keeton et al. 2000; Kochanek et al. 2001). The additional
constraints from the Einstein ring would greatly restrict the
space of allowed models and determine whether the multi-
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pole modes required by the flux ratios are acceptable or not
(see Kochanek & Dalal 2003).

If the putative flux ratio anomaly in RX J0911+0551 is
confirmed, its interpretation may be ambiguous. With only
broadband optical and near-IR flux ratios it is impossible to
determine whether the small-scale structure implied by the
anomaly corresponds to microlensing or millilensing, or to
one or more dwarf galaxies, which tend to be abundant in
cluster environments (Trentham 1997; Smith, Driver, &
Phillipps 1997; Driver, Couch, & Phillipps 1998; Zabludoff
& Mulchaey 2000). In fact, the CASTLES images do reveal
a faint satellite galaxy lying 170 away from the main lens
galaxy (although not close to any of the lensed images).
Analysis of lens models that explicitly include the satellite
suggests that it cannot explain the observed flux ratios; as
seen in Table 1, such models still predict Reusp < 0.01 for the
cusp triplet. Still, we cannot presently rule out the possibility
that the anomaly is caused by an as yet undetected but
otherwise unremarkable dwarf galaxy. Perhaps the best
prospect for determining whether the anomaly is caused
by a star, a dark matter clump, or a dwarf galaxy would be
high-resolution resolved spectroscopy of the three images
(see Moustakas & Metcalf 2003).

6.2.5. B1422+231

Patnaik & Narasimha (2001) report 61 measurements of
the radio fluxes for B1422+231 at 8.4 and 15 GHz. The
mean and scatter for Ry, from all of the measurements are
0.179 £ 0.006. The error on R, obtained directly from the
individual flux errors is comparable to or smaller than
the scatter. Koopmans et al. (2003b) report 41 measure-
ments at 5 GHz that yield Reyp =0.18740.004, in
reasonable agreement with the value from the Patnaik &
Narasimha (2001) data.

The optical and near-IR data from CASTLES yield
Reusp = 0.223 £0.055 in ¥ band, 0.222 £ 0.038 in 7 band,
and 0.175 £ 0.015 in H band. The change from V/Ito H is
comparable to the uncertainties. The weighted average of
the optical/near-IR results is Rcusp = 0.184 £0.014, in
remarkably good agreement with the radio results.

Figures 7 and 8 show that B1422+-231 is not an outlier in
the cusp relation according to our analysis. This result is
interesting in light of detailed modeling that shows
B1422+231 to have a flux ratio anomaly (Mao & Schneider
1998; Bradac et al. 2002; Metcalf & Zhao 2002). The reason
for the difference is that we are focusing on the maximum
allowed values of R, for given values of 0 and d. We do
not consider whether the potentials that can produce those
values are at all consistent with the rest of the lens data. In
other words, we are throwing away reliable information in
our attempt to be as general and robust as possible. Metcalf
& Zhao (2002) demonstrate that imposing the position con-
straints via detailed lens modeling provides a more sophisti-
cated analysis that has more power to identify flux ratio
anomalies. But because it relies on specific modeling, we
believe that such model fitting is less robust and generic than
the cusp relation analysis.

6.2.6. SDSS J0924+0219

The lens SDSS J0924+0219 is not a typical cusp configu-
ration but rather more like a cross configuration. Neverthe-
less, it does have what seems to be an enormous flux ratio
anomaly. The anomaly appears as such a strong
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suppression of one of the negative-parity images that the
system was initially thought to have just three images, and
the fourth image (D) was identified only after subtraction of
the three main images and the lens galaxy (Inada et al.
2003). Because image D is a factor of 14 fainter than image
A, the triplet ABD (with § = 156° and d/Rgi, = 2.1) has
Reusp values of 0.916 + 0.009 in g band, 0.903 £ 0.005 in r
band, and 0.894 4+ 0.005 in i band. The good agreement
between the different passbands suggests that there is little
differential extinction between the images. The weighted
average of the measurements is Reusp = 0.901 £ 0.003.

The fact that SDSS J0924+4-0219 is not a tight cusp config-
uration means that smooth potentials can produce a fairly
broad distribution of R, values (see Fig. 8). Nevertheless,
the observed value of R, is so large that it still lies well
outside the predicted distribution. In other words, the
anomaly in SDSS J0924+4-0219 is so strong that it is identi-
fied by the cusp relation analysis even though the lens is not
a proper cusp configuration. This conclusion is insensitive
to changes in the input data of the Monte Carlo simulations
and is therefore robust provided that the lens galaxy is
early-type. Because the smallest image separation is still rel-
atively large (d/ Rgin = 2, 0 = 156°), a spiral galaxy might in
principle have structure on scales appropriate to explain the
anomaly. However, the strength of the anomaly would
require significant structure, which would probably affect
not just image D but all four images, and there is no current
evidence that the lens is a spiral (Inada et al. 2003). In any
case, the flux ratio anomaly in SDSS J0924+4-0219 indicates
that there is some strong and interesting structure in the lens
potential that is generally incompatible with the known
properties of the luminous components of early-type
galaxies.

6.3. Comments

To conclude this section, we remark that it is surprising to
see how large R, can be for realistic lenses, even in the
absence of small-scale structure. Image triplets must be quite
tight (small 6 and ) in order to be guaranteed of satisfying
the cusp relation reasonably well. For example, to satisfy
the relation with Reysp < 0.1 at 99% confidence, the opening
angle must be 6 <30°. The parameter space that gives rise to
such image configurations is quite small; in our Monte
Carlo simulations, only ~0.1% of four-image lenses have
cusp triplets that are this tight. While this estimate omits
magnification bias (which will favor tight configurations), it
does suggest that cusp image configurations that are close to
ideal are likely to be rare. The cusp relation can still be a
valuable tool for identifying flux ratio anomalies, but it
must be used with some care.

We have identified flux ratio anomalies that cannot sat-
isfy the cusp relation for any (reasonable) combination of
shear, ellipticity, and octopole modes. While we do not
believe that significant high-order multipole perturbations
are common in real early-type galaxies, it is nevertheless
interesting to consider what modes would be required to
explain the anomalies. Using the analytic results from § 4
(Fig. 4 in particular), we estimate that B20454-265 would
require 1.5% density fluctuations in a mode with m>16.
The B0712+4-472 optical anomaly would require 4.5% fluctu-
ations with m=8. 1RXS J1131-1231 would require 1.5%
fluctuations with m = 10. SDSS J0924+0219, being a cross
rather than a cusp configuration, does not require a particu-
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larly high-order mode (1 = 4), but it would require a pertur-
bation amplitude of at least 12%. The estimated amplitudes
are based on an assumed ellipticity e = 0.3, and they would
increase or decrease as the ellipticity is increased or
decreased. Note that these estimates are consistent with our
rule of thumb from § 4 that a large Ry, value in a triplet
with angle 6 requires multipole modes with m =640°/6.
Thus, the most general statement about the lens potential
that can be derived from a flux ratio anomaly is that there
must be significant structure on the scale of the separation
between the images.

7. CONCLUSIONS

The images associated with an ideal cusp catastrophe sat-
isfy universal position and magnification relations, the most
interesting of which says that the signed magnifications of the
three images should sum to zero. (The other relations have
less practical value because they involve unobservable
quantities.) A violation of this relation indicates that the
catastrophe is not an ideal cusp, i.e., that the lens potential
contains terms beyond fourth order (third order in the lens
equation; see eq. [1]). A significant violation of the cusp rela-
tion can imply that an observed four-image lens has signifi-
cant structure in the lens potential on scales comparable to or
smaller than the separation between the images.

An important caveat is that the ideal cusp relation is not
expected to hold exactly for real lenses because real lens gal-
axies are not ideal cusps. It is therefore crucial to understand
the degree to which simple aspects of real lens potentials
(the radial density profile, ellipticity, multipole density fluc-
tuations, and tidal shear) can cause deviations from the
ideal cusp relation. After showing that the radial profile has
little effect on the analysis, we have adopted observationally
motivated distributions for the shear, ellipticity, and octo-
pole perturbations and derived the resulting distribution for
the quantity Reusp = ([F1 + F2 + F3|)/(|[F1| + [ Fa| + [F3)),
where the F; are the signed fluxes for a triplet of images. The
distribution describes the range of Ry, values that can be
produced by lens potentials containing realistic shears, ellip-
ticities, and octopole modes. If an observed four-image lens
has an R, value lying outside this range, we can conclude
that its lens potential must have some kind of structure on
scales comparable to or smaller than the image separation
that is not represented in the luminous properties of early-
type galaxies or the external shears expected from their typi-
cal environments. This structure might be large, low-order
multipole moments, significant power in moments higher
than octopole order, or some kind of compact structure.
Analysis of the cusp relation therefore provides a new way
to search for cases of millilensing, microlensing, or other
interesting small-scale structure, which is an attractive alter-
native to global lens modeling because it relies on a local
analysis of lensing near a cusp to probe localized structure
in the lens potential.

When we examine the 19 known four-image lenses, we
find evidence for flux ratio anomalies (violations of the cusp
relation) in four of the five lenses with cusp image configura-
tions, plus one other lens. First, B2045+265 has a very
strong flux ratio anomaly at both radio and optical /near-IR
wavelengths, which if attributed to multipole density fluctu-
ations would require significant structure in modes with
mz16. Second, BO712+472 has an anomaly that is very
strong at optical/near-IR wavelengths but marginal at
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radio wavelengths, which would require structure in multi-
pole modes with m = 8. The fact that the anomaly is much
stronger at optical/near-IR wavelengths than at radio
wavelengths might suggest that it is due to microlensing
rather than millilensing, but further study is required to test
that hypothesis. Third, 1RXS J1131—1231 has a strong
anomaly at optical wavelengths, which would require struc-
ture in multipole modes with m>10. Fourth, RX
J09114-0551 has a value of R, that suggests a flux ratio
anomaly but whose interpretation is somewhat compli-
cated. As the only known system where the source lies near
a cusp on the minor (rather than major) axis of the lens
potential, RX J0911+40551 is the only one where octopole
modes can allow simple lens potentials to produce relatively
high values of R.sp. Strong conclusions about the putative
anomaly will require better knowledge of the distribution of
octopole amplitudes in real galaxies. Still, we believe that
the evidence for a flux ratio anomaly in this system is good,
especially when the fact that the lens lies in a cluster environ-
ment is taken into account. Finally, SDSS J0924+4-0219 is an
intriguing system with a flux ratio anomaly so strong that it
is identified by the cusp relation analysis even though the
lens does not have a cusp image configuration.

Interestingly, we find that the cusp lens B1422+231 does
not obviously violate the cusp relation, even though it is
known to have a flux ratio anomaly from detailed lens
modeling (Mao & Schneider 1998; Bradac¢ et al. 2002;
Metcalf & Zhao 2002). This illustrates an important point:
in analyzing the cusp relation we have ignored constraints
from the observed image positions, in order to be general
and to avoid explicit modeling as much as possible. The idea
is that an analysis based purely on magnification relations is
the most robust and conservative way to identify flux ratio
anomalies. Adding constraints from the image positions
yields an analysis that is more sophisticated and has more
power to identify flux ratio anomalies (see Metcalf & Zhao
2002 for a good example), but it requires detailed modeling
and is therefore less generic. Furthermore, even when direct
modeling suggests that a set of flux ratios cannot be fitted by
simple lens potentials, it may not reveal why that is the case.
The cusp relation immediately pinpoints the cause of the
failure. For these reasons, we believe that the cusp relation
analysis is the best place to start when seeking to identify
lenses with flux ratio anomalies (at least for lenses with cusp
configurations). If an observed lens violates the cusp rela-
tion, then the anomaly is unambiguous and easy to under-
stand. If it does not violate the cusp relation, it may still
have an anomaly but may be revealed only by more
sophisticated and less model-independent analyses.

Although we have argued that flux ratio anomalies exist
and indicate a strong need for small-scale structure in lens
galaxies, we cannot draw strong conclusions about what
that structure must be. Analyses based on image positions
and broadband flux ratios can only give an upper limit on
the characteristic angular scale of the structure implied by
flux ratio anomalies (see also Evans & Witt 2002; Quadri
et al. 2003; Moller et al. 2003). Plausibility arguments and
astrophysical expectations might be invoked to favor one
possibility over another. For example, stars are known and
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dark matter clumps expected to be abundant in lens
galaxies, while high-order multipole modes are not, so one
might prefer to attribute flux ratio anomalies to stars and
dark matter clumps. However, it is important to
acknowledge the prejudices inherent in such arguments.

Fortunately, there are excellent prospects for obtaining
data that move beyond broadband fluxes to determine the
nature of the small-scale structure. One possibility is to look
for time variability that is an unmistakable signature of
microlensing by stars (e.g., Wozniak et al. 2000; Schechter
et al. 2003). A second good possibility is to look for Einstein
ring images of the quasar host galaxy in deep near-IR
images. The Einstein rings would vastly improve the con-
straints on the global properties of the lens potential and
reveal whether high-order multipole modes are acceptable
(Kochanek et al. 2001; Kochanek & Dalal 2003). A third
possibility is to use an aspect of the cusp relation that we
have ignored, namely, the sign of R, Several recent
studies have indicated that localized structure is sensitive to
the image parities, most often suppressing negative-parity
images and occasionally increasing the magnification of
positive-parity images (Schechter & Wambsganss 2002;
Keeton 2003), while global modes make no distinction
between different images. Thus, in an ensemble of lenses
with flux ratio anomalies, the presence or absence of skew-
ness in the set of R, values could reveal whether the small-
scale structure is local or global. Indeed, Kochanek & Dalal
(2003) already find evidence that many flux ratio anomalies
can be attributed to suppression of negative-parity images,
which suggests that many flux ratio anomalies are in fact
caused by millilensing and/or microlensing. Finally,
resolved high-resolution spectroscopy of systems with flux
ratio anomalies offers the intriguing possibility of determin-
ing the physical scale of the structure (Moustakas & Metcalf
2003; Wisotzki et al. 2003). Thus, the future is very bright
for using detailed study of lenses with flux ratio anomalies
to learn about small-scale structure in lens galaxies. Since all
of these applications begin with the identification of flux
ratio anomalies, the cusp relation analysis will be of
fundamental importance to all of them.
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APPENDIX A
UNIVERSAL RELATIONS FOR CUSPS

In this appendix we study the general properties of the lensing map near a cusp catastrophe to derive generic relations
between the image positions and magnifications that should be satisfied whenever the source is sufficiently close to a cusp. This
analysis applies to ordinary cusps, in which the two branches of the curve approach the cusp from opposite sides of the line
that is tangent to the cusp. The analysis may not be valid for ramphoid cusps, an alternate situation where the two branches
approach the cusp from the same side of the tangent line (for examples, see Petters & Wicklin 1995; M. Oguri et al. 2003, in
preparation). Only ordinary cusps have been observed, and ramphoid cusps are expected to be rare in lensing situations of
astrophysical interest.

Al. LOCAL ORTHOGONAL COORDINATES

Consider the lens equation
y=x—grady(x) . (A1)

Assume that the induced lensing map, 7(x) = x — grad ¢)(x), from the lens plane L to the light source plane S is locally stable,
which yields that the caustics of # are either folds or cusps (Petters et al. 2001, p. 294). Then translate coordinates in the lens
and light source planes so that the cusp point of interest is at the origin and the critical point mapping to the cusp is also at the
origin, i.e., #(0) = 0. By abuse of notation, the resulting translations of x and y will still be denoted by those symbols.

We now define a change of coordinates about the origins of the lens and light source planes: x — 8, y — u. The coefficients
of the quadratic terms of the Taylor expansion of ) at the origin are

a=3vn(0),  b=vn0), =1y 0), (A2)

where the subscripts indicate partial derivatives relative to x = (xj, x»). Since the origin is a cusp critical point, (1 — 2a) and
(I — 2¢) cannot both vanish (Petters et al. 2001, p. 349). Without loss of generality, we shall assume that (1 — 2a) # 0. Define
an orthogonal matrix as follows:

| s :
Mo 1-2 bA]' A3)
(1—2ap4b2 | b 1-2a
The new coordinate systems are defined by
0=(0,,0,) = Mx, u=(u,un) =My . (A4)

Note that this is the same coordinate change in the lens and light source planes, and the coordinates depend on the potential.

It can be proven rigorously that the lensing map # in the orthogonal coordinates (eq. [A4]) can be approximated in a
neighborhood of the cusp critical point at the origin by a simple polynomial mapping (Petters et al. 2001, pp. 341-353; see also
Schneider et al. 1992, p. 193):

up = ch) +§9§ . uy =016, +ab3, (AS5)

where
a = —¢m(0), b=—12(0)#0,
c=1—9¢(0)#0,  2ac—bh #0. (A6)

The partial derivatives of ¢ are relative to the original coordinates x = (xi, x3). The origin in the light source plane is called a
positive cusp if 2ac > b? and a negative cusp if 2ac < b2. A source inside a positive cusp has, locally, two images with positive
parity and one with negative parity; the reverse is true for negative cusps.

A2. POSITION RELATIONS

Using the lens equation (AS5), the three local lensed images associated with a source inside and close to the cusp have the
following positions (e.g., Gaudi & Petters 2002):

(m_b -
0; = (c 2Cz[,z,) , i=1,2 3. (A7)

The z; are the three real solutions of the cubic equation

2 +pz+q=0, (A8)



No. 1, 2003 LENSES WITH SMALL-SCALE STRUCTURE. I 155
where

2b 2c
=————UuU =p =———u = —qup . A
p 2ac — b2 up =puy, q 2ac — b2 L) quz (A9)

Note that when the source is inside the cusp, the discriminant,

3 2 L3 PR
_(pr g\~ 4pu) +27(qua)
p=(§) + (%) Mg (A10)
is negative, so equation (A8) does have three real roots.
The usual factoring of a cubic polynomial yields
0=0z—-21)(z—2)(z—2z3) (A11)
=2 51+ 4 5]+ [n12 + 2123 + 2223z — 2120273 (A12)

Identifying coefficients with equation (AS) yields three relations between the image positions:

Z1+z204+2z3=0, (A13)
z122 + 2123 + 2223 = puy (A14)
Z1Z2z23 = éuz . (AlS)

These are universal relations satisfied by the image positions of a triplet associated with a source near a cusp. Two additional

relations can be obtained, respectively, by squaring equation (A13) and using equation (A14), and squaring equation (A14)
and using equation (A13):

A+ 2+ = b, (Al6)

(z122) + (2123)° + (2223)° = (pun)* . (A17)

These relations are not independent of equations (A13)-(A15), but they are more useful in certain circumstances (as seen
below).

A3. MAGNIFICATION RELATIONS

The signed magnification of each image 8; in the triplet associated with the cusp is given by

1 p
= = =1, 2, 3 AlS8
M= detlacu)(0) ~ b(puy +322) ' O (A18)

where Jacu is the Jacobian matrix of the lensing map (eq. [AS5]). Note that Jacu = M Jacy, so with M an orthogonal matrix
we verify that the magnification is independent of our choice of coordinates: det[Jac u] = det[Jacy].

Three known universal relations between the magnifications y; are as follows (Schneider & Weiss 1992; Zakharov 1995;
Petters et al. 2001, p. 339):

Mt +u3 =0, (A19)
53
b uy
iy + py iy + o piy = 362D (A20)
53
Mtals = 0853D (A21)

where D is given by equation (A10). These relations can be verified by direct calculation from equation (A18), using the
position relations given by equations (A15)-(A17) for simplifications. In analogy with the position relations, we can derive
additional magnification relations:

2 2 2 133741
lul+1u2+:u3:18b2D 9 (A22)
~3 2
pu
(i)’ + (1) + (pppt)* = (—36b2 D> : (A23)

These quadratic magnification sum rules have not appeared in the literature before.
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APPENDIX B
SIMPLE LENS POTENTIALS

In this appendix we derive exact solutions to the lens equation to use as a benchmark for understanding the cusp relations.
Exact solutions are possible only for certain lens potentials, and then only for sources on a symmetry axis. We consider two
families of potentials: a spherical galaxy with a power-law density profile plus an external shear, and a singular isothermal
ellipsoid (SIE) with multipole density perturbations plus an external shear aligned with the major or minor axis of the galaxy.

Bl. POWER-LAW GALAXY WITH SHEAR

Consider the lens potential

1

v(r,¢) == RET — 2 r*cos2¢ . (B1)
The first term represents a spherical galaxy with a power-law profile for the surface mass density,
() « (REin>2_ﬂ
k(r) = =—|— , B2
=5_=317 (B2)

where RE;, is the Einstein radius. The case o = 1 corresponds to a singular isothermal sphere (SIS), while the cases o < 1 and
a > 1 correspond to steeper and shallower profiles, respectively. The second term in the potential represents an external tidal
shear with amplitude . Without loss of generality, we are working in coordinates such that the shear is aligned with the
horizontal axis (y > 0) or the vertical axis (v < 0).

Using polar coordinates in the image plane and Cartesian coordinates in the source plane, the lens equation has the form

Re: 2—a
yi=rcoso|l+~— <Sm) 1 , (B3)
Re: 2—a
yzzrsiw[l—y—(%) 1 , (B4)
and the lensing magnification u is given by
R o 42« R o 2—a
pl=1-9-(1-a) (f) —<f> [+ (2 — a)ycos2g] . (B5)
The critical curve in the image plane is the curve where 4~! = 0, and it maps to the caustic in the source plane. The caustic has
a cusp on the horizontal axis at position (y;., 0), which corresponds to a point on the critical curve at position (xi., 0), where
REin
Xlp =——————, B6
(1=t (B0
27REin
Vie=""——"Fm-a - B7
(1= )
The Taylor series coefficients used to define the local orthogonal coordinate system in § A1 are as follows:
a=4-1+a(l=9], b=0, &=}, (B8)
2—o (4-a)/(2-a)
a = ( - ) ) C:2_a(1_7)7 (B9)
ZR%Ein
2-—«w Rg;
b — 1— (B—a)/(2—a) 7 s _ Ein ' B10
e (1=7) e (B10)

Hence, the transformation matrix M in equation (A4) is the identity matrix, so the  and u coordinate systems are simply the x
and y coordinate systems translated so the cusp point is at the origin.

Note that although the potential 1) is not well defined in the limit o« — 0, the lens equation and magnification and other
quantities are perfectly well defined and correspond to a point mass in a shear field. Furthermore, in this limit the surface mass
density X is a 6-function as expected for a point mass. Hence, in this formalism we can consider the case o = 0 to correspond
to a point mass lens.

Consider a source on the horizontal axis inside the caustic; for v > 0 (v < 0) this corresponds to the major (minor) axis of
the lens potential. The lens equation can be solved exactly because of symmetry. There is at least one image on the x;-axis'*

14 There may or may not be an image on the x;-axis on the opposite side of the origin from the source, depending on whether the cusp is “clothed > or
“naked” (e.g., Schneider et al. 1992; Petters et al. 2001). We are interested only in the image on the x;-axis on the same side of the origin as the source.
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and two images off the x;-axis. By symmetry, the two off-axis images are identical modulo some signs. To find the positions of
these two images, note that with y, = 0 and ¢ # 0 the only way for equation (B4) to be satisfied is for the term in square
brackets to vanish. This condition yields the polar radius, which can then be substituted into equation (B3) to find the polar
angle. Thus, the positions of the two off-axis images, which we label A and C, are

REin

VA:VC:(177)1/<27Q) ) (Bll)
¢a = —¢c = cos” ! (5-:) : (B12)

where y;.1s given by equation (B7). Their magnifications of these two images are

57y -1
a = the = {2V(17)(2a) [1 () H . (B13)

The image separation for this triplet is simply d = 274 sin ¢, .
For the on-axis image, which we label B, equation (B4) is satisfied trivially (y» = 0 and ¢ = 0). Equation (B3) can be solved
analytically for integer and half-integer values of «, yielding

R+ )RY,

a=0: rg = 2057 , (B14)
1 (E+x1)°
== = bel B15
a=3 B 361 + ) (see below) , (B15)
)1+ Rgin
=1: = Bl
(6% s 1_’_7 ) ( 6)
0ol ra — Rgin +2(1 +7)y1 + \/REinZ[REin +4(1 +7)y] . (B17)
2 2(1 ++)
In the result for a = 1, £ is given by
12
€ =Z(1+ 7Ry — 11 +3{301 + 1) RE 2701+ ) RE, - 47]}*. (B1S)

The magnification ug of image B can then be computed from equation (BS5).
This analysis applies only to sources on the symmetry axis of the lens, but we can begin to understand what happens when
the source is moved off-axis by examining derivatives with respect to y,. The first derivative of R, vanishes by symmetry,

aRcusp
0>

~0, (B19)

»=0
so the axis is a local extremum. The second derivative, which determines whether it is a local maximum or minimum, can be
computed explicitly for an SIS plus shear potential. After lengthy but straightforward algebra, we find
82Rcusp
a3

_ 1+
eo 2sin*(0/2)[3 42y + (1 + ) cos(6/2) + ycos 6]

% [47(1 =) + (7467 =) cos <§> +167(2 +7) cos® <§)

+ (5 + 18y + 134?) cos’ <§) + 127(1 + 37) cos* (g)] . (B20)

The factor on the first line is manifestly negative, while the quantity in square brackets on the second and third lines is positive
over the entire interesting range 0 < 6 < 7 and |y| < 1. Thus, the second derivative is negative, and hence R, is 2 maximum
on the axis. While this proof formally holds only for the SIS plus shear potential, intuition and Monte Carlo simulations
suggest that it is not restricted to this model. On-axis sources therefore provide a simple and important upper bound on Rysp.

B2. GENERALIZED “ISOTHERMAL” GALAXY WITH SHEAR
Consider the potential /density pair

<

=

&
I

rF(¢) — 5;’2 cos2¢ , (B21)

(B22)
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where, from the Poisson equation, F(¢) and G(¢) are related by
G(¢) = F(¢) + F"(¢) . (B23)

The density and the first term in the potential correspond to a mass distribution that is scale-free in the radial direction and
produces a flat rotation curve; such a model is often referred to as ““ isothermal ” in the lensing literature. The mass distribution
is allowed to have an arbitrary angular shape specified by the functions F(¢) and G(¢). This family of models includes both the
SIE and the singular isothermal elliptical potential but is much more general, and its lensing properties have been studied by
Witt, Mao, & Keeton (2000), Evans & Witt (2001, 2002), and Zhao & Pronk (2001). The second term represents an external
tidal shear with amplitude ~, in coordinates such that the shear is aligned with the horizontal axis (v > 0) or the vertical axis
(v <0).

In order to make analytic progress with this model, we assume that the shape function F(¢) is an even function, i.e.,
F(¢) = F(—¢). In other words, we assume that the galaxy is symmetric about the horizontal axis. The shear we consider
therefore does not have an arbitrary orientation but is either aligned with or orthogonal to the galaxy’s symmetry axis.
Although not completely general, these two cases should bound the interesting range of shears.

Using polar coordinates in the image plane and Cartesian coordinates in the source plane, the lens equation has the form

y1 = (1 +7)rcos¢ — F(p)cos¢ + F'(p)sin¢ (B24)
y2 = (1 —9)rsing — F(¢)sing — F'(¢)cos ¢ , (B25)

and the lensing magnification is u given by!3
W =1—~=2(1 4 vcos2¢)s(r,d) . (B26)

The critical curve can be written in parametric form as

1 +ycos2¢

rc((b) 1—+2 G(¢) ) (B27)

which can be used in the lens equation to obtain a parametric expression for the caustic. The condition F(¢) = F(—¢) ensures
that there is always a cusp at ¢ = 0, whose location in the image and source planes is

X1 = % , (B28)
= 2F ) + (L +2)F7(0) (B29)
C 1 _ ’)/ .

In general this cusp is a simple cusp, but for some combinations of the shape function G(0) and shear +y it can be part of a higher
order butterfly catastrophe. We find that butterfly catastrophes are rare on the major axis of the lens potential but can be
relatively common on the minor axis when the potential has significant power in high-order multipole modes.

The Taylor series coefficients used to define the local orthogonal coordinate system in § A1 are as follows:

a=-3. b=o, @Zéa (B30)
3 1"
a:(1_67) 3G(O();(?))? L ) c=1+7, (B31)
(1= o 6G(0)?
TG0 PTU=)660) - (146 (0)] (B32)

Hence, the transformation matrix M in equation (A4) is the identity matrix, so the @ and u coordinate systems are simply the x
and y coordinate systems translated so the cusp point is at the origin.

A source on the horizontal axis inside the caustic has at least one image on the x;-axis and two images off the x;-axis.
Because of the reflection symmetry F(¢) = F(—¢), the two off-axis images are identical modulo some signs. The polar radius
for these two images, labeled A and C, is found by requiring that equation (B25) have a nontrivial solution (i.e., ¢ # 0):

1= 1 = [F(0n) + F'(6n) ot ] (B33)

Their polar angles satisfy po = —¢c = 0/2, where @ is the opening angle defined in § 2. The image separation for this triplet is

15 Note that in the absence of shear (7 = 0), the magnification is simply u = (1 — 2/1)’] and the critical curve is the isodensity contour x = % of the galaxy
(Witt et al. 2000; Evans & Witt 2001, 2002; Zhao & Pronk 2001).
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simply d = 2ra sin ¢a. The source position is, from equation (B24),

y= ( [VF (¢a) sin2¢a 4 (1 +vcos 2¢4) F'(¢a)] - (B34)

1 — ) sin ¢a
Finally, the position of the on-axis image (labeled B) is found by solving equation (B24) with ¢g = 0:

1+ F(0)
=7 B35
B 1+~ (B33)
Using equation (B26), we find the magnifications of the three images to be
IR F(¢a) + F"(¢a)
eyt =142 —= (1 =9)(1 +~cos2 , B36
HA Hc Y ( 7)( Y ¢A)F(¢A) +F/(¢A) COtQSA ( )
_ F(0)+ F"(0
i =17 — (142 FOEO) (B37)

F(0) +

A specific case of interest is an SIE, which has the shape functions (Kassiola & Kovner 1993; Kormann, Schneider, &
Bartelmann 1994; Keeton & Kochanek 1998)

o REin

GSIE(¢) - m ) (B38)
_ Rgin ) V2ecos ¢ . 1 V2esin ¢

Fsie(¢) NG cos ¢ tan (JTTM) + sin ¢ tanh <m> ] . (B39)

[The parameter ¢ is related to the minor-to-major axis ratio ¢ of the ellipse by € = (1 — ¢?)/(1 + ¢?), and it is a convenient
parameter for this formalism; however, in the main body of the paper we always quote the true ellipticity e = 1 — ¢.] When
e > 0(e < 0), this formalism describes a source on the major (minor) axis of the galaxy. When € and ~ have identical (opposite)
signs, the shear is aligned with (orthogonal to) the galaxy’s major axis. We note that when thinking in terms of a multipole
expansion, the SIE has power in all even multipole moments; the multipole coefficients,

Rein [*™  cos(me)
SIE __ \Ein
hm 2w /0 VI —ecos2¢ ¢ (B40)

are shown in Figure 10.

We also consider adding perturbations that represent departures from elliptical symmetry in the density distribution.
Examples of such perturbations are ““ boxy ” or ““ disky " isophotes, or disklike components, all of which are observed (Bender
et al. 1989; Saglia et al. 1993; Kelson et al. 2000; Rest et al. 2001; Tran et al. 2003) and predicted (Heyl et al. 1994; Naab &
Burkert 2003; Burkert & Naab 2003) in early-type galaxies. It is convenient to express the perturbations in terms of multipole

(@]
(@]
A
e
o~
(@)
(o]
(@]
a
—_

FiG. 10.—First six nonzero multipole coefficients for an SIE galaxy
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modes. The shape functions for an mth-order mode are

Gm((b) = am

Fn(¢)

pert

1o

Vol. 598
cos(mo) , (B41)
cos(mao) , (B42)

where the perturbation amplitude a;;, is defined such that the deviation of an isodensity contour (say, k = %, although since
the potential is scale-free, the choice is irrelevant) from a pure ellipse is

or = ay" cos(ma) . (B43)

This definition is exactly equivalent to the amplitude used to quantify isophote shapes in observed galaxies (e.g., Bender et al.
1989; Saglia et al. 1993; Rest et al. 2001). It is closely related to the fractional change in the surface density,

pert

b _ G cos(mep)y/1 —ecos2¢ . (B44)

R REin

The perturbation amplitude has dimensions of length, but we follow observational studies and normalize it by the size of the
reference ellipse. We can therefore adopt a4 perturbation amplitudes directly from the observational studies.
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