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ABSTRACT

We analyze a 19 night photometric search for transiting extrasolar planets in the open cluster NGC 1245. An
automated transit search algorithm with quantitative selection criteria finds six transit candidates; none are bona fide
planetary transits. We characterize the survey detection probability via Monte Carlo injection and recovery of realistic
limb-darkened transits. We use this to derive upper limits on the fraction of cluster members with close-in Jupiter
radii, Ry, companions. The survey sample contains ~870 cluster members, and we calculate 95% confidence upper
limits on the fraction of these stars with planets by assuming that the planets have an even logarithmic distribution in
semimajor axis over the Hot Jupiter (HJ; 3.0 < P day ' < 9.0) and Very Hot Jupiter (VHJ; 1.0 < P day ! < 3.0)
period ranges. For 1.5R; companions we limit the fraction of cluster members with companions to <6.4% and <52%
for VHJ and HJ companions, respectively. For 1.0R; companions we find that <24% have VHJ companions. We do
not reach the sensitivity to place any meaningful constraints on 1.0R; HJ companions. From a careful analysis of the
random and systematic errors of the calculation, we show that the derived upper limits contain a +13%/—7% relative
error. For photometric noise and weather properties similar to those of this survey, observing NGC 1245 twice as long
results in a tighter constraint on HJ companions than observing an additional cluster of richness similar to that of NGC
1245 for the same length of time as this survey. If 1% of stars have 1.5Ry HJ companions (as measured in radial
velocity surveys), we expect to detect one planet for every 5000 dwarf stars observed for a month. To reach an ~2%
upper limit on the fraction of stars with 1.5R; companions in the 3.0 < P day ' < 9.0 range, we conclude that a total
sample size of ~7400 dwarf stars observed for at least a month will be needed. Results for 1.0R; companions, without

substantial improvement in the photometric precision, will require a small factor larger sample size.
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1. INTRODUCTION

Extrasolar planet detections and analysis of the nondetections
further our knowledge of the planet formation process and con-
tribute to an empirical determination of the typical planetary
system. These empirical constraints will eventually decide the ubiqg-
uity or rarity of planetary bodies in the universe. A variety of tech-
niques exist to detect extrasolar planets (Perryman 2000), and there
are currently 168 extrasolar planet discoveries.

Most of the extrasolar planets have been discovered using the
radial velocity technique. Radial velocity detections indicate that
1.2% =+ 0.3% of FGK main-sequence stars in the solar neigh-
borhood have a “Hot” Jupiter-mass planet (HJ) orbiting within
0.1 AU (Marcy et al. 2005). At this small separation from the
central star, the high temperatures and low disk column densities
prevent in situ formation of HJs (Bodenheimer et al. 2000). Sev-
eral mechanisms exist to exchange angular momentum between
the protoplanet and natal disk, enabling the protoplanet to mi-
grate from a more likely formation separation (several AU) to
within 0.1 AU (Terquem et al. 2000). Due to tidal circulariza-
tion, HJs have nearly circular orbits with an observed median
eccentricity, () = 0.07, whereas planets with larger separations
have a median eccentricity of (e) = 0.25.

In addition to the detection statistics and planet properties, the
extrasolar planet detections indicate several physical relation-
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ships between the stellar host properties and the frequency of ex-
trasolar planets. The most striking of these is that the probability
for hosting an extrasolar planet increases rapidly with stellar metal
abundance, consistent with P o Ner (Fischer & Valenti 2005).
The frequency of planets may also depend on the stellar mass.
Butler et al. (2004) and Bonfils et al. (2005) point out that there
exists a deficit of M; planets orbiting M dwarf stars. How-
ever, the increasing number of short-period Neptune-mass plan-
ets being discovered around M dwarfs suggests that the overall
frequency of planets (of all masses) orbiting M dwarfs may
be similar to FGK dwarfs, but the typical planet mass is less,
thereby escaping detection given the detection limitations of the
current radial velocity surveys (Bonfils et al. 2005). In addition,
none of the M dwarfs harboring planets are metal-rich (Bonfils
et al. 2005).

A coherent theory of planet formation and survival requires
not only reproducing the physical properties of the planets but
reproducing any trends in the physical properties on the host
environment. Despite the knowledge and constraints on extra-
solar planets that radial velocity surveys provide, such surveys
have their limitations. The high-resolution spectroscopic re-
quirements of the radial velocity technique limit its use to the
solar neighborhood and orbital periods equivalent to the life-
time of the survey. A full consensus of the planetary formation
process requires relying on additional techniques to detect ex-
trasolar planets in a larger variety of conditions prevalent in the
universe.

For instance, microlensing surveys are sensitive to extrasolar
planets orbiting stars in the Galactic disk and bulge with distances
of many kiloparsecs away (Mao & Paczynski 1991; Gould &
Loeb 1992). Two objects consistent with M; companions have
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been detected via the microlensing technique (Bond et al. 2004;
Udalski et al. 2005). Additional information is obtained from
studying the microlensing events that did not result in extra-
solar planet detections. Microlensing surveys limit the fraction
of M dwarfs in the Galactic bulge with My companions orbiting
between 1.5 and 4 AU to <33% (Albrow et al. 2001; Gaudi et al.
2002).

Although limited to the solar neighborhood, attempts to di-
rectly image extrasolar planets are sensitive to planets with semi-
major axis beyond 20 AU. The light from the parent star limits
detecting planets interior to the seeing disk. Adaptive optics ob-
servations of young (~1 Myr) stars provide the best opportunity
to directly image extrasolar planets, since the young planets are
still relatively bright while undergoing a rapid, cooling contrac-
tion. Although the interpretation relies on theoretical modeling
of these complex planetary objects, three sources in nearby star-
forming regions have been detected whose broadband colors and
spectra are consistent with those expected from 1M;—42M; ob-
jects (Neuhiuser et al. 2005; Chauvin et al. 2005a, 2005b).
The contrast ratios necessary for extrasolar planet detection are
difficult to reach, and results for detecting higher mass brown
dwarfs are more complete. An analysis of the Cornell High-
Order Adaptive Optics Survey derives a brown dwarf compan-
ion upper limit of 10% orbiting between 25 and 100 AU of the
parent star (Carson et al. 2005). McCarthy & Zuckerman (2004)
estimate that 1% + 1% of G, K, and M stars have brown dwarf
companions orbiting between 75 and 300 AU, but this estimate
may not account for the full range of orbital inclination and
eccentricities possible (Carson et al. 2005). At greater separa-
tions, >1000 AU, brown dwarf companions to F—~M0 main-
sequence stars appear to be as common as stellar companions
(Gizis et al. 2001).

After the radial velocity technique, the transit technique has
had the most success in detecting extrasolar planets (Konacki
etal. 2005). The transit technique can detect R transits in any stel-
lar environment in which <1% photometry is possible. Thus, it
provides the possibility of detecting extrasolar planets in the full
range of stellar conditions present in the Galaxy: the solar neigh-
borhood, the thin and thick disk, open clusters, the halo, the bulge,
and globular clusters are all potential targets for transit surveys.
A major advantage of the transit technique is the current large-
format mosaic CCD imagers, which provide multiplexed photo-
metric measurements with sufficient accuracy across the entire
field of view.

The first extrasolar planet detections via the transit technique
began with the candidate list provided by the Optical Gravita-
tional Lensing Experiment (OGLE) collaboration (Udalski et al.
2002). However, confirmation of the transiting extrasolar planet
candidates requires radial velocity observations. Due to the well-
known equation-of-state competition between electron degener-
acy and ionic Coulomb pressure, the radius of an object becomes
insensitive to mass across the entire range from below ] to the
hydrogen-burning limit (Chabrier & Baraffe 2000). Thus, objects
revealing a Ry companion via transits may actually have a brown
dwarf mass companion when followed up with radial velocities.
This degeneracy is best illustrated by the planet-sized brown
dwarf companion to OGLE-TR-122 (Pont et al. 2005). The first
radial velocity confirmations of planets discovered by transits
(Konacki et al. 2003; Bouchy et al. 2004) provided a first glimpse
at a population of massive, very close-in planets with P < 3 days
and M, > Mj; (Very Hot Jupiters; VHJ) that had not been seen
by radial velocity surveys. Gaudi et al. (2005) demonstrated that,
after accounting for the strong sensitivity of the transit surveys to
the period of the planets, the transit detections were likely con-

sistent with the results from the radial velocity surveys, imply-
ing that VHJs were intrinsically very rare. Subsequently, in a
metallicity-biased radial velocity survey, Bouchy et al. (2005b)
discovered a VHJ with P = 2.2 days around the bright star HD
189733 that also has observable transits.

Despite the dependence of transit detections on radial veloc-
ity confirmation, radial velocity detections alone only result in a
lower limit on the planetary mass and thus do not give a complete
picture of planet formation. The mass-radius information directly
constrains the theoretical models, whereas either parameter alone
does little to further constrain the important physical processes
that shape the planet properties (Guillot 2005). For example, the
mass-radius relation for extrasolar planets can constrain the size
of the rocky core present (e.g., Laughlin et al. 2005). Also, the
planet transiting across the face of its parent star provides the
exciting potential to probe the planetary atmospheric absorption
lines against the stellar spectral features (Charbonneau et al. 2002;
Deming et al. 2005a; Narita et al. 2005). Or, in the opposite case,
emission from the planetary atmosphere can be detected when
the planet orbits behind the parent star (Charbonneau et al. 2005;
Deming et al. 2005b).

Despite these exciting results, the transit technique is signifi-
cantly hindered by the restricted geometric alignment necessary for
atransit to occur. As aresult, a transit survey necessarily contains at
least an order of magnitude more nondetections than detections.
In addition, null results themselves can provide important con-
straints. For example, the null result in the globular cluster 47
Tuc adds important empirical constraints to the trend of in-
creasing probability of having a planetary companion with in-
creasing metallicity (Gilliland et al. 2000; Santos et al. 2004).
Thus, understanding the sensitivity of a given transit survey, i.e.,
the expected rate of detections and nondetections, takes on in-
creased importance. Several studies have taken steps toward
sophisticated Monte Carlo calculations to quantify detection prob-
abilities in a transit survey (Gilliland et al. 2000; Weldrake et al.
2005; Mochejska et al. 2005; Hidas et al. 2005; Hood et al. 2005).
Unfortunately, these studies do not fully characterize the sources
of error and systematics present in their analysis, and therefore
the reliability of their conclusions is unknown. Furthermore, es-
sentially all of the previous studies have either (1) not accurately
determined the number of dwarf main-sequence stars in their
sample, (2) made simplifying assumptions that may lead to mis-
estimated detection probabilities, (3) contained serious conceptual
errors in the procedure with which they have determined detection
probabilities, or (4) some combination of the above.

As a specific and important example, most studies do not apply
identical selection criteria when searching for transits among the
observed light curves and when recovering injected transits as part
of determining the survey sensitivity. Removal of false-positive
transit candidates arising from systematic errors in the light curve
has typically involved subjective visual inspections, and these sub-
jective criteria have not been applied to the recovery of injected
transits when determining the survey sensitivity. This is statisti-
cally incorrect and can, in principle, lead to overestimating the sur-
vey sensitivity. Even if identical selection criteria are applied to the
original transit search and in determining the survey sensitivity,
some surveys do not apply conservative enough selections to fully
eliminate false-positive transit detections.

In this paper we address these shortcomings of previous stud-
ies in our analysis of a 19 night photometric search for transiting
extrasolar planets in the open cluster NGC 1245. An automated
transit search algorithm with quantitative selection criteria finds
six transit candidates; none are bona fide planetary transits. We
describe our Monte Carlo calculation to robustly determine the
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sensitivity of our survey and use this to derive upper limits on the
fraction of cluster members with close-in Ry companions.

Leading up to the process of calculating the upper limit, we
develop several new analysis techniques. First, we develop a dif-
ferential photometry method that automatically selects compari-
son stars to reduce the systematic errors that can mimic a transit
signal. In addition, we formulate quantitative transit selection cri-
teria, which completely eliminate false positives due to systematic
light-curve variability without human intervention. We charac-
terize the survey detection probability via Monte Carlo injection
and boxcar recovery of transits. Distributing the Monte Carlo cal-
culation to multiple processors enables rapid calculation of the
transit detection probability for a large number of stars.

The techniques developed here enable combining results from
transit surveys in a statistically meaningful way. This work is part
of the Survey for Transiting Extrasolar Planets in Stellar Systems
(STEPSS). The project concentrates on stellar clusters, since they
provide a large sample of stars of homogeneous metallicity, age,
and distance (Burke et al. 2003, 2004). Overall, the project’s goal
is to assess the frequency of close-in extrasolar planets around
main-sequence stars in several open clusters. By concentrating on
main-sequence stars in open clusters of known (and varied) age,
metallicity, and stellar density, we will gain insight into how these
various properties affect planet formation, migration, and survival.

The survey characteristics and the photometric procedure are
given in § 2. We explain the automated algorithm to calculate
the differential light curves and describe the light-curve noise
properties in § 3. In § 4 we describe our implementation of the
box-fitting least-squares (BLS) method (Kovacs et al. 2002) for
transit detection. In § 4.2 we present a thorough discussion of the
quantitative selection criteria for transit detection, followed by a
discussion of the objects with sources of astrophysical variability
that meet the selection criteria in § 5. We outline the Monte Carlo
calculation for determining the detection probability of the sur-
vey in § 6. We present upper limits for a variety of companion
radii and orbital periods in § 7. A discussion of the random and
systematic errors present in the technique is given in § 8. We
compare the final results of this study to our expected detection
rate before the survey began and discuss the observations nec-
essary to reach sensitivities similar to radial velocity detection
rates in § 9. Finally, § 10 briefly summarizes this work.

2. OBSERVATIONS AND DATA REDUCTION
2.1. Observations

We observed NGC 1245 for 19 nights between 2001 October
24 and November 11 using the MDM 8K mosaic imager on the
MDM 2.4 m Hiltner Telescope. The MDM 8K imager consists of
a4 x 2 array of thinned, 2048 x 4096 SITe ST002A CCDs (Crotts
2001). This instrumental setup yields a 26’ x 26 field of view and
0736 pixel~! resolution in 2 x 2 pixel binning mode. Table 1 has
an entry for each night of observations that shows the number of
exposures obtained in the Cousins /-band filter, median full width
at half-maximum (FWHM ) seeing in arcseconds, and a brief com-
ment on the observing conditions. In total, 936 images produced
usable photometry with a typical exposure time of 300 s.

2.2. Data Reduction

We use the IRAF> CCDPROC task for all CCD processing.
The read noise measured in zero-second images taken consec-

5 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.

TABLE 1
MDM 2.4 m OBSERVATIONS

Number of FWHM

Date (2001) Exposures  (arcsec) Comments
75 1.2 Clear, 1st quarter moon
73 1.4 Partly cloudy
67 1.4 Partly cloudy
22 1.6 Overcast
96 1.4 Cirrus
86 1.3 Cirrus
32 1.4 Partly cloudy
32 1.4 Clear, humid, full moon
80 1.5 Clear, moon closest approach
44 1.4 Clear, humid
92 1.3 Partly cloudy, 3rd quarter moon
57 1.4 Cirrus
81 1.8 Cirrus
99 1.3 Clear

utively is consistent with read noise measured in zero-second
images spread through the entire observing run. Thus, the stabil-
ity of the zero-second image over the course of the 19 nights
allows median combining of 95 images to determine a master, zero-
second calibration image. For master flat fields, we median com-
bine 66 twilight sky flats taken throughout the observing run. We
quantify the errors in the master flat field by examining the night-
to-night variability between individual flat fields. The small-
scale, pixel-to-pixel variations in the master flat fields are ~1%,
and the large-scale, illumination-pattern variations reach the 3%
level. The large illumination-pattern error results from a sensi-
tivity in the illumination pattern to telescope focus. However,
such large-scale variations do not affect differential photometry
with proper reference-star selection (as described in § 3).

To obtain raw instrumental photometric measurements, we
employ an automated reduction pipeline that uses the DoOPHOT
point-spread function (PSF)-fitting package (Schechter et al.
1993). Comparable-quality light curves resulted from photometry
via the DAOPHOT and ALLFRAME PSF-fitting photometry
packages (Stetson 1987; Stetson et al. 1998) in the background-
limited regime. DoPHOT performs slightly better in terms of rms
scatter in the differential light curve in the source-noise-limited
regime. Mochejska et al. (2002) compare image-subtraction pho-
tometry to DAOPHOT PSF-fitting photometry. They also find
degraded performance in the source-noise-limited regime for
DAOPHOT. The photometric pipeline originated from a need to
produce real-time photometry of microlensing events in order
to search for anomalies indicating the presence of an extrasolar
planet around the lens (Albrow et al. 1998). This study uses a
variant of the original pipeline developed at Ohio State Univer-
sity and currently in use by the Microlensing Follow Up Network
(Yoo et al. 2004). Due to low stellar crowding, we estimate that
chance blends have a negligible impact on the photometry (Kiss
& Bedding 2005). Finding charts in Figure 6 (discussed in § 5)
demonstrate the stellar crowding conditions of the survey. Given
the low level of stellar crowding, image-subtraction photometry
was not explored.

In brief, the pipeline takes as input a high signal-to-noise
ratio (S/N) “template” image. A first pass through DoPHOT
identifies the brightest, nonsaturated stars on all the images. Us-
ing these bright-star lists, an automated routine (J. Menzies 2001,
private communication) determines the geometric transforma-
tion between the template image and all the other images. A sec-
ond, deeper pass with DoPHOT on the template image identifies
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all the stars on the template image for photometric measurement.
The photometric procedure consists of transforming the deep-
pass star list from the template image to each frame. These trans-
formed positions do not vary during the photometric solution.
Next, an automated routine (J. Menzies 2001, private commu-
nication) determines an approximate value for the FWHM and
sky as required by DoPHOT. Finally, DoPHOT iteratively de-
termines a best-fit, seven-parameter analytic PSF and uses this
best-fit PSF to determine whether an object is consistent with
a single star, double star, galaxy, or artifact in addition to the
photometric measurement of the object.

3. DIFFERENTIAL PHOTOMETRY

In its simplest form, differential photometry involves the use
of a single comparison star in order to remove the time-variable
atmospheric extinction signal from the raw photometric measure-
ments (Kjeldsen & Frandsen 1992). The process of selecting
comparison stars typically consists of identifying an ensemble of
bright, isolated stars that demonstrate long-term stability over
the course of the observations (Gilliland & Brown 1988). This
procedure is sufficient for studying many variable astrophysical
sources for which several percent accuracy is typically adequate.
However, after applying this procedure to a subset of the data,
systematic residuals remained in the data that were similar enough
in shape, timescale, and depth to the expected signal from a tran-
siting companion to result in a large number of highly significant
false-positive detections.

Removing <0.01 mag systematic errors resembling a transit
signal requires a time-consuming and iterative procedure for se-
lecting the comparison ensemble. In addition, a comparison en-
semble that successfully eliminates systematic errors in the light
curve for a particular star fails to eliminate the systematic errors
in the light curve of a different star. Testing indicates that each
star has a small number of stars or even a single star to employ as
the comparison in order to reduce the level of systematics in the
light curve. On the other hand, Poisson errors in the compari-
son ensemble improve as the size of the comparison ensemble
increases. In addition, the volume of photometric data necessi-
tates an automated procedure for deciding on the “best” possible
comparison ensemble. Given its sensitivity to both systematic and
Gaussian noise and its efficient computation, we choose to min-
imize the standard deviation around the mean light-curve level
as the figure of merit in determining the “best” comparison
ensemble.

3.1. Differential Photometry Procedure

We balance improving systematic and Poisson errors in the
light curve using the standard deviation as the figure of merit by
the following procedure. The first step in determining the light
curve for a star is to generate a large set of trial light curves us-
ing single comparison stars. We do not limit the potential com-
parison stars to the brightest or nearby stars but calculate a light
curve using all stars on the image as a potential comparison star.
All comparison stars have measured photometry on at least 80%
of the total number of images. A sorted list of the standard de-
viation around the mean light-curve level identifies the stars with
the best potential for inclusion in the comparison ensemble.
Calculation of the standard deviation of a light curve involves
three iterations eliminating 3 o outliers between iterations. How-
ever, the eliminated measurements not included in calculation of
the standard deviation remain in the final light curve.

Beginning with the comparison star that resulted in the small-
est standard deviation we continue to add in comparison stars
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with increasingly larger standard deviations. At each epoch we
median combine the results from all the comparison stars making
up the ensemble after removing the average magnitude differ-
ence between target and comparison. We progressively increase
the number of stars in the comparison ensemble to a maxi-
mum of 30, calculating the standard deviation of the light curve
between each increase in the size of the comparison ensemble.
The final light curve is determined using the comparison ensemble
size that minimizes the standard deviation. Less than 1% of the
stars result in the maximum of 30 comparison stars. The median
number of comparison stars is 4, with a modal value of 1. The
distribution of comparison stars has a standard deviation around
the median of 4. The fact that the standard deviations of the
majority of stars are minimized using a single comparison star
emphasizes the importance of considering all stars as possible
comparisons in order to minimize systematic errors and achieve
the highest possible accuracy.

Independent of this study, Kovacs et al. (2005) developed a
generalized algorithm for eliminating systematic errors in light
curves that shares several basic properties with the method we
have just presented. They agree with the conclusion that opti-
mal selection of comparison stars can eliminate systematics in
the light curve. They also use the standard deviation of the light
curve as their figure of merit (see their eq. [2]). More recently,
Tamuz et al. (2005) introduced an algorithm for eliminating
systematic errors that in the restricted case of equal errors is equiv-
alent to principal component analysis. A thorough comparison of
the performance between these methods has not been done. How-
ever, photometric performance is not the only figure of merit when
assessing the reliability of a light-curve generation procedure for a
transit survey. It is important to fully quantify the impact on transit
detection for a given choice in the light-curve generation proce-
dure (Moutou et al. 2005). We fully quantify the impact of the
light-curve generation procedure introduced in this study on the
survey sensitivity in § 6.1. More recently, Pont (2006) points out
the importance of assessing the impact of correlated measure-
ments on reliable transit detection.

3.2. Additional Light-Curve Corrections

Although our procedure for optimally choosing comparison
stars succeeds in dramatically reducing systematics in the light
curves, we find that some additional systematic effects neverthe-
less remain. We introduce several additional corrections to the
light curves to attempt to further reduce these effects.

In good seeing, brighter stars display saturation effects, whereas
in the worst seeing, some stars display light-curve deviations that
correlate with the seeing. To correct for these effects, we fit a two-
piece, third-order polynomial to the correlation of magnitude ver-
sus seeing. The median seeing separates the two pieces of the fit.
We first fit the good-seeing piece with the values of the polynomial
coefficients unconstrained. We then fit the poor-seeing piece but
constrain the constant term such that the fit is continuous at the
median seeing. However, we do not constrain the first or higher
order derivatives to be continuous. In performing this fit we ex-
cise measurements from the light curve that would lead to a seeing-
correlation correction larger than the standard deviation of the
light curve. We use this two-piece fit to correct the measurements.

Measurements near bad columns on the detector also display
systematic errors that are not removed by the differential pho-
tometry algorithm. Thus, measurements when the stellar center
is within 6 pixels of a bad column on the detector are eliminated
from the light curve.

The final correction of the data consists of discarding mea-
surements that deviate by more than 0.5 mag from the average
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Fic. 1.—Logarithm of the light-curve standard deviation as a function of the
apparent /-band magnitude ( points). The photometric precision necessary for a
6.5 o detection of 1.5Ry and 1.0R; companions, assuming the star is a cluster
member, is shown by the dashed lines. The solid lines show photometric noise
models that match the empirically determined noise properties.

light-curve level. This prevents detection of companions with
radii >3.5R; around the lowest mass stars of the sample.

3.3. Light-Curve Noise Properties

Figure 1 shows the logarithm of the standard deviation of the
light curves as a function of the apparent /-band magnitude.
Calculation of the standard deviation includes one iteration with
3 o clipping. To maintain consistent S/N at fixed apparent mag-
nitude, the transformation between instrumental magnitude to ap-
parent /-band magnitude only includes a zero-point value, since
including a color term in the transformation results in stars of vary-
ing spectral shape and thus varying S/N in the instrumental
I band having the same apparent /-band magnitude. Each in-
dividual CCD in the 8K mosaic has its own zero point, and the
transformation is accurate to 0.05 mag.

One CCD has significantly better noise properties than the
others, as evidenced by the second sequence of points with im-
proved standard deviation at fixed magnitude. The instrument con-
tains a previously unidentified problem with images taken in the
binning mode. The data were taken with 2 x 2 native pixels of
the CCD array binned to 1 pixel on readout. During readout, the
control system apparently did not record all counts in each of the
4 native pixels. However, the single CCD with improved noise
properties does not suffer from this problem, whereas all the other
CCDs do. Subsequent observations with large positional shifts
allow photometric measurements of the same set of stars on the
affected detectors and unaffected detector. Performing these ob-
servations in the unbinned and binning modes confirms that on
the affected detectors, 50% of the signal went unrecorded by the
data system. This effectively reduces the quantum efficiency by
half during the binned mode of operation for seven of the eight
detectors.

The two solid lines outlining the locus of points in Figure 1
provide further evidence for the reduction in quantum efficiency.
These lines represent the expected noise due to a source-noise-
limited error, a term that scales as a background-noise-limited
error, and 0.0015 mag noise floor. We determine the lower line
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by varying the area of the seeing disk and the flat noise level until
the noise model visually matches the locus of points for the de-
tector with the lower noise properties. Then the upper line results
from assuming half the quantum efficiency of the lower noise
model while keeping the noise floor the same. The excellent
agreement between the higher noise model and the noise prop-
erties of the remaining detectors strongly supports the conclu-
sion that half of the native pixels are not recorded during readout.
This readout error could introduce significant errors in the limit
of excellent seeing. However, only 4% of the photometric
measurements have FWHM < 2.5 binned pixels. Thus, even in
the binning mode, we maintain sufficient sampling of the PSF to
avoid issues resulting from the readout error.

The different noise properties between detectors do not com-
plicate the analysis. The transit detection method involves x?
merit criteria (see § 4.2) that naturally handle data with varying
noise properties. Other than reducing the overall effectiveness of
the survey, the different noise properties between the detectors
do not adversely affect the results in any way.

In addition to the empirically determined noise properties,
DoPHOT returns error estimates that, on average, result in re-
duced x> = 0.93 for a flat light-curve model. The average reduced
x> for all the detectors agrees within 10%. Scaling errors to en-
force reduced x* = 1.0 for each detector independently has a
negligible impact on the results; thus, we choose not to do so.

The upper and lower dashed lines in Figure 1 show the pho-
tometric precision necessary for a 6.5 o detection of 1.5R; and
1.0R; companions, respectively, assuming the star is a cluster
member. To derive the detection limits we use the scaling rela-
tion from Gilliland et al. (2000) for the transit length (their eq. [1])
with a 2.0 day period. The best-fit isochrone to the cluster from
Burke et al. (2003) provides the stellar mass-radius relation
necessary for the transit length and transit depth as a function of
apparent /-band magnitude. We also assume that observing the
transit 1.3 times is consistent with our requirement for transit
detection (see § 4.2).

4. TRANSIT DETECTION

In § 3 we describe a procedure for generating light curves that
reduces systematic errors that lead to false-positive transit de-
tections. However, systematics nevertheless remain that result in
highly significant false-positive transit detections. This section
describes the algorithm for detecting transits and methods for
eliminating false positives based on the detected transit proper-
ties. There are two types of false positives we wish to eliminate.
The first is false-positive transit detections that result from sys-
tematic errors imprinted during the signal recording and mea-
surement process. The second type of false positive results from
true astrophysical variability that does not mimic a transit signal.
For example, sinusoidal variability can result in highly signifi-
cant detections in transit search algorithms. We specifically design
the selection criteria to trigger on transit photometric variability
that affects a minority of the measurements and that are system-
atically faint. However, the selection criteria do not eliminate
false-positive transit signals due to true astrophysical variability
that mimic the extrasolar planet transit signal we seek (grazing
eclipsing binaries, diluted eclipsing binaries, etc.).

For detecting transits we employ the BLS method of Kovacs
et al. (2002). Given a trial period, phase of transit, and transit
length, the BLS method provides an analytic solution for the
transit depth. We show in the Appendix the equivalence of the
BLS method to a x> minimization. Instead of using the signal
residue (SR; eq. [5] in Kovacs et al. 2002) or signal detection
efficiency (eq. [6] in Kovacs et al. 2002) for quantifying the
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significance of the detection, we use the resulting improvement
in %2 of the solution relative to a constant flux fit, as outlined in
the Appendix.

This section begins with a discussion of the parameters af-
fecting the BLS transit detection algorithm. We set the BLS
algorithm parameters by balancing the needs of detecting transits
accurately and of completing the search efficiently. The next step
involves developing a set of selection criteria that automatically
and robustly determines whether the best-fit transit parameters
result from bona fide astrophysical variability that resembles a
transit signal. A set of automated selection criteria that only pass
bona fide variability is a critical component of analyzing the null
result transit survey and has been ignored in previous analyses.

Due to the systematic errors present in the light curve, sta-
tistical significance of a transit with a Gaussian noise basis is not
applicable. In addition, the statistical significance is difficult to
calculate given the large number of trial phases, periods, and in-
clinations searched for transits. Given these limitations, we em-
pirically determine the selection criteria on the actual light curves.
Although it is impossible to assign a formal false-alarm proba-
bility to our selection criteria, the exact values for the selection
criteria are not important as long as the cuts eliminate the false
positives while still maintaining the ability to detect Ry objects,
and identical criteria are employed in the Monte Carlo detection
probability calculation.

4.1. BLS Transit Detection Parameters

The BLS algorithm has two parameters that determine the
resolution of the transit search. The first parameter determines
the resolution of the trial orbital periods. The BLS algorithm (as
implemented by Kovacs et al. 2002) employs a period resolu-
tion with even frequency intervals, Piz = f% — n, where P is the
previous trial orbital period, P, is the subsequent (longer) trial
orbital period, and 7 determines the frequency spacing between
trial orbital periods. During implementation of the BLS algorithm,
we adopt an even logarithmic period resolution by fractionally
increasing the period, P, = P;(1 + 7). The original implemen-
tation by Kovacs et al. (2002) for the orbital period spacing is a
more appropriate procedure, since even frequency intervals
maintain constant orbital phase shifts of a measurement between
subsequent trial orbital periods. The even logarithmic period res-
olution we employ results in coarser orbital phase shifts between
subsequent trial orbital periods for the shortest periods and in-
creasingly finer orbital phase shifts toward longer trial orbital
periods. Either period-sampling procedure remains valid with
sufficient resolution. We adopt 1 = 0.0025, which, given the
observational baseline of 19 days, provides <10% orbital phase
shifts for orbital periods as short as 0.5 day.

The second parameter of the BLS algorithm determines the
resolution in orbital phase by binning the phase-folded light
curve. Binning of the data in orbital phase drastically improves
the numerical efficiency, but not without loss in determining the
correct transit properties. Kovacs et al. (2002) give a thorough
examination of how the sensitivity in recovering transits varies
with orbital phase binning resolution. To search for transit can-
didates in the light curves we adopt Npins = 400 orbital phase
bins. We verify with tests that the above parameters accurately
recover boxcar signals in the light curves. After injection of box-
car signals in the light curves, we calculate the x? of the solution
returned by the BLS method with the x? of the injected model.
Tests show that the BLS method with the above parameters
returns a x> within 30%, and typically much better, of the in-
jected model’s x2.
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4.2. Selection Criteria

We apply the BLS method following the description in § 4.1
to search for transit candidates in all 6787 stars with light curves.
A visual inspection of a light curve folded at the best-fit transit
period can generally be used to discriminate between bona fide
astrophysical variability and a false positive arising from system-
atic errors. However, a proper statistical assessment of the sensi-
tivity of a transit search requires that the exact same set of selection
criteria that are applied to cull false positives are also applied
when assessing the detection probability via, e.g., Monte Carlo
injection and recovery of artificial signals. Due to the large num-
ber of artificial signals that must be injected to calculate the
detection probability properly, using selection criteria based on
visual inspection of light curves is practically very difficult or
impossible. Therefore, quantitative, automated detection criteria
that mimic the visual criteria must be used.

We employ four selection criteria that eliminate all false detec-
tions while still maintaining the ability to detect R; companions.
These four selection criteria constitute cuts on (1) the improve-
ment in x? of a transit model over a constant flux model, (2) the
ratio between the Ax? of the best-fit transit model and the A2
of the best-fit antitransit model, (3) the fraction of Ay? from a
single night, and (4) the transit period.

The first of the selection criteria is a cut on A2, the improve-
ment in x? between a constant flux model and a transit model.
The Ax? is similar to the SR of Kovacs et al. (2002); we derive
Ax? and its relation to SR in the Appendix. We prefer Ay? over
SR, as the former allows a direct comparison of the transit de-
tection significance between light curves with different noise
properties. Given the correlated systematics in the data, we can-
not rely on analytical formulations with a Gaussian statistics ba-
sis for the statistical significance of a particular Ax? value. We
empirically determine a cut on A? in combination with the other
selection criteria to fully eliminate false detections. For a transit
detection we require Ax? > 95.0. As shown in the Appendix,
this selection criterion corresponds to a S/N ~ 10 transit de-
tection. Figure 2 shows the Ax? of the best-fit transit for all light
curves along the x-axis. The dotted line designates the se-
lection criteria on this parameter. Even with such a strict thresh-
old, there are still a large number of false positives that pass the
Ax? cut.

Systematic variations in the light curves that are characterized
by small reductions in the apparent flux of stars that are coherent
over the typical timescales of planetary transits can give rise to
false-positive transit detections. However, under the reason-
able expectation that systematics do not have a strong tendency
to produce dimming versus brightening of the apparent flux of
the stars, one would expect systematics to also result in false-
positive antitransit (brightening) detections. Furthermore, most
intrinsic variables can be approximately characterized by sinusoids,
which will also result in significant transit and antitransit detec-
tions. On the other hand, a light curve with a true transit signal
and insignificant systematics should produce only a strong tran-
sit detection and not a strong antitransit detection.

Thus, the ratio of the significance of the best-fit transit sig-
nal relative to that of the best-fit antitransit signal provides a
rough estimate of the degree to which a detection has the ex-
pected properties of a bona fide transit, rather than the properties
of systematics or sinusoidal variability. In other words, a highly
significant transit signal should have a negligible antitransit
signal, and therefore we require the best-fit transit to have a
greater significance than the best-fit antitransit. We accomplish
this by requiring transit detections to have Ax?/Ax> > 2.75,
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Fic. 2.— Values of Ax? as a function of Ay? for the resulting best-fit transit
parameters in all light curves (small points). Here Ax? and Ax? are the x>
improvement between the flat light-curve model and the best-fit transit and
antitransit model, respectively. The dotted line shows the Ax? = 95.0 selection
boundary, and the solid line shows the Ax?/Ax? = 2.75 selection boundary.
Objects in the lower right corner pass both selection criteria. The diamonds
show values of Ax? and Ax? for the six transit candidates. The stars show the
recovered values of Ax? and Ax? for the four light curves with injected transits
shown in Fig. 7. The label next to the stars corresponds to the label in the upper
right corner of each panel in Fig. 7. These curves were created by injecting
transits into the same light curve. The star labeled 0 shows the values of Ax? and
Ax2 for this light curve before the example transits were injected.

where Ay? is the x? improvement of the best-fit antitransit. For
a given trial period, phase of transit, and length of transit, the
BLS algorithm returns the best-fit transit without restriction on
the sign of the transit depth. Thus, the BLS algorithm simulta-
neously searches for the best-fit transit and antitransit, and so
determining Ax? has no impact on the numerical efficiency.

Figure 2 shows the Ax? of the best-fit antitransit versus
the A? of the best-fit transit for our light curves. The solid line
demonstrates the selection on the ratio Ax2/Ax? = 2.75.
Objects toward the lower right corner of this figure pass the
selection criteria. The objects with large Ay? typically have cor-
respondingly large A x> . This occurs for sinusoidal variability or
strong systematics that generally have both times of bright and
times of faint measurements with respect to the mean light-curve
level.

Requiring observations of the transit signal on separate nights
also aids in eliminating false-positive detections. We quantify
the fraction of a transit that occurs during each night based on the
fraction of the transit’s x* significance that occurs during each
night. The parameters of the transit allow identification of the
data points that occur during the transit. We sum the individual
2= (m; /cr,-)2 values for data points occurring during the transit
to derive X2, where m; is the light-curve measurement and o; is
its error. Then we calculate the same sum for each night indi-
vidually. We denote this x7,, night- We identify the night for which
o night contributes the greatest fraction of X2» and we call this
fraction /= Xy yight/ Xior- Finally, we require /< 0.65. This
corresponds to seeing the transit roughly 1.5 times, assuming
all observations have similar noise. Alternatively, this criterion is
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Fic. 3.—Here f (black points) is shown as a function of the best-fit transit
orbital period, where fis the fraction of the total x? improvement with the best-fit
transit model that comes from a single night. The objects that pass the Ay? >
95.0 selection criteria are shown as red points. The horizontal line shows the
f = 0.65 selection boundary. The vertical lines denote orbital period regions
avoided due to false-positive transit detections. The stars and diamonds are the
same as in Fig. 2.

also met by observing two-thirds of a transit on one night and
one-third of the transit on a separate night or observing a full
transit on one night and one-sixth of a transit on a separate night
with 3 times improvement in the photometric error. Figure 3 shows
f versus the best-fit period for all the light curves. The horizontal
line designates the selection on this parameter.

The red points in Figure 3 show objects that pass the Ax? >
95.0 selection. We find that most are clustered around a 1.0 day
orbital period. A histogram of the best-fit transit periods among
all light curves reveals a high frequency for 1.0 and 0.5 day pe-
riods. Visual inspection of the phased light curves reveals a high
propensity for systematic deviations to occur on the Earth’s ro-
tational period and 0.5 day alias. We do not fully understand the
origin of this effect, but we can easily conjecture on several ef-
fects that may arise over the course of an evening as the telescope
tracks from horizon to horizon following the Earth’s diurnal mo-
tion. In order to eliminate these false positives, we apply as our
fourth selection criteria a cut on the period. Specifically, we re-
quire transit detections to have periods that are not within 1.0 &
0.1and 0.5 + 0.025 days. The vertical lines designate these ranges
of discarded periods.

5. TRANSIT CANDIDATES

Six out of 6787 stars pass all four selection criteria. All of
these stars are likely real astrophysical variables whose vari-
ability resembles that of planetary transit light curves. However,
we find that none are bona fide planetary transits in NGC 1245.
After describing the properties of these objects we describe the
procedure for ruling out their planetary nature. Figure 4 shows
the phased light curves for these six stars. Each light-curve panel
in Figure 4 has a different magnitude scale with fainter flux levels
being more negative. The upper left corner of each panel gives
the detected transit period as given by the BLS method. The
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Fic. 4—Change in magnitude ( points) as a function of orbital phase for all stars that meet the transit candidate selection criteria. Negative values for Amag are
toward fainter flux levels. The phased period is given in the upper left corner of each panel, and the number in the upper right corner of each panel is the internal

identification number.

upper right corner of each panel gives an internal identification
number. The panels have (fop to bottom) decreasing values of the
ratio between the improvement of a transit and an antitransit
model, Ax?/Ax?>.

Table 2 lists the properties and selection criteria values for the
stars shown in Figure 4. The diamonds in Figures 2 and 3 rep-
resent the selection criteria for the six transit candidates. The pho-
tometric and positional data in Table 2 come from Burke et al.
(2004). The X2, entry in Table 2 measures the photometric
distance of a star from the isochrone that best fits the cluster
CMD. A lower value of this parameter means a star has a po-
sition in the CMD closer to the main sequence. Large points in

Figure 5 denote stars with x2,.., < 0.04, and we designate these
stars as potential cluster members. Based on 2., star 20513
and star 70178 have photometry consistent with cluster mem-
bership; thus, we also list the physical parameters of those stars
in Table 2. Burke et al. (2004) details the procedure for determin-
ing the physical parameters of a star based solely on the broad-
band photometry and the best-fit cluster isochrone. However, the
validity of the stellar physical parameters only applies if the star
is a bona fide cluster member.

Figure 6 shows a finding chart for each star with a light curve
in Figure 4. The label in each panel gives the identification
number, and the cross indicates the corresponding object. Star

TABLE 2
TraNsIT CANDIDATE DATA

vV B-V V-1 P AN T M Ty
1D R.A. (J2000.0) Decl. (J2000.0) (mag) (mag) (mag) X2., (days) (mag) (hr) ¢ Ax?/Ax> A2 f (Mp) log(R/Ry) (K)
03 15 40.0 +47 21 18 18.1 1.17 1.31 0.137 4.614 0.030 1.66 0.72 5.65 584 0.57 ...
03 15 04.6 +47 15 09 18.6 1.10 1.27 0.028 1.637 0.018 4.71 0.95 3.85 840 0.49 091 —0.095 5400
03 15 03.8 +47 14 33 16.1 1.02 1.25 0.418 3.026 0.115 4.18 0.24 3.82 88086 0.59
03 14 49.5 +47 16 03 184 129 2.00 0.863 0.349 0.145 0.90 0.72 3.76 66056 0.29
03 14 359 +47 19 29 193 1.67 3.37 4390 0.302 0.050 0.98 0.48 3.23 14063 0.21 ...
03 13 56.2 +47 06 59 21.1 128 1.79 0.017 0.640 0.032 3.07 0.16 2.86 312 0.22 0.63 —0.253 4300

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
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Fic. 5—CMD of the cluster NGC 1245. Potential cluster members having
Xfmm < 0.04 are shown with large points. Objects that exceed the selection
criteria for transit detection are shown as diamonds.

20274 is not centered in the finding chart because it is located
near the detector edge. The field of view of each panel is 54”.
North is toward the right, and east is toward the bottom. The pan-
els for stars 20065, 20398, and 20513 (located near the cluster
center) provide a visual impression of the heaviest stellar crowd-
ing encountered in the data. Figure 5 shows the V'and B — V
CMD of the cluster field as given in Burke et al. (2004). The
diamonds denote the locations of the objects that exceed the
transit selection criteria.

5.1. Consistency of Transit Parameters
with Cluster Membership

Only stars 20513 and 70718 have X2, values consistent with
cluster membership. In addition, the transit depth in both stars
indicates potential for having a Ry companion. However, quali-
tatively, in each case the transit duration relative to the orbital period
is too long to be a true planetary companion to a cluster main-
sequence star. We can use our knowledge of the physical prop-
erties of the parent stars to quantitatively rule out planetary
companions. We do this by comparing an estimate of the stellar
radius derived from the CMD to an independent estimate of a
lower limit on the stellar radius derived from the properties of the
light curve. In both cases we find that the stellar radii derived
from the CMD are well below the lower limit on the stellar radius
based on the light curve.

To derive a lower limit on the stellar radius from the light
curve, we build on the work of Seager & Mallén-Ornelas (2003).
They provide a purely geometric relationship between the orbital
semimajor axis, a, and stellar radius, R,, for a light curve with
a given period, P, depth of transit, AF, and total duration of the
transit (first to fourth contact), 7, assuming a circular orbit (see
their eq. [8]). By assuming a central transit (impact parameter
b = 0), we transform their equality into a lower limit. Using
Kepler’s third law, assuming that the mass of the companion is
much smaller than the mass of the star, and assuming that the
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Fic. 6.—Finding charts for transit candidates with light curves shown in
Fig. 4. Each panel is 54” on a side. North is toward the right, and east is toward
the bottom.

duration of the transit is much smaller than the period (7 < P),
we find

(M, + mp)l/37

P31+ VAF)’ M
where R, is in AU, M, is in units of M, and 7 and P are in years.

Parameters on the right-hand side of the above equation
contain substantial uncertainties. Replacing the parameters with
their maximum plausible deviation from their measured values
in such a manner as to decrease R« increases the robustness of
the lower limit. The orbital period determination has the largest
uncertainty. Tests of recovering transits in the light curves reveal
a 10% chance for the BLS method to return an orbital period, P’,
at the 1/2P and 2P aliases of the injected orbital period and a
<1% chance of detecting the 1/3P and 3P aliases. Misidentifi-
cation of the correct orbital period results from gaps in the ob-
serving window function. Replacing P in the above equation
with 3P’, where P’ is the orbital period returned by the BLS al-
gorithm, provides the maximum plausible deviation of this quan-
tity and increases the robustness of the lower limit. In addition,
the stellar mass determination based on the CMD potentially
has contamination from a binary companion. Thus, we replace
M, with 0.5M, where M/ is the stellar mass estimate from the
CMD. We do not modify 7 or AF. For the cases considered here,
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AF < 1, and the term 1 + v AF ~ 1 in equation (1). There-
fore, the precise value of AF has little effect on the resulting limit
on R,. The BLS algorithm fits a boxcar transit model to the light
curveviaa X2 minimization. Since, in the limit of zero noise, any
nonzero boxcar height fit to a transit can only result in an increas-
ing x> when the length of the boxcar exceeds the length of the
transit, 7 underestimates the true transit length. Making the above
replacements, the lower limit on the stellar radius is

(M!/M:)'"(r/1 day)
B> T3 day) P14 VAR

(2)

For star 20513 the above equation requires R, > 1.04 R, if
the star is a cluster member. Fits to the CMD yield a stellar radius
R. = 0.80 R The lower limit for star 70718 is R, > 0.82 R,
whereas the CMD yields R, = 0.56 R, Clearly, both stars lack
consistency between the stellar radius based on the CMD loca-
tion and the stellar radius based on the transit properties.

The transiting companions to 20513 and 70718 are also un-
likely to be planets if the host stars are field dwarfs. Tingley &
Sackett (2005) provide a diagnostic to verify the planetary nature
of a transit when only the light curve is available. The diagnostic
n, of Tingley & Sackett (2005) compares the length of the ob-
served transit to an estimate of the transit length derived by as-
suming a main-sequence mass-radius relation for the central star.
By assuming a radius of the companion of R, = 1.0R;, we find
7n, = 4.0 and 3.8 for 20513 and 70718, respectively. Values of
71, < 1 correspond to planetary transits. Therefore, 20513 and
70718 are unlikely to host planetary companions with R, < Ry if
they are main-sequence stars.

We note that our final a posteriori criterion with which we
reject cluster transit candidates, namely, the consistency between
the radius of the parent star as estimated from the CMD and the
radius as estimated from the light curve, is a conceptually dif-
ferent kind of selection criterion than those that we applied to
all the light curves to arrive at our six transit candidates. The
original four selection criteria were designed to detect bona fide
astrophysical variability that resembles the signals from transit-
ing planets but does not necessarily arise from a transiting plan-
etary companion. In principle, we could have included the radius
consistency cut as an additional selection criterion applied to all
light curves. The motivation to do this would be that imposing
this additional criterion might automatically remove some sys-
tematic false positives and so allow us to improve our efficiency
by making the other selection criteria less stringent. We have
found using limited tests that this is not the case. We therefore
chose to leave the radius check as an a posteriori cut on the transit
candidates. Nevertheless, observing a cluster does provide an ad-
vantage over observing field stars, as the additional constraint on
the stellar radius from the cluster CMD provides a more reliable
confirmation of the planetary nature than the light curve alone
(Tingley & Sackett 2005) and furthermore allows a more accu-
rate assessment of the detection probability.

It is important to emphasize that all of the injected transits with
which we compute the detection probability (§ 6) automatically
pass the radius consistency criterion. A fraction of these will be
recovered at periods that differ enough from the input period that
by using the recovered period they will no longer satisfy the radius
constraint. However, we find that this fraction is negligibly small.

5.2. Individual Cases

This section briefly discusses each object that met the selec-
tion criteria as a transit candidate but does not belong to the
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cluster. The V-shaped transit detected in star 30207 rules out a R;
companion. Transiting Ry companions result in a flat-bottomed
eclipse as the stellar disk fully encompasses the planetary disk.
A closer inspection of the light curve also reveals ellipsoidal var-
iations outside of the transit. This light curve matches the prop-
erties of a grazing eclipse, which is a typical contaminant in
transit searches (e.g., Bouchy et al. 2005a).

The remaining stars have depths too large for a Ry companion
and show evidence for secondary eclipses. Recall that we elim-
inated data points with |Am| > 0.5 mag in the light curves. This
eliminates the eclipse bottom for star 20065. Keeping all the data
for star 20065 clearly reveals the characteristics of a detached
eclipsing binary. The period BLS derived for star 20065 aligns
the primary and secondary eclipses; thus, the BLS-reported pe-
riod is not the true orbital period.

The eclipses in stars 20398 and 20274 do not perfectly phase
up. This is because the resolution in period we used for the search
prevents perfect alignment of the eclipses for such short periods.
This effect is inconsequential for detecting transiting planets, as
they all have orbital periods longer than 0.3 day.

Finally, we note that other variables exist in the data set. They
were not selected because they do not meet the Ax2. /Ax2.
selection criterion. A future paper will present variables that exist
in this data set using selection criteria more appropriate for iden-
tifying quasi-sinusoidal periodic variability (Pepper et al. 2006).

6. DETECTION PROBABILITY CALCULATION

We did not detect any transit signals consistent with a Ry com-
panion. To interpret this null result in terms of the frequency of
planetary companions to stars in NGC 1245, we develop a Monte
Carlo detection probability calculation for quantifying the sen-
sitivity of the survey for detecting extrasolar planet transits. The
calculation provides the probability of detecting a transit in the
survey as a function of the companion semimajor axis and ra-
dius. In addition to the photometric noise and observing window,
the observed properties of the transit signal depend sensitively
on the host mass, radius, limb-darkening parameters, and orbital
inclination with respect to the line of sight. Without accurate
knowledge of the stellar parameters, a detailed detection probabil-
ity is not possible. This precludes analyzing stars not belonging
to the cluster. Given the degeneracy between broadband colors
of dwarfs, subgiants, and giants, the stellar radius for most field
objects cannot be determined from the CMD alone. Assuming
that all stars of a given color are dwarfs drastically overestimates
the number of actual dwarf stars in a transit survey (Gould &
Morgan 2003). The minimal expenditure of observational re-
sources necessary for determining the stellar parameters for a
cluster transit survey provides a significant advantage over tran-
sit surveys of the field.

Each star in the survey has a unique set of physical properties
and photometric noise; thus, we calculate the detection proba-
bility for all stars in the survey. This is the first study of its kind to
do so. Given the detection probability for each star, the distri-
bution of extrasolar planet semimajor axis, and frequency of
extrasolar planet occurrence, the survey should have detected

N,
Ndet = f* Zpdet,i (3)
i=1
extrasolar planets, where the sum is over all stars in the survey,

d2p
P = / / i @ ROPE @ R) P ARy o, (4)
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where R, is the extrasolar planet radius, a is the semimajor axis,
and f; is the fraction of stars with planets distributed according
to the joint probability distribution of R, and a, d’pldR,da. The
Monte Carlo detection probability calculation provides P ;(a, R,),
the probability of detecting a transit in a given light curve. The
term Pr ;(a, R,) gives the probability for the planet to cross the
limb of the host along the line of sight, and Py, ; gives the
probability that the star is a cluster member. This framework for
calculating the expected detections of the survey follows from
the work of Gaudi et al. (2002). In the following subsections we
describe the procedure for calculating each of these probability
terms.

6.1. Calculating P.;(a,R,)

The term P, ;(a, R,) is the probability of detecting a transit
around the ith star of the survey averaged over the orbital phase
and orbital inclination for a given companion radius and semi-
major axis. We begin this section with a description of the pro-
cedure for injecting limb-darkened transits into light curves for
recovery. After injecting the transit, we attempt to recover the
transit employing the same BLS algorithm and selection criteria
as employed during the transit search on the original data. It is
critical to employ identical selection criteria during the recovery
to that employed during the original transit search, since only
then can we trust the robustness and statistical significance of the
detection. The fraction of transits recovered for fixed semimajor
axis and R, determines P.. Next, we characterize the sources of
error present in P, and how we ensure a specified level of accu-
racy. Finally, in this section we discuss the parallelization of the
calculation to obtain P, for all stars in the survey in a reasonable
amount of time.

In the Appendix we discuss the importance of injecting real-
istic transits for recovery. Mandel & Agol (2002) provide ana-
lytic formulae for calculating realistic limb-darkened transits.
We employ the functional form of a transit for a quadratic limb-
darkening law, as given in § 4 of Mandel & Agol (2002). The
quadratic limb-darkening coefficients come from Claret (2000).
Specifically, we use the /-band limb-darkening coefficients using
the ATLAS calculation for log g = 4.5, log [M/H] = 0.0, and
Vurb = 2 km S_l.

We assume circular orbits for the companions. All known
extrasolar planets to date that orbit within 0.1 AU have eccen-
tricities <0.3, and the average eccentricity for these planets is
(e) =0.07.°

After injecting the transit, we employ the BLS algorithm to
recover the injected transit signal using the selection criteria
described in § 4.2. For numerical efficiency, we relax the res-
olution of the BLS search parameters. We adopt a fractional
period step, 7 = 0.004, and phase-space binning, Ny, = 300.
Despite the reduced resolution, higher resolution converged so-
lutions reveal only a 0.003 lower probability resulting from the
adopted parameters. We correct all probabilities for this system-
atic even though it is at an insignificant level compared to the
other uncertainties.

Figure 7 (top to bottom) visualizes the injected transits with
increasing degrees of significance. This figure shows light curves
with an injected transit phased at the period as returned from
the BLS algorithm. The solid line illustrates the injected limb-
darkened transit signal. The top two panels and the bottom two
panels illustrate 1.0Rj and 1.5R; companions, respectively. The
transit recovery in the top panel barely meets the selection cri-

S See http://www.obspm.fi/encycl/catalog.html.
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Fig. 7.—Phased light curves showing the recovery of transits injected into
the light curve by the Monte Carlo calculation. The injected limb-darkened
transit signal is shown by the solid lines. The top two panels and bottom two
panels show results for 1.0R; and 1.5R; companions, respectively. The transit
recovery in the top panel barely meets the selection criteria and gives an im-
pression for the sensitivity of the survey. The labels in the upper right corners of
the panels correspond to the markers for the selection criteria values shown in
Figs. 2 and 3.

teria, thus giving a visual impression for the sensitivity of the
survey. The resulting selection criteria values after recovery of
the injected transits are shown in Figures 2 and 3 (sfars), and the
labels next to the stars correspond to the panel label given in the
upper right corner. The modeled transits shown in Figure 7 are
injected into the same light curve of a potential cluster member
with V' = 16.6 and rms scatter (before transit injection) of ¢ =
0.003. The star labeled 0 in Figures 2 and 3 represents the values
for the selection criteria found for this light curve before inject-
ing the transits.

As opposed to previous work, we carefully examine, quantify,
and control the uncertainties present in the calculation. During
injection of a transit at fixed semimajor axis, the transit can occur
during any phase of the orbit. We use the following procedure
to ensure that we inject enough trial transits at random orbital
phases to yield convergence of P.. Based on binomial statistics,
the error in the resulting probability at fixed orbital period de-
pends on the actual probability and the number of trial transit
phases, 0 = [Nyial€act(l — €act)] 1/2, where N, is the number of
trial transit phases and €, is the actual probability (unknown a
priori). Maintaining the same error in the detection probability
for differing ¢, requires a variable number of trial phases. For
each semimajor axis, we first obtain an initial estimate for the
probability, €., using Nyjag = 100. We then increase Ny, until
the probability converges to 0. = [Nijat€esi(l — €est)] > < 0.02.
The above procedure systematically overestimates e, when
€act = 0.95 and systematically underestimates €, when €, <
0.05. However, these errors are of order the adopted o, = 0.02
accuracy, and so we neglect them here.

In addition to a random orbital phase, assuming a random
orientation of the orbit requires taking into account an even
distribution in cos i, where i is the inclination of the orbit. Only a
narrow range of inclinations, cosi < (R, + R,)/a, results in a
transit. Thus, we inject the transit with an even distribution in
cos i in the range 0 < cosi < (R, + R,)/a.
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The previous discussion pertains to ensuring a prescribed ac-
curacy at a fixed semimajor axis. However, the expected detec-
tion rate also requires an integral over the semimajor axis, which
must be sampled at high enough resolution to ensure convergence
of the integral. We calculate the probability at even logarithmic
intervals, 6loga = 0.011 AU. In comparison to high-resolution
converged calculations, this semimajor axis resolution results
in an absolute error in the detection probability integrated over
the semimajor axis of o, = 0.003. We inject transits with semi-
major axis from the larger of 0.0035 AU and 1.5R, to 0.83 AU.
The best-fit isochrone to the cluster CMD determines the parent
star radius.

Generating the light curve from the raw photometric measure-
ments is numerically time-consuming. Thus, we inject the transit
after generating the light curve. This procedure has the potential to
systematically reduce or even eliminate the transit signal, because
generating the light curve and applying a seeing decorrelation
tend to “flatten” a light curve. To quantify the significance of
this effect, we inject transits into the raw photometric measure-
ments before the light-curve generation procedure for four stars
in the sample that span the observed magnitude range. Compar-
ing the detection probability obtained by injecting transits be-
fore light-curve generation to the detection probability obtained
by injecting the transit after light-curve generation reveals that in-
jecting the transit after generating the light curve overestimates the
detection probability by ~0.03. We decrease the calculated prob-
ability at fixed period by 0.03 to account for this systematic effect.

The 0.03 systematic overestimate in the detection probability
becomes increasingly important for correctly characterizing the
detection probability at long orbital periods. For instance, the
detection probability for a star of median brightness will be over-
estimated by >15% for orbital periods >4.0 days and 1.5R; com-
panions if this systematic effect is not taken into account. The
detection probability is overestimated by >50% for orbital pe-
riods >8.0 days without correction. The results for 1.0R;y com-
panions are even more severe. The detection probability would
be overestimated by 50% for periods beyond 1.8 days for a star
of median brightness without correction.

Based on the CMD of NGC 1245 (Burke et al. 2004), this
study contains light curves for ~2700 stars consistent with clus-
ter membership. Initially, we calculate the detection probability
for two possible companion radii: 1.0R;and 1.5R;. For each star,
on average we inject 50,000 transits for a single-companion
radius at 150 different semimajor axes. In total, we inject and at-
tempt to recover ~2.7 x 10 transits. Current processors allow in-
jection and attempted recovery on order of 1 s per transit. A single
processor requires ~3000 days for the entire calculation. Fortu-
nately, the complete independence of a transit injection and re-
covery trial allows parallelization of the calculation. We accomplish
aparallel calculation via a server-and-client architecture. A server
injects a transit into the current light curve and sends it to a client
for recovery.

Based on the computing resources available, we employ two
different methods for communication between the server and
clients. Using a TCP/IP UNIX socket implementation for com-
munication between the server and clients allows access to ~40
single-processor personal workstations connected via a local
area network within the Department of Astronomy at Ohio State
University. In addition, the department has exclusive access to a
48 processor Beowulf cluster via the Cluster Ohio program run
by the Ohio Supercomputer Center. The Message Passing Inter-
face libraries provide communication between the server and cli-
ents on the Beowulf cluster. A Beowulf cluster belonging to the
Korean Astronomy Observatory also provided computing resources
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Fic. 8.—Detection probability as a function of the orbital period (heavy solid
line). This is a product of the probability for a transit to occur (dashed line) and
the probability that an injected transit meets the selection criteria (light solid
line). The panels show representative stars in order of increasing apparent mag-
nitude (fop to bottom). The left panels give results for a 1.5Ry companion, and
the right panels give results for a 1.0R; companion.

for this calculation. The C programming source code for either
client-server communication implementation is available on re-
quest from the author.

Figure 8 (light solid line) shows the detection probability,
Pc(a, Ry), for three representative stars in order of increasing ap-
parent magnitude (fop to bottom) and for the two companion ra-
dii, 1.5Ry (left) and 1.0R; (right). In general, the probability nears
100% completion for orbital periods <1.0 day and then has a
power-law falloff toward longer orbital periods. The falloff in
the detection probability toward longer orbital periods partially
results from the requirement of observing more than one tran-
sit. The large drop in the detection probability around 0.5 and
1.0 day orbital periods results from the selection criteria we im-
pose. The narrow, nonzero spikes in the detection probability
near the 0.5 and 1.0 day orbital periods result from injecting a
transit at this period, but the BLS method returns a best-fit pe-
riod typically at the ~0.66 day alias.

Figure 8 shows the detection probability with 3.3 times higher
resolution in orbital period and a lower, 1%, error in the detec-
tion probability at fixed orbital period than the actual calculation.
Thus, the figure resolves variability in the detection probability
as a function of orbital period for probabilities 2 1%. However,
such fine details have a negligible impact on the results.

6.2. Calculating Pr;(a,R,)

The probability for a transit to occur is Pr = (R, + R,)/a.
This transit probability assumes that the transit is equally detect-
able for the entire possible range of orbital inclinations that geo-
metrically result in a transit. As cos i for the orbit approaches
(R« + Ry)/a, the transit length and depth decreases, degrading
the transit S/N. We address this when computing P, by inject-
ing the transit with an even distribution in cos i between the geo-
metric limits for a transit to occur. Thus, Prrepresents the over-
all probability for a transit with high enough inclination to begin
imparting a transit signal, while the detailed variation of the light-
curve signal for varying inclination takes place when calculating
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Fic. 9.—Distribution of the potential cluster members as a function of stellar
mass (open histogram). The solid line shows the membership probability (right
ordinate) as a function of stellar mass. The shaded histogram shows the product
of the potential cluster member histogram and the cluster membership proba-
bility. The corresponding apparent /-band magnitude is given along the top.

P_. Figure 8 shows Py (dashed line). The heavy solid line in
Figure 8 is the product of P, and Py.

6.3. Calculating Ppem

The Monte Carlo calculation requires knowledge of the stel-
lar properties, and the given properties are only valid if the star is
in fact a bona fide cluster member. An estimate of the field star
contamination from the CMD provides only a statistical estimate
of the cluster membership probability. Based on the study of the
mass function and field contamination in Burke et al. (2004), we
estimate the cluster membership probability, P, as a function
of stellar mass. In brief, we start with a subsample of stars based
on their proximity to the best-fit cluster isochrone (selection of
Xﬁqem < 0.04; see § 5). This sample contains N, ~ 2700 poten-
tial cluster members, and the large points in Figure 5 mark this
cluster sample in the CMD. The best-fit isochrone allows an es-
timate of the stellar mass for each member of the cluster sample,
and we separate the sample into mass bins. Repeating this pro-
cedure on the outskirts of the observed field of view, scaled for
the relative areas, provides an estimate of the field star contam-
ination in a given mass bin. We fit Py, given in discrete mass
bins, with a smooth spline fit for interpolation.

Figure 9 (solid line) shows Py, as a function of stellar mass.
The corresponding probability is given on the right ordinate. The
open histogram shows the distribution of the potential cluster
members as a function of mass. The shaded histogram shows the
product of the potential cluster member histogram and P, -
This results in, effectively, N, ¢ ~ 870 cluster members in total.
For reference, the corresponding apparent /-band magnitude is
given along the top.

7. RESULTS

7.1. Results Assuming a Power-Law
Orbital Period Distribution

Section 6 describes the procedure for calculating the sensi-
tivity of the survey to detect planetary companions as a function
of semimajor axis. The results from this calculation enable us to
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place an upper limit on the fraction of cluster members harboring
close-in companions given the null result. However, calculating
the upper limit over a range of orbital periods necessitates as-
suming a distribution of orbital periods for the planetary com-
panions. Radial velocity surveys characterize the distribution of
extrasolar planets in period as dn oc P~7dP, with 0.7 <y < 1.0,
corresponding to dn o< a’da, with 0.5 < 3< 1.0 (Stepinski &
Black 2001; Tabachnik & Tremaine 2002). These studies fit the
entire range of orbital periods from several days to several years.
More recently, after an increase in the number of extrasolar planet
discoveries, Udry et al. (2003) confirmed a shortage of plan-
ets with 10 day < P < 100 day orbits. Thus, the period distribu-
tion may take on different values of v in the P < 10 day and
P = 100 day regimes.

The initial extrasolar planet discoveries via the transit tech-
nique had periods less than 3.0 days (Konacki et al. 2004). The
detection of these VHIs contrasted with the results from radial
velocity surveys, which demonstrated a clear paucity of planets
with P < 3.0 days. After accounting for the strong decrease in
sensitivity of field transit surveys with increasing period, Gaudi
et al. (2005) demonstrated the consistency between the appar-
ent lack of VHJ companions in the radial velocity surveys and
their discovery in transit surveys. They further demonstrated that
VHIJs appear to be intrinsically much rarer than HJs (with 3 <
P day~! < 9). We therefore treat VHJs as distinct HJ populations.

Due to the incomplete knowledge of the actual period dis-
tribution of extrasolar planets and its possible dependence on the
properties of the parent star, we provide upper limits assuming an
even logarithmic distribution of semimajor axis. Thus, we assume
a form of the joint probability distribution of the semimajor axis
and R, given by

dzp
dR,da

= ké(R, — R))a™", (5)

where £ is the normalization constant, ¢ is the Dirac delta func-
tion, and R’ is the planet radius. We initially give results for
R, = 1.0Ry and 1.5R;. We follow Gaudi et al. (2005) and show
results for HJ (3.0 day < P < 9.0 day) and VHJ (1.0 day <
P < 3.0 day) ranges. In addition, we show results for a more
extreme population of companions with Pgroche < P < 1.0 day,
where Procne 1S the orbital period at the Roche separation limit.
Assuming a negligible companion mass, the Roche period de-
pends solely on the density of the companion. Jupiter, Uranus,
and Neptune have nearly the same Proche ~ 0.16 day.

Figure 10 shows the probability for detectinga VHJ (1.0 day <
P < 3.0 day) companion with an even logarithmic distribution
in semimajor axis as a function of apparent /-band magnitude.
The left and right panels show results fora 1.5R;and 1.0R; com-
panion, respectively. Figure 10 (fop) shows the probability for
detecting an extrasolar planet, Py, assuming Py, = 1.0. Fig-
ure 10 (bottom) shows Py after taking into account Py.,. The
results for 1.0R; companions broadly scatter across the full range
of detection probability. However, the 1.5R; companion results
delineate a tight sequence in detection probability as a function
of apparent magnitude.

The detection criteria for a 1.5R; companion lie many times
above the rms scatter in the light curve (see Fig. 1). Thus, a single
measurement contributes a large fraction of the S/N required for
detection. In this limit, the observing window function mainly
determines the detection probability, and as we show in § 9.2
the result is similar to results obtained by the theoretical detec-
tion probability framework of Gaudi (2000). However, the 1.0R;
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Fic. 10.—Probability for transit detection as a function of the apparent /-
band magnitude, assuming an even logarithmic distribution in semimajor axis in
the range 1.0 day < P < 3.0 days. The top panels assume Py = 1.0. The left
panels show results for a 1.5R; companion, and the right panels show results for
a 1.0Ry companion. The bottom panels are the same as the top panels, but they
take into account the membership probability P em.

companion transit comes closer to the detection threshold. Pepper
& Gaudi (2005) describe the sensitivity of a transit survey as a
function of planet radius. The sensitivity of a transit survey de-
pends weakly on R,, until a critical radius is reached when the S/N
of the transit falls rapidly. The sensitivity of the survey for 1.0R;
is near this threshold, hence the large scatter in the detection
probability.

With the detection probabilities for all stars in the survey for
the assumed semimajor axis distribution, we can calculate the
expected number of detections scaled by the fraction of cluster
members with planets. Thus, from the Poisson distribution, a null
result is inconsistent at the ~95% level when Nge ~ 3. This al-
lows us to solve for the 95% confidence upper limit on the fraction
of cluster members with planets using equation (3). This gives

N,
[ 3.0/ Paai (95% cll). (6)

=1

Figure 11 shows the 95% confidence upper limit on the frac-
tion of stars with planets in NGC 1245 for several ranges of or-
bital period. The solid and dashed lines give results for 1.5R; and
1.0R; companions, respectively. For 1.5R; companions we limit
the fraction of cluster members with companions to <6.4% and
<52% for VHJ and HJ companions, respectively. For 1.0R; com-
panions we find that <24% have VHJ companions.

The detection probability decreases rapidly with orbital period
beyond 1.0 day. As a result, the survey does not reach the sen-
sitivity needed to place an interesting upper limit on 1.0R; com-
panions beyond P > 3.0 days. We also place a limit of <1.5%
and <2.3% for 1.5Ry and 1.0Ry companions, respectively, in the
Proche < P < 1.0 day orbital range.

We further divide the VHJ period range and show upper limits
for the period ranges 1.0 < P day ™' < 2.0and 2.0 < P day ' <
3.0, which we denote as P;, and P,3. For 1.5R; companions we
limit f, to <5.2% and <11% for P}, and P»3, respectively. For
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Fic. 11.—Upper limit (95% confidence) on the fraction of stars in the cluster
with companions for several ranges in orbital period, assuming an even loga-
rithmic distribution in semimajor axis. The solid lines show results for a 1.5R;
companion, and the dashed lines show results for a 1.0R; companion.

1.0Ry companions we limit £, to <19% and <47% for P;, and
P53, respectively. We also divide the HJ period range and limit
/. for 1.5R; companions in the range 3.0 < P day ' < 6.0 to
<36%.

7.2. Results for Other Companion Radii

Due to computing limitations we calculate detection probabil-
ities for the entire cluster sample only for 1.5R; and 1.0R; com-
panions. In § 8 we show that an upper limit determination using a
subsample of the stars with size NV, gs = 100 approximates the
results based on the entire stellar sample. Thus, we calculate up-
per limits for a variety of companion radii using N, ss = 100 ran-
domly chosen stars in the sample. Instead of showing upper limit
results over a range of orbital periods, we derive upper limits at
fixed period by replacing the semimajor axis distribution with a
4(a — a,) function in equation (5). To obtain results at fixed pe-
riod, each star has a different a, that depends on the stellar mass.
Figure 12 shows the upper limit on the fraction of stars with plan-
ets in the survey as a function of orbital period. The lines show
results for various values of the companion radius in terms of R;
as indicated by the label next to each line along the top of the fig-
ure. The shaded regions denote orbital periods removed by the
selection criteria in order to eliminate false-positive transit de-
tections that occur around the diurnal period and 0.5 day alias.
At smaller companion radii the transit S/N o< R; drops quickly.
Toward larger companion radii the S/N of the transit saturates,
and the observational window function increasingly dominates
the survey effectiveness. The survey cannot detect companions
with R, > 3.5Ry, as the transit/eclipse becomes too deep given
the removal of measurements that deviate by more than 0.5 mag
from the mean light-curve level.

8. ERROR IN THE UPPER LIMIT

In this section we discuss several sources of error present
when determining an upper limit on the fraction of stars with
planets.
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Fic. 12.—Upper limit (95% confidence) on the fraction of stars in the cluster
with companions for several companion radii, as labeled along the top. The
result for a 1.0R; companion is based on the entire sample, whereas the results
for the other companion radii are based on a subsample of N, = 100 stars. The
shaded regions denote orbital periods removed by the selection criteria in order
to eliminate false-positive transit detections that occur around the diurnal period
and 0.5 day alias.

8.1. Error When Using a Subsample

Computing power limitations discourage calculating detection
probabilities over the entire cluster sample. Thus, we first charac-
terize the error associated with determining an upper limit using
only a subset of the entire cluster sample. Starting with equation (6),
we derive an error estimate when using a subsample by the fol-
lowing means. Replacing the summation over Pge ; with the arith-
metic mean, (Pyq), equation (6) becomes

f* = 3~0/(N*<Pdet>)' (7)

By propagation of errors, the error in the upper limit is given
by

30 O'<p>
o = ; (8)
N* <Pdet>2

where o py is the error in the mean detection probability. The
error in the mean detection probability scales as op) = op/
(N.,ss) 12 Wwhere op is the intrinsic standard deviation of the dis-
tribution of Py ; values and N, gg is the size of the subsample.

We empirically test this error estimate by calculating the up-
per limit with subsamples of increasing size. Figure 13 (small
points) shows the upper limit on the fraction of stars with planets
as a function of the subsample size. The upper limit calculation
assumes an even logarithmic distribution of semimajor axis for
companions with 1.0 day < P < 3.0 days for 1.5Ry (top) and
1.0Ry (bottom) radius companions. Neighboring columns of up-
per limits differ by a factor of 2 in the subsample size. We ran-
domly draw stars from the full sample without replacement, making
each upper limit at fixed sample size independent of the others.
The dashed line represents the upper limit based on the full clus-
ter sample.

0.15

Log N

Fic. 13.—Estimates for the upper limit (95% confidence) on the fraction of
stars in the cluster as a function of the sample size employed in making the
estimate (small points). We have assumed an even logarithmic distribution in
periods in the range 1.0 < P day™! < 3.0 orbital period. The dashed lines show
the upper limit based on the entire sample. The average upper limit at fixed
sample size is given by squares. The standard deviation in the distribution of
upper limits at fixed sample size is shown by stars. The solid lines show the error
model estimate for the standard deviation in the upper limit. The top panel gives
results for a 1.5R; companion, and the bottom panel gives results for a 1.0R;
companion.

The distribution of upper limits around the actual value pos-
sesses a significant tail toward higher values. This tail results
from the significant number of stars with Py = 0.0. Figure 13
shows the mean upper limit (squares) at fixed sample size. Using
subsample sizes of N, gg <20 tends to systematically overesti-
mate the true upper limit. In the figure, the stars represent the
1 — o standard deviation of the distribution at fixed sample size,
and the solid line shows the error estimate from equation (8).
Despite the non-Gaussian nature of the underlying distribution,
the error estimate in the upper limit roughly corresponds with its
empirical determination, especially toward increasing N, ss, where
the systematic effects become negligible. From Figure 13 we con-
clude that adopting NV, ss 2 100 provides adequate control of the
random and systematic errors in calculating an upper limit with-
out becoming numerically prohibitive. This verifies the procedure
for estimating the upper limit for a variety of companion radii in
§7.2.
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8.2. Error in Determining Sample Size

Up to this point, we have mainly addressed sources of error di-
rectly associated with determining P.. However, the upper limit
error budget contains an additional source of error from uncer-
tainties in determining Py,.,. This additional source of error di-
rectly relates to the accuracy in determining the number of single
main-sequence stars in the survey.

We characterize this error as follows. At fixed orbital period,
(Pget) = (PmemPe Pr). Given that P, is nearly independent
of the other terms, the previous average is separable, such that
(Pget) = (Pmem){(Pe Pr). This separation changes the derived up-
per limit by a negligible 0.3% relative error. The separation al-
lows us to rewrite equation (7) as

f<,95 = 3'0/(N*<Cff<P€PT>)7 (9)

where N, eff = Ni(Pmem) is the effective number of cluster
members in the sample after taking into account background
contamination. Thus, N, . carries equal weight with (P.Py) in
the upper-limit error budget.

The ability to determine N, ¢ accurately provides an advan-
tage for transit surveys toward a rich stellar cluster rather than
toward a random Galactic field. Even though methods based on
the cluster CMD statistically determine cluster membership, they
concentrate on a narrow main-sequence region to search for plan-
ets where the cluster counts significantly outweigh the background
contamination counts. By concentrating on the main sequence
of a cluster, this survey has only ~68% contamination by back-
ground stars. In contrast, random galaxy fields contain 290%
contamination by subgiant and giant stars for V' < 11 surveys
(Gould & Morgan 2003). Overall, N, . has an 8% error, which
propagates to a relative error of 8% in the upper limit. The error
in N, ¢ comes from subtracting the star counts observed within
a 12!7 radius of the cluster center by the control field star counts
outside this radius. The error is larger than the Poisson error of
N, e = 870, since the control field star count is scaled to match
the larger cluster field area.

8.3. Error Due to Blends and Binaries

The final source of error we address results from stellar blends
due to physical binaries or chance line-of-sight associations. The
additional light from an unresolved blend dilutes a transit signal
from one component of the blend. Thus, we overestimate the abil-
ity to detect a transit around blends. However, a compensatory
effect arises, since the extra light from a blend results in an over-
estimate in the stellar mass and radius, which in turn results in
modeling a shallower transit. Modeling such details is not pos-
sible without knowing the binary nature for each object, but we
can estimate the number of stars affected by assuming binary
star statistics as measured in the field. Due to low stellar crowd-
ing, we estimate that chance blends have a negligible effect in
comparison to physically associated binaries (Kiss & Bedding
2005). Finding charts in Figure 6 demonstrate the stellar crowd-
ing conditions of the survey.

The latest CORAVEL radial velocity survey dedicated to
F7-K field dwarfs (Halbwachs et al. 2004) and the visual bi-
nary and common proper motion pairs survey of Eggenberger
et al. (2004) provide the basis for the binary star estimates.
Overall, they find a binary frequency of 56% for systems with
log (P day—!) < 6.31. However, due to the strong dependence
of luminosity on the stellar mass, only systems with mass ratio
q > 0.6 significantly contribute light to dilute the transit signal.
For lower mass ratios the lower mass component contributes
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<20% of the total system flux. When taking binaries across the
entire range of orbital periods the mass-ratio distribution peaks
near g ~ 0.2 and slowly drops toward higher ¢ (Duquennoy &
Mayor 1991). From Figure 10 in Duquennoy & Mayor (1991),
only ~20% of their binary systems have g > 0.6. Thus, if the
binary statistics for the cluster match the field dwarfs, transit di-
lution occurs for ~11% of the stellar sample. The radial velocity
survey for binaries in the Pleiades and Praesepe reveals consis-
tency with the frequency of binaries in the field surveys (Halbwachs
et al. 2004).

In principle, the data from this survey can also answer whether
the binary statistics of the cluster match the field dwarfs. How-
ever, the statistical methods and selection criteria described in this
study do not optimally detect interacting and eclipsing binaries.
In addition, in order to reach planetary companion sensitivities,
we remove light-curve deviations beyond 0.5 mag as discrepant,
which removes the deep eclipses.

8.4. Overall Error

The errors involved with determining the number of cluster
members dominates the error budget in determining the upper
limit. However, as discussed in § 6, this is only true if one quan-
tifies and corrects for the systematic overestimate in detection prob-
ability due to a reduction in the transit signal from the procedures
of generating and correcting the light curve. For instance, at the
median stellar brightness for this survey, the detection probability
is overestimated by >15% for orbital periods >4.0 and >1.0 days
for 1.5Ry and 1.0R; companions, respectively, without correc-
tion. Since we characterize this systematic effect, the error in de-
termining the number of cluster members dominates the error
budget.

In addition, the potential for a large contamination of binaries
diluting the transit signal necessitates an asymmetrical error bar.
We roughly quantify the error estimate resulting from binary con-
tamination from the field dwarf binary statistics. From the argu-
mentsin § 8.3, we adopt 11% asa 1 o systematic fractional error
due to binary star contamination. Overall, combining this sys-
tematic error with the 7% fractional error in determining the
cluster membership, upper limits derived from the full stellar
sample contain a +13%/—7% fractional error.

9. DISCUSSION

Along with this work, several other transit surveys have quan-
tified their detection probability from actual observations in an
attempt to constrain the fraction of stars with planets or quan-
tify the consistency with the solar neighborhood radial velocity
planet discoveries (Gilliland et al. 2000; Weldrake et al. 2005;
Mochejska et al. 2005; Hidas et al. 2005; Hood et al. 2005).
Unfortunately, a direct comparison of upper limits from this
work with these other transit surveys cannot be made. Until this
study, none of the previous studies have quantified the random
or systematic errors present in their techniques in sufficient de-
tail to warrant a comparison. In addition, previous studies do
not have quantifiable selection criteria that completely eliminate
false-positive transit detections due to systematic errors in the
light curve, a necessary component of an automated Monte Carlo
calculation.

9.1. Initial Expectations versus Actual Results

In the meantime, we can discuss why the initial estimate of
finding two planets assuming 1% of stars have R; companions
evenly distributed logarithmically between 0.03 and 0.3 AU (Burke
et al. 2003) compares to the results from this study, which indicate
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Fi. 14.—Top: Probability for transit detection as a function of the apparent
I-band magnitude, assuming an even logarithmic distribution in semimajor axis
in the range 1.0 day < P < 3.0 days and Pyem = 1.0, using the Monte Carlo
calculation of this study (small points). The binned average of the Monte Carlo
results is denoted by stars. The dashed line shows the expected probability for
transit detection based on a theoretical calculation prior to this survey. The dot-
dashed line shows the theoretical probability for transit detection assuming a
photometric noise model appropriate for the survey. The solid line shows the
theoretical probability for transit detection with an accurate photometric noise
model for the survey and including the effects of limb darkening. The left panel
shows 1.5R; companion results, and the right panel shows 1.0R; companion
results. Bottom: Theoretical probability for transit detection allowing each star
of the survey to have its empirically determined photometric noise and includ-
ing the effects of limb darkening (small points). The stars are the same as in the
top panels.

that we expected to detect 0.1 planets. The initial estimates for
the detection rate are based on the theoretical framework of Gaudi
(2000). Given a photometric noise model, observational window,
and S/N of the transit selection criteria, the theoretical framework
yields an estimate of the survey detection probability. This the-
oretical detection probability coupled with a luminosity function
for the cluster determines the expected number of detections. As
we show next, the initial estimates did not account for the light-
curve noise floor or detector saturation and contain optimistic
estimates for the sky background and luminosity function. In ad-
dition, the initial estimates could not have accounted for the 50%
reduction in signal for the majority of the light curves due to the
detector error discussed in § 3.3. Finally, as discussed in detail by
Pepper & Gaudi (2005) and demonstrated explicitly here, the de-
tection probability is very sensitive to the precise error properties
near the critical threshold of detection, which for this survey is
just reached for Ry companions.

Figure 14 (fop panels) compares the detection probability of
the Monte Carlo calculation of this study to the initial theoretical
estimate. The small points replicate the Monte Carlo results from
Figure 10 (fop panels), while the dashed line shows the detec-
tion probability based on the initial theoretical expectations. The
initial theoretical expectations clearly overestimate the detection
probability. The bright end continues to rise due to ignoring the
effects of detector saturation and the photometric noise floor. The
faint end does not cut off due to an underestimated sky bright-
ness. The initial estimate of the sky brightness, 19.5 mag arcsec ™2,
compares optimistically to the range of sky brightnesses encoun-
tered during the actual observations. The sky varied between
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17.5 and 19.0 mag arcsec 2 over the course of the observations.
The full lunar phase took place near the middle of the observa-
tion, and the Moon came within 40° of the cluster when nearly
full.

The initial estimate for the cluster luminosity function simply
selected cluster members via tracing by eye lines that bracket
the main sequence in the CMD. This crude technique led to an
estimated 3200 cluster members down to / ~ 20. A careful ac-
counting of the field star contamination results in only ~870 clus-
ter members in the survey. The luminosity function overestimate
and the expected sensitivity to transits around the bright and faint
cluster members leads to a factor of 4—5 overestimate in the
number of cluster members in the survey. In addition, the factor
of 4-5 overestimate of the initial detection probability when
compared to binned average detection probability for the Monte
Carlo results (Fig. 14, stars) easily accounts for the factor of
20 difference in the overall number of expected detections (for
R=Ry).

9.2. Improving Theoretical Expectations

Clearly, accurate and realistic transit detection statistics re-
quire more detailed analysis than these early estimates, and more
careful theoretical work has already been done (Pepper & Gaudi
2005). In the case of an open cluster, delineating cluster mem-
bership by tracing the main sequence in the CMD overestimates
the number of cluster members. A careful subtraction of the field
contamination is necessary in order to extract an accurate cluster
member count.

A photometric noise model that accurately reflects the quality
of observations is the next step in correctly calculating a the-
oretical detection probability. From Figure 1 we estimate the
actual photometric noise present in the data. This includes the
proper sky measurement and systematic floor in the photomet-
ric precision. With a noise model similar to that shown by the
lower solid line in Figure 1, we recalculate the theoretical detec-
tion probability. Figure 14 (dot-dashed line) shows that the re-
sulting detection probability still overestimates the Monte Carlo
results. However, it does agree with the faint-end cutoff of the
Monte Carlo calculation. We impose the bright-end cutoff due to
saturation effects at the same magnitude as the observed increase
in light-curve rms as shown in Figure 1.

For these results we include an additional effect not taken into
account by Gaudi (2000). We multiply the transit S/N selection
criteria, equation (5) of Gaudi (2000), by [ max (N, 1.7)]"2,
where N is the typical number of transits detected throughout
the observing run. The Nyps = 1.7 floor in this factor corresponds
to the requirement of observing the transit twice multiplied by the
observing efficiency. For simplicity, we take Nops = (Nyot/P)0.2,
where Ny, = 16, the length of the observing run in days, and the
factor of 0.2 accounts for the actual observational coverage en-
countered during the run.

Given that the theoretical calculation still overestimates the
Monte Carlo results, to increase the realism of the theoretical
detection probability, we include a linear limb-darkening law,
which effectively weakens the transit depth. We solve for the
factor G, equation (6) of Gaudi (2000), assuming a linear limb-
darkening parameter, u = 0.6, for all stars. The inclusion of
limb darkening significantly impacts the theoretical detection
probability, as Figure 14 (solid line) demonstrates. Although
the theoretical detection probability still overestimates the up-
per envelope of results from the Monte Carlo calculation, the
level of agreement, after including an accurate photometric noise
model and limb darkening, shows significant improvement over
the initial estimates.
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Despite the improved agreement, the Monte Carlo detection
probability calculation shows significant scatter at fixed mag-
nitude. The theoretical probability treats all stars at fixed mag-
nitude as having the same noise properties. With the theoretical
detection probability we can address whether the scatter in de-
tection probability at fixed magnitudes results from the observed
scatter in noise properties at fixed magnitude, as shown in Fig-
ure 1. Thus, we calculate a theoretical detection probability for
each star individually using the measured rms in the light curve
for each star to determine the theoretical transit S/N selection cri-
teria, using equation (5) of Gaudi (2000). The small points in the
bottom panels of Figure 14 show the resulting theoretical detec-
tion probability.

Some of the scatter in detection probability results from the
scatter in noise properties as a function of magnitude. The stars
in Figure 14 represent the average Monte Carlo detection prob-
ability in 0.25 mag bins. In the case of the 1.5R; companions, the
signal is large in comparison to the photometric noise. Figure 14
(left panels) demonstrates the theoretical detection probability
and overestimates the Monte Carlo detection probability by only
20%. However, the closer the transit signal approaches the sys-
tematic and rms noise, the more strongly the theoretical detec-
tion probability overestimates the actual detection probability. In
the case of 1.0Ry companions (Fig. 14, right panels), the theoret-
ical calculation overestimates the Monte Carlo results by 80%.
Thus, we urge caution when relying on a theoretical detection
probability when the survey is near the critical threshold for
transit detection. Such is the case for 1.0R; companions in this
survey.

9.3. Planning Future Surveys

Even though the theoretical calculation overestimates the ab-
solute detection probability by a factor of <2, tests on a small
sample of stars with the Monte Carlo calculation reveal that it
provides a much higher relative accuracy. Thus, the computa-
tionally efficient theoretical calculation allows us to examine the
relative change in the detection probability for a given change in
survey parameters. For planning future surveys it is essential to
decide between increasing the number of stars by observing an-
other cluster and improving the detection probability by increas-
ing the length of observations on a single cluster. As shown in
§ 7, the upper limit scales linearly with the sample size, thus keep-
ing everything else constant; increasing the sample size by a fac-
tor of 2 improves the upper limit by a factor of 2.

Using the theoretical detection probability framework, we
can quantify the improvement in sensitivity for a survey twice
as long. We assume that a survey twice as long consists of an
observing window identical to the current survey for the first
half and repeats the observing window of the current survey for
the latter half. The upper limit improves only by a factor of 1.3
for a logarithmic distribution of VHJ planets. However, the up-
per limits for HJs with 3.0-9.0 day orbital periods decrease by a
factor of 2.6. Thus, not only is it more efficient to observe this
cluster twice as long, but the analysis of Gaudi et al. (2005) re-
veals a 5—10 times larger HJ population than VHJ population.
This strongly suggests that transit surveys with a single observ-
ing site require month-long runs for maximum efficiency in de-
tecting HJ companions.

Figure 14 reveals that little improvement in the detection prob-
ability occurs for increasing photometric precision, at least for
1.5Ry companions. To first order, the photometric precision de-
termines the faint-end cutoff in the detection probability. Thus,
alower sky background or improved photometric precision pre-
dominately affects the number of stars in the survey rather than
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the detection probability. However, improving the photometric
precision does lead to increasing the sensitivity for smaller ra-
dius companions. In the case of 1.0R; companions, the rms in
the light curve typically is <1.8 times lower than the transit sig-
nal. As shown in § 9.2, the theoretical detection probability breaks
down for such low precision. In the case of 1.5R; companions,
the rms in the light curve typically is <4 times lower than the tran-
sit signal. Thus, for the 1.0R; results to reach the same sensitivity
as the 1.5R; results, improvement in the light curve rms is neces-
sary until the transit S/N is above a critical threshold when the
detection probability is weakly dependent on R, (Pepper & Gaudi
2005).

According to a recent review of radial-velocity-detected plan-
ets, 1.2% = 0.3% of solar neighborhood stars have HJ compan-
ions (Marcy et al. 2005). This survey of NGC 1245 reached an
upper limit of 52% of the stars having 1.5R; HJ companions. As
mentioned previously, a survey lasting twice as long can reduce
this upper limit to 21%. Reaching sensitivity similar to that of the
radial velocity results requires observing additional clusters in
order to increase the number of stars in the sample. This survey
has ~870 cluster members, and ~740 of them have nonzero de-
tection probability for 1.5R; VHJ companions. Hence, a total
sample size of ~7400 dwarf stars observed for a month will be
needed to help constrain the fraction of stars with planets to a
2% level (comparable to radial velocity results). Assuming that
the observed HJ frequency of ~1% remains valid for a variety
of stellar environments, we expect to detect one planet for every
5000 dwarf stars observed for a month. Results for 1.0R; com-
panions without substantial improvement in the photometric
precision likely will require a small factor larger sample size.

10. CONCLUSION

In this study we complete the analysis of a 19 night search for
transiting extrasolar planets orbiting members of the open cluster
NGC 1245. An automated transit search algorithm with quanti-
tative selection criteria finds six transit candidates; none are bona
fide planetary transits. Thus, this work also details the procedure
for analyzing the null result transit search in order to determine
an upper limit on the fraction of stars in the cluster harboring
close-in Ry companions. In addition, we outline a new differen-
tial photometry technique that reduces the level of systematic er-
rors in the light curve.

A reliable upper limit requires quantifiable transit selection
criteria that do not rely on visual, qualitative judgments of the
significance of a transit. Thus, we develop completely quanti-
tative selection criteria that enable us to calculate the detection
probability of the survey via Monte Carlo techniques. We inject
realistic limb-darkened transits into the light curves and attempt
their recovery. For each star we inject 100,000 transits at a va-
riety of semimajor axes, orbital inclination angles, and transit
phases to fully map the detection probability for 2700 light curves
consistent with cluster membership based on their position in the
CMD. After characterizing the field contamination, we conclude
that the sample contains ~870 cluster members.

When calculating a 95% confidence upper limit on the frac-
tion of stars with planets, we assume that companions have an
even logarithmic distribution in semimajor axis over several ranges
of orbital period. We adopt the period ranges as outlined by Gaudi
et al. (2005) for HJ and VHJ companions. For NGC 1245 we
limit the fraction of cluster members with 1.0Ry companions to
<24% for VHJ companions. We do not reach the sensitivity to
place any meaningful constraints on 1.0R; HJ companions. For
1.5Rj companions we limit the fraction of cluster members with
companions to <6.4% and <52% for VHJ and HJ companions,
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respectively. Radial velocity surveys currently measure that
1.3% of stars have extrasolar planets with P < 11 days (Marcy
et al. 2005).

We also fully characterize the errors associated with calculat-
ing the upper limit. We find that the overall error budget sepa-
rates into two equal contributions from error in the total number
of single dwarf cluster members in the sample and the error in the
detection probability. After correcting the detection probability
for systematic overestimates that become increasingly important
for detecting transits toward longer orbital periods (see § 6), we
conclude that random and systematic errors in determining the
number of single dwarf stars in the sample dominate the error
budget. Section § details the error analysis, and, overall, we as-
sign a +13%/—7% fractional error in the upper limits.

In planning future transit surveys, we demonstrate that ob-
serving NGC 1245 for twice as long will reduce the upper limits
for the important HJ period range more efficiently than observ-
ing an additional cluster of richness similar to that of NGC 1245
for the same length of time as this data set. To reach an ~2%
upper limit on the fraction of stars with 1.5R; HJ companions, we
conclude that a total sample size of ~7400 dwarf stars observed
for a month will be needed. If 1% of stars have 1.5R; HJ extra-
solar planets, we expect to detect one planet for every 5000 dwarf
stars observed for a month. Results for 1.0R; companions with-
out substantial improvement in the photometric precision likely
will require a small factor larger sample size.
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APPENDIX

In this appendix we derive the boxcar-fitting algorithm
(BLS) used to search for planetary transits. The original de-
velopers of this algorithm (Kovacs et al. 2002) study its prop-
erties in the presence of Gaussian noise. We rederive the BLS
method here in terms of the familiar language of x> minimiza-
tion, demonstrating the equivalence of the two approaches (see
also Aigrain & Irwin 2004). In the process we elucidate the
meaning of some of the detection statistics introduced in Kovacs
etal. (2002). Finally, we quantify the accuracy of the boxcar ap-
proximation to transit light curves and discuss appropriate detec-
tion thresholds in the presence of correlated systematic errors, as
well as pure noise.
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We begin by considering a series of flux measurements Fj,
taken at times #; with errors o ;. The equation, F = (Y, Fy/
a2 I, 1/0%7 ), defines the mean error-weighted flux of the
measurements. We can write the fractional deviations from the
mean as m;, = F/F — 1 and the fractional errors as o3 = OF, «/F.
For small deviations, the difference from the mean in magnitudes
approximates —1.086m.

A light curve of a star with a transiting planet can be written
as F(t) = Fo[1 — ()], where Fj is the unobscured flux of the
star and () is the fractional drop in flux due to the transiting
planet as a function of time. This generally depends on five pa-
rameters, namely, the planet period P, the phase of the planet
orbit ¢, the time it takes for the planet to cross one stellar radius,
the ratio of the planet radius to stellar radius p, and the limb-
darkening parameter of the star. We can write the fractional flux
difference as m(t) = F(t)/F — 1 = my — 6(t) — mod(f), where
we have defined my = Fy/F — 1. We assume that § < 1 and
my < 1, and therefore m(t) ~ my — 6(¢).

For p < 1 and no limb darkening, the light curve m(#) phased
to the period P reduces to a simple boxcar, § = p?, when the
planet is occulting the star and 6 = 0 otherwise, with five pa-
rameters: the unocculted flux m, the transit period P, phase ¢,
duration Az, and depth 6. This simple form allows an analyti-
cal solution for two of these parameters. For finite p and limb
darkening, the expression for 6(¢) increases in complexity, but, as
we show later, a simple boxcar still approximates the variability.

The likelihood £ that the model m(f) with parameters o =
(mg, 6, P, ¢, At) describes the data my, is simply

TNl =12 — {mkm(fk)r
Y P et L] (A1)

% Ok

A likelihood maximization, or x> minimization, determines the
best-fit parameters. Phasing the measurements m; to a given pe-
riod, we can split x? into two terms, including the points in tran-
sit and points out of transit,

e () e ()

i

where the first sum over index i is over the points in transit and
the second over index j is over the points out of transit. The
quantity D of BLS corresponds to our x?/3", o2, where the
sum over index k is over all points. Since Y, o % is a constant,
this verifies the equivalence of the Kovacs et al. (2002) algorithm
to a simple x?> minimization. Expanding the quadratic terms in
equation (A2) yields

2
m my 1 m;
X2:§ —’;—Zmog —2+m(2)E —2+25§ —
— 0 — 0 — O} — 0

—26m02%+522%. (A3)

i

Given the identity m = (), mk/m?)/( S Vo) =0, itis clear
that the first term is simply the x? of a constant flux fit to the
data, which we denote x2, and the second term is zero. There-
fore, the last four terms are the improvement in x> between the
constant flux fit and a boxcar transit fit for a given P, ¢, At.
Minimizing the expression for y? with respect to m, we find
mo = (Y., 072>, 07 )6 Inserting this into the expression for
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x? and then minimizing with respect to ¢, we find the param-
eters &, m that simultaneously minimize x for a given P, ¢, At,

_ —>imi/o}
°= Yot (1 =202 Yo%) (54)

_ _Zi mi/Uz2
DI (B S=Y5 s R

We note that the solution for 6 does not impose a particular
sign. The best-fit boxcar model may be of a transit or antitransit
nature. The improvement in y? at these best-fit parameters is

—(Simi/l)”
Yot (1 =202 o)

Atfixed P, ¢, At and for pure Gaussian noise, Ax? is distributed
as x> with one degree of freedom (corresponding to the one
additional free parameter).

The above expression gives the x> improvement for a par-
ticular set of P, ¢, At. The global solution that maximizes the x>
improvement, Axﬁm, requires a grid search over the entire P, ¢,
At parameter space feasible for transit detection. In the BLS
algorithm, evaluation of Ay? for a given P, ¢, At amounts to
simple error-weighted binning, making the process extremely
efficient and fast. Due to the large number of light curves with
injected transits that must be searched in order to determine
the detection probability accurately (see § 6), this study re-
quires the excellent numerical efficiency provided by the BLS
method. Comparison with BLS reveals that Ax2_ has a close
correspondence with the BLS detection statistic SR, such that
Ax2. /S, 072 = —(SR)%. If we assume constant noise, i.e.,
o = constant = o, and define N, to be the number of points in
transit, then the effective S/N is S/N = (JAx2, . N2 = N}2(5/0).

Although at fixed P, ¢, At analytic expressions can provide
the significance of a given value of x? in the presence of pure
Gaussian noise, in the present case folding data over many trial
periods and phases hampers determination of the significance
of the global Ax?, . Thus, assessing the probability of achiev-
ing the observed outcome by chance involves taking into ac-
count the effective number of independent trials. Several papers
(e.g., Kovacs et al. 2002; Jenkins et al. 2002) propose methods
to address these issues. However, as we have shown, in the pres-
ence of correlated systematic errors, formulations with a Gaussian-
noise basis underestimate the detection thresholds needed to avoid
falsely triggering on the systematic errors. Generally, one must
use the properties of the data themselves to set the appropriate
detection threshold.

In general, a matched filter optimally detects a signal of known
form in noisy data. However, the efficiency of boxcar fitting
makes it highly advantageous and, as we show next, nearly op-

mo
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TRANSITING EXTRASOLAR PLANETS. III. 229

O.l{{{‘{{{{{{{{{{{{

0 0.2 0.4 0.6 0.8 1
Impact Parameter

Fic. 15.—Shown is AxZ,, the difference in x> between a boxcar fit to a
planetary transit across a limb-darkened star and the exact model fit, normalized
by Ax3, the difference in x* between the exact model fit and a constant flux fit to
the light curve. Each band is for a different planet/star radius ratio R, /R,, and the
width of the band shows the variation in Ax2,/Ax32 for the range of linear limb-
darkening parameters u; = 0.0—0.4.

timal for transit detection. This is because, for small planets
and modest limb darkening, simple boxcars match the planetary
transit signal well. We demonstrate this in Figure 15, where we
show AxZ, = x2. — X’ the difference in x? between a box-
car fit to a planetary transit across a limb-darkened star and the
exact model fit, assuming uniform errors. In order to make the
result independent of the error properties of the light curve, we
plot this normalized t0 AX3 = X2 nsant — Xoxact» the difference
in x? between a constant flux fit to the light curve and the exact
model fit. In other words, since (Ax3)""? is the total S/N of the
transit detection, the ratio A2, /A X3 is (the square of ) the frac-
tional degradation of the S/N that arises from fitting the ap-
proximate boxcar form to the true transit shape. We show AxZ /
Ax3 versus the impact parameter of the transit for four different
values of p = 0.01, 0.05, 0.1, and 0.2, as well as linear limb-
darkening coefficients in the range u; = 0—0.4. The fractional
difference in Ax3 is less than ~5% for impact parameters <0.8
and p < 0.1, and it is always <10% for the range of parameters
relevant here. However, if the number of detections is a strong
function of 2 near the detection threshold, then even an ~5%
change in x° can have a significant effect on the inferred de-
tection probability. Therefore, it is important to inject realistic
transits when determining the recovery rate and detection prob-
ability, to account for the imperfect match of the boxcar filter.
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