
SEARCHING FOR TRANSITING PLANETS IN STELLAR SYSTEMS

Joshua Pepper
1
and B. Scott Gaudi

2

Receivved 2005 April 6; accepted 2005 June 2

ABSTRACT

We analyze the properties of searches devoted to finding planetary transits by observing simple stellar systems,
such as globular clusters, open clusters, and the Galactic bulge. We develop the analytic tools necessary to predict
the number of planets that a survey will detect as a function of the parameters of the system (age, extinction,
distance, richness, mass function), the observational setup (nights observed, bandpass, exposure time, telescope
diameter, detector characteristics), site properties (seeing, sky background), and the planet properties (frequency,
period, and radius). We find that for typical parameters, the detection probability is maximized for I-band obser-
vations. At fixed planet period and radius, the signal-to-noise ratio of a planetary transit in the I band is weakly
dependent on the mass of the primary for sources with flux above the sky background and falls very sharply for
sources below sky. Therefore, for typical targets, the number of detectable planets is roughly proportional to the
number of stars with transiting planets with fluxes above sky (and not necessarily the number of sources with
photometric error less than a given threshold). Furthermore, for rising mass functions, the majority of the planets
will be detected around sources with fluxes near sky. In order to maximize the number of detections, experiments
should therefore be tailored such that sources near sky are above the required detection threshold. Once this
requirement is met, the number of detected planets is relatively weakly dependent on the detection threshold,
diameter of the telescope, exposure time, seeing, age of the system, and planet radius, for typical ranges of these
parameters encountered in current transit searches in stellar systems. The number of detected planets is a strongly
decreasing function of the distance to the system, implying that the nearest, richest clusters may prove to be optimal
targets.

Subject headinggs: planetary systems — surveys — techniques: photometric

1. INTRODUCTION

Although radial velocity (RV) searches have provided an
enormous amount of information about the ensemble properties
of extrasolar planets, the interpretation of these results has been
somewhat complicated by the fact that the planets’ properties
have been shaped by the poorly understood process of planetary
migration. Short-period planets (periods P P10 days, i.e., ‘‘hot
Jupiters’’) are essential for understanding this phenomenon,
since they have all almost certainly reached their current posi-
tions via migration, and because they are the easiest to detect
via several methods, including both RVand transits. Thus, it is
possible to rapidly acquire the statistics necessary for uncover-
ing diagnostic trends in their ensemble properties, which may
provide clues to the physical mechanisms that drive migration.
Although RV searches have been and will continue to be very
successful in detecting these planets, transit searches are rapidly
gaining in importance.

There are currently over a dozen collaborations searching for
planets via transits (see Horne 2003). These searches have re-
cently started to come to fruition, and six close-in extrasolar
giant planets have been detected using the transit technique to
date (Konacki et al. 2003a; Bouchy et al. 2004; Pont et al. 2004;
Konacki et al. 2004, 2005; Alonso et al. 2004), with many more
likely to follow. Notably, transit searches have already uncov-
ered a previously unknown population of ‘‘very hot Jupiters’’—
massive planets with PP 3 days. Current transit searches can be
roughly divided into two categories. Shallow surveys observe

bright (V P14) nearby stars with small-aperture, large field-
of-view dedicated instruments (Bakos et al. 2004; Kane et al.
2004; Borucki et al. 2001; Pepper et al. 2004; Alonso et al.
2004; McCullough et al. 2004; Deeg et al. 2004). The goal of
these surveys is primarily to find transiting planets around
bright stars, which facilitate the extensive follow-up studies that
are possible for transiting planets (Charbonneau et al. 2002,
2005; Vidal-Madjar et al. 2003, 2004; Deming et al. 2005). On
the other hand, deep surveys monitor faint (V k14) stars using
larger aperture telescopes with small field-of-view instruments.
Typically, these searches do not use dedicated facilities and thus
are generally limited to campaigns lasting for a few weeks. In
contrast to the shallow surveys, deep surveys will find planets
around stars that are too faint for all but the most rudimentary
reconnaissance.However, the primary advantage of these searches
is that a large number of stars can be simultaneously probed for
transiting planets. This allows such surveys to detect relatively rare
planets, as well as probe planets in very different environments,
and so robustly constrain the statistics of close-in planets. Deep
searches can be further subdivided into two categories, namely,
searches around field stars in the Galactic plane (Udalski et al.
2002a, 2002b, 2002c, 2003, 2004; Mallén-Ornelas et al. 2003)
and searches toward simple stellar systems.

Simple stellar systems, such as globular clusters, open clus-
ters, and the Galactic bulge, are excellent laboratories for transit
surveys, as they provide a relatively uniform sample of �103–
105 stars of the same age, metallicity, and distance. Furthermore,
such surveys have several important advantages over field sur-
veys. With minimal auxiliary observations, stellar systems pro-
vide independent estimates for the mass and radius of the target
stars throughmain-sequence fitting to color-magnitude diagrams.
An independent estimate for the stellar mass and radius, even
with a crude transit light curve, can allow one to completely

1 Department of Astronomy, Ohio State University, 4055 McPherson Lab-
oratory, 140 West 18th Avenue, Columbus, OH 43210; pepper@astronomy
.ohio-state.edu.

2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cam-
bridge, MA 02138; sgaudi@cfa.harvard.edu.

581

The Astrophysical Journal, 631:581–596, 2005 September 20

# 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.



characterize the system parameters (assuming a circular orbit
and a negligible companion mass). Transit data alone, without
knowledge of the properties of the host stars, do not allow for
breaking of the degeneracy between the stellar and planet radius
and orbital semimajor axis. As a result, considerable additional
expenditure of resources is required to confirm the planetary na-
ture of transit candidates from field surveys (Dreizler et al. 2002;
Konacki et al. 2003b; Pont et al. 2005b; Bouchy et al. 2005;
Gallardo et al. 2005). Furthermore, using the results of field
transit surveys to place constraints on the ensemble properties of
close-in planets is hampered by a lack of information about the
properties of the population of host stars, as well as strong biases
in the observed distributions of planetary parameters relative
to the underlying intrinsic planet population (Gaudi et al. 2005;
Pont et al. 2005b; Gaudi 2005; S. Dorsher et al. 2005, in prep-
aration). In contrast, the biases encountered in surveys toward
stellar systems are considerably less severe and furthermore
are easily quantified because the properties of the host stars are
known. This allows for accurate calibration of the detection
efficiency of a particular survey and so enables robust infer-
ences about the population of planets from the detection (or lack
thereof ) of individual planetary companions (Gilliland et al.
2000; Weldrake et al. 2005; Mochejska et al. 2005; C. J. Burke
et al. 2005, in preparation).

There are a number of projects devoted to searching for
transiting planets in stellar systems (Gilliland et al. 2000; Burke
et al. 2003; Street et al. 2003; Bruntt et al. 2003; Drake & Cook
2004; von Braun et al. 2005; Mochejska et al. 2005; Weldrake
et al. 2005; Hidas et al. 2005; Bramich et al. 2005). These proj-
ects have observed or are observing a number of different kinds
of systems, with various ages, metallicities, and distances, using
a variety of observing parameters, such as telescope aperture
and observing cadence. Although several authors have discussed
general considerations in designing and executing optimal sur-
veys toward stellar systems (Janes 1996; von Braun et al. 2005;
Gaudi 2000), these studies have been somewhat fractured and
primarily qualitative in nature. To date there has been no rigor-
ous, quantitative, and comprehensive determination of how the
different characteristics of the target system and observing pa-
rameters affect the number of transiting planets onewould expect
to find. To this end, here we develop an analytic model of tran-
sit surveys toward simple, homogeneous stellar systems. This
model is useful for understanding the basic properties of such
surveys, for predicting the yield of a particular survey, as well as
for establishing guidelines that observers can use to make opti-
mum choices when observing particular targets.

We concentrate on the simplest model that incorporates the
majority of the important features of transit surveys toward stellar
systems. We consider simple systems containing main-sequence
stars of the same age and metallicity. We ignore the effects of
weather, systematic errors (except at the most rudimentary level),
and variations in seeing and background. Although we feel that
our analysis captures the basic properties of such searches with-
out considering these effects, it is straightforward to extend our
model to include these and other real-world effects.

In x 2 we develop the equations and overall formalism that
we use to characterize the detection probabilities of certain planets
in specific systems with a given observational setup. In x 3 we
describe various analytic approximations we use to make sense of
our detailed calculations, and we show how the transit detection
probabilities depend on stellar mass and the characteristics of a
particular survey. In x 4 we list various physical relations and
numerical approximations we use to calculate detection proba-
bilities. In x 5 we describe the dependence of the detection prob-

abilities on the input parameters, and we present an application
of our results in x 6. We summarize and conclude in x 7.

2. GENERAL FORMALISM

2.1. The Number of Detected Transiting Planets

For a given stellar system, the number of transiting planets
with periods between P and P þ dP and radii between r and
r þ dr that can be detected around stars with masses between
M and M þ dM is

d 3Ndet

dM dr dP
¼ N� fp

d 2p

dr dP
Ptot M ; P; rð Þ dn

dM
: ð1Þ

Here Ndet is the number of detected transiting planets, N� is the
total number of stars in the system, d 2p/dr dP is the probability
that a planet around a star in the system has a period between P
andP þ dP and a radius between r and r þ dr, fp is the fraction of
stars in the system with planets, Ptot(M ; P; r) is the probability
that a planet of radius r and orbital period P will be detected
around a star of mass M, and dn/dM is the mass function of the
stars in the system.
There are a number of assumptions that enter into equation (1):

1. We assume that fp and d
2p/dr dP are independent ofM. We

normalize d 2p/dr dP to unity over a specific range of planetary
radii and periods and normalize dn/dM to unity over a specific
range of stellar masses. Therefore, N� is the number of (single)
stars in the mass range of interest, and fp is the fraction of such
stars harboring planets in the range of planetary radii and pe-
riods of interest. The number of such planets is thus Np ¼ fpN�,
and the fraction that are detected is fdet � Ndet/Np. The normal-
ization of dn/dM is described in x 4.2, and the normalization of
d 2p/dr dP is described in x 4.6.
2. We choose to use P as our independent parameter rather

than semimajor axis a, since it is the more directly observable
quantity in transit searches and simplifies the following discus-
sion considerably.
3. We note that one of the primary simplifying assumptions

in equation (1) is that all the target stars are at the same distance
from the observer, which is an excellent assumption for most
stellar systems.

2.2. Detection Probabilities Ptr , PW, PS/N

Following Gaudi (2000), we separatePtot(M ; P; r) into three
factors

Ptot M ; P; rð Þ ¼ Ptr M ; Pð ÞPS=N M ; P; rð ÞPW Pð Þ; ð2Þ

where Ptr is the probability that a planet transits its parent star,
PS/N is the probability that, should a transit occur during a night
of observing, it will yield a signal-to-noise ratio (S/N) that is
higher than some threshold value, and PW is the window func-
tion that describes the probability that more than one transit will
occur during the observations.

2.2.1. Transit Probability Ptr

The probability that a planet will transit its parent star is
simply

Ptr ¼
R

a
¼ 4�2

G

� �1=3
M�1=3RP�2=3: ð3Þ

This form of Ptr assumes that the planet is in a circular orbit.
We make this assumption throughout this paper.
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2.2.2. Window Probability PW

The window function PW (P) quantifies the probability that
a planet with a given period P will exhibit n different transits
during the times when observations are made. See Gaudi (2000)
for a mathematical definition of PW. We consider observational
campaigns from single sites comprising a total ofNn contiguous
nights of length tnight. For an exploration of the effects of al-
ternate observing strategies onPW, we refer the reader to a com-
prehensive discussion by von Braun et al. (2005). We assume
that no time is lost to weather. Finally, we require only that the
center of the transit occurs during the night; therefore, PW de-
pends only on n, Nn, tnight , and P and does not depend on the
transit duration. Note that our definition differs slightly from
the definition by Mallén-Ornelas et al. (2003). In Figure 1 we
show PW as a function of P for Nn ¼ 10, 20, and 40 nights
and tnight ¼ 7:2 hr, for the requirement of n ¼ 2 transits (which
we require throughout).

2.2.3. Signal-to-Noise Probability PS/N

In this section we determine PS/N, the probability that a sin-
gle transit will exceed an S/N value larger than some minimum
threshold S/N value.3 The S/N of a single transit is S/N ¼

(��2)1
=2, where ��2 is the difference in �2 between a constant

flux and transit fit to the data. For simplicity, we model all tran-
sits as boxcar curves. In this case, and under the assumption that
only a small fraction of the data points occur during transit, the
��2 of a transit is simply

��2
tr ¼ Ntr

�

�

� �2
: ð4Þ

HereNtr is the number of observations during the transit, � is the
fractional change in the star’s brightness during the transit, and
� is the fractional error of an individual flux measurement.

The number of observations Ntr during a transit is related to
the observing timescales: Ntr ¼ ttr/(tread þ texp), where ttr is the
duration of the transit, tread is read time of the detector, and texp
is exposure time.4 We can put ttr in terms of the fundamental
parameters:

ttr ¼ 2x

ffiffiffiffiffiffiffiffiffi
a

GM

r
¼ x

4P

�GM

� �1=3
: ð5Þ

Here x is half the length of the chord that traces the path of the
transiting planet across the face of the star. Geometrically, x ¼
R(1� b2)1=2, where b is the impact parameter of the transit. That
is, bR is equal to the distance from the equator to the latitude
of the transit. For a transit with an inclination of 90�, x ¼ R and
b ¼ 0, while for a grazing eclipse x is nearly 0 and b¼1. We
define teq as the duration of an equatorial transit [i.e., teq ¼
ttr(b ¼ 0)], and therefore ttr ¼ teq(1� b2)1/2.

We assume that a transit will be discovered if and only if��2
tr

is larger than some threshold value��2
min. We note that��2

tr ¼
��2

eq(1� b2)1
=2. Therefore, the probability of achieving suffi-

cient S/N is essentially a step function, such that

dPS=N

db
¼ � ��2

eq

ffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
���2

min

� �
; ð6Þ

where � is the step function [�(x) ¼ 0 for x < 0; �(x) ¼ 1 for
x � 0]. Equation (6) provides us with the probability that a
transit with impact parameter between b and bþ dbwill yield a
sufficient S/N to be detected. This can be determined for a given
set of intrinsic parameters of the system (M, r, and P) and the
observational parameters that we list later.

We can assume that the impact parameters of transiting sys-
tems are distributed uniformly. We take b as our fundamental
test of S/N, so that if a transit in a system with a given set of
intrinsic parameters achieves sufficient S/N to be detected with
an equatorial transit b ¼ 0, then it will be also detectable with
any b up to some inclination bmax, beyond which point it will
not achieve sufficient S/N. We integrate equation (6) from b ¼
0 to bmax, which is the range over which PS=N ¼ 1:

PS=N ¼
Z 1

0

dPS=N

db
db¼

Z 1

0

� ��2
eq

ffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
���2

min

� �
db:

ð7Þ

This formulation makes it easy to eliminate the step function,
since any argument with b > bmax will cause the argument of the
step function to be less than 0, and so the value of the integrand

Fig. 1.—Window probabilityPW, which is the probability that a planet with a
given period will exhibit n separate transits during the times observations are
made. Here we have assumed 7.2 observable hours each night and that the run is
Nn nights long, and we have required n ¼ 2 transits to occur during the ob-
serving window. The lines show the results for Nn ¼ 10 (red line), 20 (black
line), and 40 (blue line).

3 By folding an observed light curve about the proper period, it is possible to
improve the total S/N over that of a single transit by�n1/2, where n is the number
of transits occurring when observations are made. We have chosen a more con-
servative approach of requiring aminimumS/N based on a single transit because,
for observational campaigns such as those typically considered here, the proba-
bility of seeing many transits is low, and furthermore detailed and well-sampled
individual transit signals are crucial for distinguishing bona fide transits from
false positives. In Appendix A we rederive the results of this section for the al-
ternative detection criterion based on the total S/N of folded transit light curves.
The difference between these two approaches is relatively minor for the surveys
considered here, although the total S/N approach favors short-period planets
more heavily.

4 This model assumes that all transits are observed from beginning to end.
We consider the effects of partial transits in Appendix B.
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will equal 0. We can therefore integrate PS/N from 0 to bmax,
so the left-hand side of equation (7) becomes

PS=N ¼
Z bmax

0

db ¼ bmax: ð8Þ

We can take the right-hand side of equation (7) and note that the
argument of the step function will equal 0 when evaluated at
bmax. Setting ��2

eq(1� b2max)
1=2 ���2

min ¼ 0 and solving for
bmax, we then have

PS=N ¼ bmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

min

��2
eq

 !2vuut ; if ��2
min � ��2

eq; ð9Þ

and PS=N ¼ 0 otherwise.
We must now determine the dependence of the various factors

in equation (9) on the independent parametersM, r, and P, as well
as the observing parameters. Using equation (4), we can put��2

eq

in terms of the independent parameters and (�/�)2. Wemust there-
fore relate (�/�)2 to the independent parameters. Assuming Poisson
statistics, � ¼ (NS þ NB)1

=2/NS , where NS is the number of pho-
tons recorded from a target star in a given exposure and NB is the
number of background photons. In terms of the observing pa-
rameters, NS ¼ fktexp�(D/2)

2, where fk is the flux of photons with
wavelength k from the target star, D is the telescope aperture, and
we have assumed a filled aperture. Flux is related to luminosity by

fk ¼
Lk

4�d 2
10�Ak=2:5; ð10Þ

where Lk is the star’s photon luminosity at wavelength k,Ak is the
interstellar extinction at wavelength k, and d is the distance to the
system. Turning to the background sky photons, we can define

NB ¼ Ssky;k�texp� D=2ð Þ2; ð11Þ

where Ssky;k is the photon surface brightness of the sky in wave-
length k and � is effective area of the seeing disk.

Putting all this together, we can write ��2
eq in terms of the

parameters of the planet, primary, and observational setup,

��2
eq ¼ 1024�ð Þ�1=3 texp

tread þ texp

r

R

� �4
D

d

� �2

;
PR3

GM

� �1=3
Lk10

�0:4Ak 1þ Ssky�4�d
2

Lk10�0:4Ak

� ��1

: ð12Þ

This form can then be inserted into equation (9) to find PS/N.
Note that we have assumed Poisson statistics, no losses due

to the atmosphere, telescope, or instrumentation, and no addi-
tional background flux other than that due to sky (no blending).
In x 4.3 we introduce a systematic floor to the photometric error
�. However, other than this one concession to reality, our results
will represent the results of ideal, photon-limited experiments
and are therefore in some sense the best-case outcomes. When
designing actual experiments, such real-world complications
need to be considered carefully to ensure that they do not sub-
stantially alter the conclusions drawn here.

3. ANALYTIC APPROXIMATIONS: SENSITIVITY
AS A FUNCTION OF PRIMARY MASS

To lowest order, the main-sequence population of a coeval,
homogeneous stellar system forms a one-parameter system of

stars. Therefore, a novel aspect of transit searches in stellar sys-
tems is that, once the cluster, planet, and observational param-
eters have been specified, the sensitivity of different stars can
be characterized by a single parameter, namely, the stellar mass.
This simple behavior, combined with assumptions about the
mass-luminosity relation, mass-radius relation, and mass func-
tion, allows us to derive analytic results for the sensitivity of tran-
sit surveys as a function of stellar mass.
Here we consider the sensitivity of a given transit search

to planets of a given radius r and period P as a function of
the primary mass M. Adopting power-law forms for the mass-
luminosity and mass-radius relations, we rewrite the analytic
detection probabilities for Ptr and PS/N that we derived in x 2.2
in terms ofM. We note that, due to the manner in which we have
defined it, PW depends only on P and the observational param-
eters, and not on M. This simplifies the understanding of the
sensitivity considerably, since PW is the only factor that must
be calculated numerically.

3.1. Mass-Luminosity and Mass-Radius Relations

We adopt generic power-law mass-luminosity and mass-
radius relations,

R ¼ R�
M

M�

� ��
; Lk ¼ Lk;�

M

M�

� ��k
; ð13Þ

where Lk;� is the photon luminosity at a wavelength k for a
solar-mass star. The power-law index for the mass-luminosity
relation is wavelength dependent, such that the �k index ac-
counts for bolometric corrections for particular bandpasses.
We note that neither empirically calibrated nor theoretically

predicted mass-radius and mass-luminosity relations are strict
power laws. However, the power-law relations lead to useful
analytic results that aid in the intuitive results of the more precise
results presented later. Furthermore, for stars nearM � M� and
optical bandpasses, this approximation is reasonably accurate.
For the most part, we keep the resulting analytic expressions

in terms of the variables � and �k , rather than substitute specific
values. However, as will become clear, some interesting prop-
erties of these expressions are seen for realistic values of these
parameters. Therefore, where appropriate, we occasionally insert
numerical values for � and �k. As we show later, for most targets,
the I band proves to be optimal in terms of maximizing the S/N
of detected transits. For the I band and 0:3 M�PM P 2 M�,
typical values are �¼1 and �I ¼ 3:5.

3.2. Dependence of PS/N on M

We first consider ��2
eq and PS/N. Substituting equation (13)

into equations (9) and (12), we find after some algebra

��2
eq

��2
min

¼ 1

C1

M

M�

� ��(3���kþ1=3)

1þC2

M

M�

� ���k
" #�1

;

ð14Þ

PS=N ¼
(
1� C2

1

M

M�

� �2(3���kþ1=3)

1þC2

M

M�

� ���k
" #2)1=2

;

ð15Þ
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where we absorb all the constants and parameters except for
mass into the new constants C1 and C2, which are given by

C1¼ 1024�ð Þ1=3��2
min 1þ tread

texp

� �
r

R�

� ��4

;
d

D

� �2
GM�

PR3
�L

3
k;�

 !1=3
100:4Ak ; ð16Þ

C2 ¼
4�d 2Ssky�

Lk;�10�0:4Ak
: ð17Þ

Note that C2 is simply the ratio of the flux in the seeing disk to
the flux of a star of M�.

Inspection of the behavior of equation (15) as a function ofM
reveals that there are two different regimes. In the first regime the
second termwithin the square brackets is much smaller than unity
and hence negligible. This is the regime inwhich the photon noise
is dominated by the source (i.e., the target star). In the opposite
regime, where that term is much larger than unity, the noise is
dominated by the sky background. The transition between these
two regimes occurs at the massMsky where the flux from the star
is equal to the flux from the sky background,

Msky ¼ C
1=�k
2 M�: ð18Þ

The behavior ofPS/N as a function of mass depends on the value
of ��2

eq/��2
min at M ¼ Msky. If ��2

eq/��2
min<1 at M ¼ Msky,

then the ability to detect planets is limited by the source noise
for all the stars in the system. Conversely, if��2

eq/��2
min >1 at

M ¼ Msky, then the ability to detect planets around the faintest
stars in the system is limited by noise due to the sky back-
ground. That is to say, a particular experiment can be charac-
terized by whether the flux of the faintest star around which a
planet can be detected is brighter or dimmer than the sky. We
call these the ‘‘source-limited’’ and ‘‘background-limited’’ re-
gimes, respectively. We shall see the implications of this dis-
tinction shortly. An experiment is in the background-limited
regime when ��2

eq/��2
min

� 1 for M � Msky, which implies

2C1C
(3���kþ1=3)=�k
2 � 1: ð19Þ

In the source noise–limited regime, we find that

��2
eq

��2
min

¼ 1

C1

M

M�

� ��(3���kþ1=3)

; ð20Þ

where PS/N becomes

PS=N ’ 1�C2
1

M

M�

� �2(3���kþ1=3)
" #1=2

: ð21Þ

On the other hand, in the background noise–limited regime,

��2
eq

��2
min

¼ 1

C1C2

M

M�

� ��(3��2�kþ1=3)

ð22Þ

and

PS=N ’ 1� (C1C2)
2 M

M�

� �2(3��2�kþ1=3)
" #1=2

: ð23Þ

Both of these equations have the same general form. For masses
below a certain threshold,Mth, there is no chance of detecting a
transit. The formula forMth can be determined separately for the
two different noise regimes. In the source noise–limited regime,
we have

Mth; s ¼ C1ð Þ�1= 3���kþ1=3ð Þ
M�; ð24Þ

while in the background noise–limited regime,

Mth;b ¼ C1C2ð Þ�1= 3��2�kþ1=3ð Þ
M�: ð25Þ

Thus, PS/N as a function of stellar mass is approximately a
step function, and the placement of the step,Mth, will depend on
whether the faintest star around which a planet is detectable (for
which ��2

eq > ��2
min) is brighter or dimmer than the sky. Al-

though the labels ‘‘source limited’’ and ‘‘background limited’’
refer to the faintest star for which a planet is detectable, and not
to all the stars in the system, we shall see shortly that the inte-
grated detection probability will depend primarily on the lowest
mass stars.

It is highly instructive to insert numerical values for � and �k
and consider the behavior of ��2

eq and PS/N in the source- and
background-limited regimes. Adopting values appropriate to
the I band (� ¼ 1 and �I ¼ 3:5), we have 3�� �k þ 1

3
¼ �1

6
,

and thus��2
eq / M 1=6 in the source noise–limited regime. Thus,

for sources above sky, the S/N is an extremely weak function
of mass. On the other hand, for sources below sky, we have
that 3�� 2�k þ 1

3
¼ �11/3, and thus ��2

eq / M11=3, an ex-
tremely strong function of mass. Taken together, these results
imply that, if it is possible to detect transiting planets around any
stars in the target system, it is possible to detect planets with the
same radius and period around all stars in the system above sky.
For stars fainter than sky, the detection rapidly becomes im-
possible with decreasing mass. These effects are illustrated in
x 5.1.

These results have an interesting corollary that informs the ex-
perimental design. If the experiment is background limited [i.e.,
��2

eq(Msky) � ��2
min], then the minimum stellar mass around

which a planet is detectable isMth;b/M� ¼ (C1C2)
3=11, whereas in

the source-limited regime Mth; s/M� ¼ (C1)
6. Since the constants

C1 and C2 depend on the parameters of the target system, the
experimental setup, and the observational parameters, these scal-
ing relations generally imply that the yield of experiments in the
background-limited regime is relatively insensitive to the precise
values of these parameters, whereas the opposite is true for experi-
ments in the source-limited regime. Said very crudely, specific
experiments are either capable of detecting planets or they are
not. Experiments should be tailored such that ��2

eq/��2
min � 1

atM ¼ Msky, which implies that 2C1C
(3���k þ 1=3)=�k
2

�1, but pro-
vided that this requirement is well satisfied, changing the observa-
tional parameters will have little effect on the number of detected
planets.

3.3. Dependence of Ptr on M

We next consider Ptr. Substituting equation (13) into equa-
tions (9) and (12),

Ptr ¼ C3

M

M�

� ���1=3

; ð26Þ
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where we have defined

C3¼
4�2R3

�
P2GM�

� �1=3
¼ 0:238

P

days

� ��2=3

: ð27Þ

3.4. Dependence of dn/dM on M

We assume a differential mass function of the form

dn

dM
� k

M

M�

� ��
: ð28Þ

The constant kmust be chosen such that the integral over dn/dM
is equal to unity, i.e., such that

Z Mmax

Mmin

dM k
M

M�

� ��

¼1; ð29Þ

whereMmax andMmin are, respectively, the masses of the largest
and smallest stars in the system to be considered. Solving equa-
tion (29) for k gives us k ¼ (� þ 1)M

�
� /(M

�þ1
max �M �þ1

min ).

3.5. Dependence of Ptot(dn/dM) on M

We can now use these forms for PS/N and Ptr, together with
assumptions about the mass function of the stellar system dn/dM,
to evaluate the detection sensitivity to planets with a given set of
properties.

To a first approximation, PS/N is simply a step function such
that PS=N ¼ �(M �Mth), where Mth is the minimum threshold
mass. This is given byMth ¼ Mth;b if��2(Msky) � ��2

min, and
Mth ¼ Mth;b otherwise. Thus, for masses M � Mth, the sensi-
tivity as a function of mass is dominated by the effects of Ptr

and dn/dM. We can write

Ptot M ; P; rð Þ dn

dM
¼ PW Pð ÞC3 Pð Þk M

M�

� ��
� M �Mthð Þ;

ð30Þ

where � � �� 1
3
þ �. For a Saltpeter slope of � ¼ �2:35 and

�¼1, � ’ �1:68. Therefore, under the assumption that the
frequency of planets of a given radius and period is independent
of the mass of the primary, the number of detected planets is
dominated by parent stars with mass near Mth, which, in the
usual case of a background-dominated experiment, is for stars
with flux just below the sky.

4. ADDITIONAL INGREDIENTS

In x 3 we adopted several simplifying assumptions and ap-
proximations that allowed us to derive analytic expressions for
the detectability of planets as a function of primary mass. In-
spection of these expressions allowed us to infer some generic
properties of transit searches in stellar systems. However, in
order to make realistic estimates of the number of planets a
particular survey will detect, here we add a few additional
ingredients to the basic formalism presented in x 2. We also
present a somewhat more sophisticated treatment of the mass-
luminosity relation, as well as adopt specific values for several
parameters as necessary to make quantitative predictions.

4.1. Reconsidering the Mass-Luminosity Relation

The above analysis approximated the mass-luminosity rela-
tion as a simple power law in each wavelength band. As we

have already discussed, this assumption is incorrect in detail.
We therefore provide a somewhat better approximation to the
mass-luminosity relation. We analytically relate Lk to Lbol, as-
suming purely blackbody emission and that the bolometric mass-
luminosity relation can be expressed as a power law:

Lbol ¼ Lbol;�
M

M�

� ��
; ð31Þ

in which � is a single number, the bolometric power-law index,
instead of the wavelength-dependent index �k in equation (13).
Empirically, this is known to be a reasonable approximation for
0:3 M�PM P 2 M� (Popper 1980). We combine this bolomet-
ric relation with the mass-radius relation from equation (13) and
with Lbol ¼ 4�R2�T 4. We can then write temperature as a func-
tion of mass,

T (M ) ¼ T�
M

M�

� �(��2� )=4

; T� ¼ Lbol;�

4��R2
�

� �1=4
; ð32Þ

where T� ¼ 5777 K is the effective temperature of the Sun. We
can write the luminosity of a blackbody in a particular band X as

LX Tð Þ¼
Z þ1

�1
T X k0ð ÞBk 0 Tð Þ 4�R2

� �
�ð Þ dk0; ð33Þ

where Bk(T ) is the Planck law per unit wavelength and T X (k) is
the transmission for filter X. We can approximate this formula
by assuming that the transmission T X (k) of filter X is a simple
top hat with unit height, effective width �kX, and effective
wavelength kc;X . We can also replace the integral with a prod-
uct, since Bk(T ) does not change significantly over the intervals
defined by the visible or near-infrared filters we will be con-
sidering. Also, we can use equation (32) to write LX as a func-
tion only of mass. Thus, we can rewrite equation (33) as

LX Mð Þ ¼
8�2cR2k�4

c;X�kX
exp hc=kc;X kT Mð Þ
� 	

�1
: ð34Þ

To check this form of the luminosity function, we compare its
reported luminosities to those from the Yale-Yonsei (Y2) iso-
chrones (Yi et al. 2001), which use the Lejeune et al. (1998) color
calibration. We find that this form for LX (M ) is sufficiently ac-
curate for our purposes. In particular, it is much more accurate
than the simple power-law approximations we considered in x 3.
Nevertheless, we find that the qualitative conclusions outlined in
that section still hold using the more accurate form for the mass-
luminosity relation, and thus we can still use the intuition gained
by studying the behavior predicted by the analytic approxima-
tions derived in x 3 to guide our interpretation of the results pre-
sented in the rest of the paper.

4.2. Normalizing the Mass Function

To normalize the mass function, we need to determine which
values to use forMmin andMmax, which are used to compute the
normalization constant k. We should choose values that limit
the set of stars in the analysis to those around which planets are
likely to be detected.
Somewhat anticipating the results from the following sec-

tions, we set Mmin ¼ 0:3 M� for our fiducial calculations. This
represents the lowest mass star around which a planet can be
detected, for typical ranges of the observational, system, and
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planet parameters encountered in current transit searches. In some
cases, it may be possible to detect planets around stars of lower
mass. On the other hand, one might be interested in only those
stars for which precise RV follow-up is feasible for 8 m class
telescopes. Therefore, in x 5.4, we consider the effects of vary-
ing Mmin on the number of detectable planets.

We setMmax to be the most massive main-sequence star in the
system, i.e., a turnoff star. We determine the mass of a turnoff
star, Mto, using the simple relation Lbol; to ¼ 	Mtoc

2/A, where 	
is the net efficiency of hydrogen burning (	 ¼ 0:00067) and A is
the age of the target system. Combining this expression with the
bolometric mass-luminosity relation from equation (31) gives us

Mto¼
	M �

� c
2

Lbol;�A

 !1=(��1)

: ð35Þ

4.3. Minimum Observational Error

In x 2.2.3 we calculate � using a formula for pure photon noise
errors. In real observations, photometric errors do not get arbi-
trarily precise for a given source and background. Therefore, we
impose a minimum systematic observational error of �sys ¼ 0:1%
to mimic the practical difficulties of obtaining precise observa-
tions of bright stars. The calculated errors therefore become equal
to � ¼ (�2

phot þ �2
sys)

1=2, where �phot is the photon noise error.

4.4. Effective Area of the Seeing Disk

We assume that the point-spread function (PSF) is a Gaussian
with an FWHM of 
see, which has an effective area of

� ¼ �

ln 4

2
see: ð36Þ

4.5. Saturation Mass

Detectors have a finite dynamic range, and we clearly cannot
detect planets around saturated stars.When integrating overmass,
we therefore ignore starswithM � Msat , whereMsat is themass of
a star that just saturates the detector. We assume that a star satu-
rates the detector when the number of photons Nphot from the star
and sky that fall into the central pixel of the stellar PSF exceeds
the full well depth of a pixel, NFW. We approximate Nphot as

Nphot ¼ fk 1� exp �ln 2

pix

see

� �2" #( )
þ Ssky;k


2
pix

 !

; texp�
D

2

� �2
; ð37Þ

where 
pix is the angular size of a single pixel. This form assumes
a Gaussian PSF perfectly centered on the central pixel. The as-
sumption of Gaussian PSF is reasonable for our purposes, and
the assumption that the PSF is centered on a pixel conservatively
underestimates Msat. Formally, equation (37) only holds for cir-
cular pixels but is nevertheless accurate toP20% for square pixels.
This is sufficient for our purposes.

4.6. Planet Distribution

To compute the number of detected planets, we integrate
d 3Ndet/dr dP dM (see eq. [1]) over M, P, and r to find Ndet . We
therefore must assume a form for the distribution of planets,
d 2p/dr dP. We assume that the periods are distributed evenly in
log space, as is suggested by several analyses (e.g., Tabachnik

& Tremaine 2002). Since radii have been measured for only
seven planets, the distribution of the radii is very poorly known.
We therefore simply assume a delta function at r ¼ r 0 and adopt
r 0 ¼ 0:1 R� for our fiducial calculations. However, we also ex-
plore the detectability as a function of r. Our adopted distri-
bution of periods and radii can therefore be expressed as

d 2p

dr dP
¼ 1

�ln P
P�1� r � r 0ð Þ; ð38Þ

where �ln P is the logarithmic range of periods of interest.
From a comparison of the results from RVand transit surveys,

it appears that there are two distinct populations of close-in mas-
sive planets. Very hot Jupiters have periods between 1 and 3 days
and are approximately 10 times less common than hot Jupiters
with periods between 3 and 9 days (Gaudi et al. 2005). We there-
fore consider these two ranges of periods separately.

4.7. Extinction

We consider two models for the extinction. In general, we
assume an extinction of a fixed value AI in the I band and cal-
culate the extinction in the other bands using the extinction ratios
listed in Table 1. We also consider an extinction that depends on
the distance to the stellar system as

AI (d ) ¼ 0:5 mag
d

kpc

� �
; ð39Þ

where we again use the extinction ratios in Table 1 to determine
the extinction in the other bands. We use the fixed-extinction
law in all calculations and plots unless otherwise specified.

4.8. Fiducial and Fixed Parameters

There are a number of parameters in these equations for which
we must assign values. In x 5.3 we examine the dependence of
the detection probabilities on a subset of the most interesting of
these parameters. These include the cluster distance d , age A,
mass function slope �, and extinction AI , as well as the telescope
apertureD, the exposure time texp, the seeing 
see, duration of the
survey Nn , detection threshold ��2

min , and planet radius r and

TABLE 1

Sky Brightnesses, Zero-Point Fluxes, and Extinction Ratios

Parameter Value

Sky brightnessa (mag arcsec�2):

�I ................................................................... 20.0

�V .................................................................. 21.8

�B .................................................................. 22.7

�K .................................................................. 13

Zero-point fluxb (W cm�2 �m�1):

f0; I ................................................................. 1.13 ; 10�12

f0; V ................................................................ 3.63 ; 10�12

f0; B ................................................................. 6.32 ; 10�12

f0; K ................................................................ 3.96 ; 10�14

Extinction ratio:c ...............................................

AV /AI.............................................................. 2.07

AB /AI.............................................................. 2.74

AK /AI ............................................................. 0.232

a From the KPNO Web site, http://www.noao.edu/kpno/manuals/
dim/dim.html#ccdtime.

b From Bessell et al. (1998).
c From Binney & Merrifield (1998), recalculated for this paper

using I as the reference band.
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orbital period P. Our choices for the fiducial values of these
parameters are listed in Table 2. We do not vary the values of
the other parameters, either because they are quantities that are
empirically well determined or because their values are specific
to the kinds of surveys we are considering here. These quantities
are the detector readout time tread ¼ 30 s, the full well depth of
the detector NFW ¼ 105 photons, and the angular size of the
detector pixels 
pix ¼ 0B2. We assume an exponent of the mass-
radius relation of � ¼ 1. We also assume that observations can
take place during 7.2 hr each night, and we require two transits to
be observed for a detection. The fiducial values chosen in Table 2
are not intended to represent a specific cluster, but rather to be
typical values for star clusters in the Galaxy.

Since PS/N depends on the observational band, we calculate
PS/N (and by extension the overall probability Ptot ) using four
different bands, I, V, B, and K, using the kc;X and �kX for each
band as defined in Bessell et al. (1998). We use the sky bright-
ness in the different bands, �I , �V, �B , �K , from the Kitt Peak
National Observatory (KPNO) Web site.5 Table 1 lists the val-
ues for sky brightness, along with the flux zero-point values,
which come from Bessell et al. (1998).

5. RESULTS

We now have all the pieces we need to use equation (1) to
evaluate the number of planets Ndet that can be detected by a
particular survey toward a given stellar system. Our objective in
this section is to explore how the overall detection probability
depends on the various properties of the stellar system, the
planets, and the survey and to provide an estimate of the yield of
planets for a particular transit survey.

We begin by exploring the detection sensitivity as a function
of host star mass, confirming the basic conclusions we derived
from our simple analytic considerations presented in x 3. We
then consider the detection probability as a function of period,
integrated over the mass function of the system. Finally, we
consider the fraction of detected planets as a function of the
various observational and cluster properties, fully integrated
over the mass function, as well as the assumed planetary period
distribution. Unless otherwise stated, we adopt the fiducial as-
sumptions and parameter values described in detail in x 4.

5.1. Sensitivity to Host Star Mass M

We first consider the sensitivity as a function of the host star
mass. We begin by considering ��2

eq versus mass for our fi-

ducial parameters and r ¼ 0:1 R� and P ¼ 2:5 days. This is
shown in Figure 2, for the four photometric bands we consider.
We also show our fiducial value of ��2

min ¼ 30 and the quan-
tities Mth; I and Msky; I introduced in x 3.2. In order to elucidate
the effects of systematic errors, we show��2

eq for no systematic
error and for our fiducial assumption of a systematic error of
�sys ¼ 0:1%. When the systematic error is negligible, we find
that ��2

eq is approximately independent of mass forM kMsky,
as anticipated in x 3.2. However, when systematic errors are
included,��2

eq has a peak, which for our adopted values is near
M�. We also see that, for all of the photometric bandpasses and
fiducial parameter values we consider, the surveys are in the
background-limited regime, and we see that the S/N is highest
in the I band, implying that, all else equal, the number of de-
tected planets will be maximized when using this band for these
fiducial parameter values.
It is interesting to note in Figure 2 that the behavior of ��

2
eq

versus mass is fundamentally different in K than the optical
bandpasses. The basic reason for this is that, for the mass range
considered here (0:1 M�PM P2 M�), observations inK sample
the stellar spectrum in the Rayleigh-Jeans tail, whereas obser-
vations in the optical sample near the blackbody peak or in the
Wein exponential tail. Therefore, the ��2

eq falls more gradually
toward lower masses for observations in K. We see this funda-
mentally different behavior in K exhibited in many of the fol-
lowing results.
We next consider the overall detection probability Ptot(M ;

P; r) and its various components, PW, Ptr , and PS/N. Ptr is
described by equations (26) and (27); PS/N is described by
equations (15), (16), and (17); and the window function PW is
shown in Figure 1. We plot these various detection probabilities
and Ptot versus host star mass for our set of fiducial parameter
values in Figure 3a. The overall shape of the PS/N curve in
Figure 3a is simple: it shows that a transit will be detected if the
star’s mass is greater than Mth. The small downturn at high
masses is due to the systematic error introduced in x 4.3. That is

TABLE 2

Fiducial Parameters

Parameter Value

Distance, d (kpc) .................................. 2.5

Age, A (Gyr) ......................................... 1

Mass function slope, � ......................... �2.35

Bolometric index, � .............................. 4.0

Extinction in I band, AI ........................ 1.25

Telescope aperture, D (cm) .................. 200

Exposure time, texp (s) .......................... 60

Seeing, 
see (arcsec) .............................. 1

�2 threshold, ��2
min .............................. 30

Duration of survey, Nn (nights) ............ 20

Planet radius, r (R�) ............................. 0.1

Orbital period, P (days) ........................ 2.5

5 Available at http://www.noao.edu/kpno/manuals/dim/dim.html#ccdtime.

Fig. 2.—Parameter ��2
eq vs. host star mass for our fiducial parameters and

r ¼ 0:1 R� and P ¼ 2:5 days. The vertical lines showMth; I andMsky; I , while the
horizontal dashed line shows our fiducial value for ��2

min. The dotted lines show
the curves of ��2

eq without the inclusion of the systematic error �sys ¼ 0:1%.
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because as M increases, the depth of the transit decreases (be-
cause of the increasing R) but the photometric precision also
increases. However, by placing a limit on the measured preci-
sion, at high masses the decrease in � is no longer offset by a
decrease in �, and so the sensitivity dips.

We combine these pieces with the mass function dn/dM in
Figure 3b. There are a couple interesting features in this panel.
The mass function cuts off a little over 2M� because that is the
turnoff mass for a system with the fiducial parameters we are
using. The probability curve for K band cuts off before that
point, however. That is because a detector with the fiducial
values we have chosen (D ¼ 2 m, texp ¼ 60 s, 
pix ¼ 0B2, and
NFW ¼ 105 photons) saturates at that mass inK, while the values
forMsat for I, V, and B are higher thanMto for this fiducial stellar
system.

Looking at Figure 3b, it is clear that I band is the best one to
use to detect planets. The number of stars increases with de-
creasing mass, and it is possible to detect planets around stars
of lower mass in the I band. Since Ndet involves the integral of
Ptot(dn/dM ) over mass, the total number of planets detected
will be larger in the I band. It can be seen in x 5.3 that the I band
remains optimal for most parameter combinations encountered
in current transit surveys.

5.2. Sensitivity to Period

We next examine the sensitivity as a function of period. We
consider the total detection probabilityPtot , weighted by themass
function, dn/dM, integrated over period, i.e.,

R
Ptot(dn/dM ) dM .

This is shown in Figure 4.
The strong sensitivity to shorter period planets is clear and

arises from competition from several effects. The S/N proba-
bilityPS/N increases for increasing P, since a planet with a longer

period will have a transit with a longer duration, and so there will
be more observations during the transit and hence higher S/N.
However, this effect is more than compensated by the fact that
the transit probability is /P�2/3, and the window probabilityPW

generally increases for smaller periods (see Fig. 1), since there is
a greater chance of detecting two transits for shorter periods.

5.3. Sensitivity to Parameters

In this section we examine how the fraction of detected
planets fdet depends on the various input parameters considered
and listed in Table 2. Conceptually, there are three different
classes of parameters in Table 2. Five of the parameters describe
the properties of the target system: d , A, �, �, and AI . Five of
the parameters are properties of the observing setup: D, texp,

see , ��2

min, and Nn . The two remaining parameters, P and r,
are properties of individual planets.

Integrating over mass, period, and radius, the fraction of
planets detected is

fdet �
Nd

fpN�
¼
Z Z Z

dr dP dM
d 2p

dr dP
Ptot(M ; P; R)

dn

dM
:

ð40Þ

In Figure 5 we plot fdet versus planet radius. We plot fdet for the
five parameters of the target system in Figure 6 and the five
observing parameters in Figure 7. We now go though each of
the parameters and describe the dependencies:

1. Radius.—The dependence on planetary radius r shows
that detection probabilities increase very quickly up to the fi-
ducial value of r ¼ 0:1 R�, at which point a transit with a planet
of that radius has sufficient signal to be detected around nearly
all the stars in the system. In this plot we also see that while the
curves for I, V, and B bands all have this similar ‘‘step function’’
shape, the rise for the K band is more gradual.

Fig. 3.—Detection probabilities vs. mass. Panel a shows PW, Ptr, and PS/ N,
as well as the product of all three, Ptot . The curves for Ptot are displayed with
dotted lines, to make them more easily distinguishable from the curves for PS/ N.
Panel b shows the mass function dN/dM, along with the product of it and Ptot .
In both plots, PS/N and Ptot are shown in four different bands, I (black), V
( purple), B (blue), and K (red ). The plots are calculated using the fiducial
parameter values in Table 2 and a period of P ¼ 2:5 days, for which PW ¼ 0:63.
The cutoff in (b) is due to the fact that for a system with the fiducial parameter
values used for this plot, the turnoff mass is a little over 2 M�.

Fig. 4.—Total detection probabilityPtot , weighted by themass function dn /dM
and integrated over mass, i.e.,

R
Ptot(dn/dM ) dM , vs. planet period, for our fidu-

cial parameters (see Table 2). The window function used for this calculation is the
same PW as in Fig. 1. The various colors represent the different observing bands,
I (black), V ( purple), B (blue), and K (red ).

TRANSITING PLANETS IN STELLAR SYSTEMS 589No. 1, 2005



2. Age.—From Figure 6a, we see that fdet is quite insensitive
to the age of the system in I band and is somewhat more sen-
sitive in the other bands. This is because, as we see in Figure 3b,
a larger proportion of the planets detected in the other bands are
at higher masses. The fact that Msat is lower than Mto in K ac-
counts for the break in the curve in K.
3. Bolometric index.—Figure 6b shows that fdet is weakly

dependent on the value of �. Therefore, our choice of � ¼ 4:0 is
not so important, as fdet is essentially the same for 3:5 < � < 5:0,
which encompasses the whole range of values that are typically
used for the mass–bolometric luminosity relation.
4. Distance.—This is a key parameter. A nearby system will

have many saturated stars, which accounts for the turnover at
small distances. For fixed extinction (Fig. 6c), as the system gets
farther away, the signal drops and planets cannot be detected
around the smaller stars in the system. For distance-dependent
extinction (Fig. 6d ), that effect is compounded at large distances,
although the extinction has much less of an effect in K. In both
cases, for sufficiently large distances, the system transitions into
the source-limited regime, at which point fdet drops precipitously.
5. Extinction.—Figure 6e plots the dependence on the value

of AI , showing the effects of greater extinction at a fixed dis-
tance. In a sense, combining the effects from Figures 6c and 6e
gives us Figure 6d, although the combination is more complex
than a simple multiplication.
6. Mass function.—The slope of themass function� determines

the relative number of smaller stars and larger stars. The fiducial
value of � ¼ �2:35 is the usual Salpeter slope (Salpeter 1955). As
we see in Figure 6f , the detection probabilities do not depend
greatly on the exact value of the slope, although for larger values
of � bluer bandpasses become more competitive, as expected.

7. Nights observed.—In Figure 7a, we see that an observing
campaign lasting about 15 nights will detect two or more transits
from nearly all the very hot Jupiters (1 day < P < 3 days) that
satisfy the detection threshold, but to detect two or more transits
from most of the detectable hot Jupiters (3 days < P < 9 days),

Fig. 5.—Fraction of planets detected, fdet , vs. planet radius, for our fiducial
parameters (see Table 2). In order to convert to the number of planets detected
Ndet , these numbers should be multiplied by the total number of stars N� in the
system with masses between M ¼ 0:3 M� and the turnoff mass and by the
fraction fp of these stars with planets, i.e., Ndet ¼ fdet fpN�. The colors represent
the different observing bands: I (black), V ( purple), B (blue), and K (red ). The
solid lines show fdet for very hot Jupiters, i.e., planets with periods P ¼ 1
3 days. The dotted lines show fdet for hot Jupiters, i.e., planets with periods
P ¼ 3 9 days. The vertical green line indicates the fiducial value we use for the
other plots, r ¼ 0:1 R� ’ 1RJ.

Fig. 6.—Fraction of planets detected, fdet , as a function of the parameters of
the target stellar system. Line types are the same as in Fig. 5. The vertical green line
in each plot indicates the fiducial value for that parameter used in calculating all the
other plots. The panels show fdet vs. (a) age of the system, (b) power-law index
of the mass–bolometric luminosity relation, (c) distance to the system for a fixed
extinction, (d ) distance to the system for a distance-dependent extinction, (e) I-band
extinction, and ( f ) the index of the mass function.

Fig. 7.—Same as Fig. 6, but with fdet as a function of the observational
parameters. The panels show fdet vs. (a) number of nights of the observational
campaign, (b) FWHM of the PSF (the seeing), (c) the exposure time, (d ) the
diameter of the telescope, and (e) the minimum �2

min required for detection.
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the survey should last more than twice as long. Since we assume
perfect weather in this analysis, even more time should be ex-
pected to fully detect the most possible transits.

8. Seeing.—An increase in the seeingmeans an increase in the
size of the PSF and hence an increase in the number of pixels over
which the flux of the stars is distributed. This affects fdet in two
distinct and opposite ways. First, this increases the contribution
of the background noise at fixed mass, therefore increasing Mth.
Second, this decreases the number of photons in the central pixel
and hence increases themass at which the detector saturates,Msat.
As discussed in x 3.2, Mth is rather weakly dependent on seeing
for experiments in the background-limited regime, due primarily
to the fact that the mass-luminosity relation is so steep. Fur-
thermore, the increase inMth is partially compensated for by the
increase inMsat . As a result, the fdet varies very little for the typ-
ical range of seeing encountered in real observations, as seen in
Figure 7b. Since the sky is so much brighter in K, the seeing
dependence is somewhat greater in that band.

9. Exposure time.—There are three effects of texp. First, a longer
exposure time increases the total number of photons in a single
observation. Second, longer exposure times decrease the number of
observations per transit. These two effects effectively cancel when
texp3 tread. The third effect of texp is that very long exposure times
cause bright stars to saturate. In Figure 7c the saturation effect
is the reason why fdet in K falls so quickly, since for our fidu-
cial setup the large number of sky photons alone already brings
the pixels close to saturation in K. In the other bands complete
saturation does not occur even at texp ¼10 minutes. Since sat-
uration involves both texp and D, it can be seen in x 6 that the
simultaneous consideration of both factors is important.

10. Telescope aperture.—This factor enters in two ways.
Larger apertures allow a survey to reach the detection threshold
for fainter stars yet also lead to saturation of brighter stars. In Fig-
ure 7d in K we see that fdet plummets a little past D ¼ 200 cm,
since at that aperture the sky photons alone saturate the pixels.
In I, the situation is complicated. Increasing D decreases Mth.
However, looking back at Figure 3, we see that in I, Mth is just
a little larger than 0.3 M�, which we take as the minimum ob-
servable mass. Thus, increasing D eventually pushes Mth below
0.3 M�. Any further increase in D will therefore not result in
additional detections at the low-mass end and instead simply
lowers fdet as an increasing number of high-mass stars saturate the
detector. In V and B, Mth continues to decrease for larger aper-
tures, but due to its weak dependence on D, it is always above
0.3 M� for D � 2000 cm. Further, the increase in fdet due to
decreasing Mth is compensated for by the decrease inMsat , such
that fdet is nearly independent of the aperture for Dk 500 cm
and B- and V-band observations.

11. Detection threshold.—The choice of ��2
min is strongly

related to how much follow-up time and resources are available
for confirming transit candidates. Since false positives are a big
hurdle in confirming transits, it is best to choose a high value for
��2

min. As anticipated in x 3.2 and seen in Figure 7e, the depen-
dence of fdet on ��2

min is relatively weak until the background-
limited regime is reached, at which point fdet falls rapidly. For our
fiducial parameter values, which are representative ofmany open
cluster surveys, rather stringent detection criteria of ��2

minP
100 can be tolerated without an unacceptably large reduction in
the detection efficiency.

5.4. Minimum Mass

Up to this point, our results have been normalized such that fdet
is the fraction of the planets orbiting stars with masses between
0:3 M� � M � Mto that are detected. We have not considered

masses below 0.3 M�. The lower mass limit was chosen be-
cause this is approximately the minimum mass around which a
planet was detectable in the I band for our fiducial assumptions
(see Fig. 2). Furthermore, it is also approximately the com-
pleteness limit of the deepest mass function determinations for
rich old open clusters (e.g., Kalirai et al. 2001).

In some instances, it may be possible to detect planets around
stars with masses considerably smaller than we have considered,
withM � 0:3M�. Since constraints on planets orbiting such low
mass stars are meager, we briefly consider the detectability of
planets around host star masses in this regime. Specifically, we
perform the same analysis, except now we consider stars with
masses in the full rangeMhb � M � Mto, whereMhb ¼ 0:08M�
is the mass at the hydrogen-burning limit. In order to make these
results directly comparable to our previous results, we continue
to normalize themass function such thatN� is the total number of
stars between 0:3 M� � M � Mto and Ndet ¼ fp fdet N�, with fp
the fraction of stars with planets and fdet the number of planets
orbiting stars between 0:3 M� � M � Mto that are detected. In
this way, fdet can now formally exceed unity, although in practice
this is never the case. Figure 8b shows fdet versus distance in-
cluding stars down to the hydrogen-burning limit. We see that,
for monotonically rising mass functions, it may be possible to
increase the number of detections significantly by considering
very low mass primaries. However, initial mass functions are
observed to have breaks near M � 0:3 0:5 M�, such that this
boost is probably not realized in practice, and furthermore any
detections around such low mass primaries will be quite difficult
to confirm, as we discuss below. Nevertheless, the potential for
constraining the planetary population of very lowmass primaries
is noteworthy.

In order to determine planet masses, as well as eliminate the
many kinds of astrophysical false positives that mimic plane-
tary transits (Torres et al. 2004; Mandushev et al. 2005; Pont
et al. 2005b), reasonably precise�50 m s�1 RV follow-up mea-
surements of candidate transits are required. Since the majority

Fig. 8.—Plots of fdet vs. distance. The different plots use different criteria for
the minimum mass cutoff, with (a) a fixed mass of 0.3 M�, (b) a fixed mass of
0.08 M�, or minimum masses corresponding to magnitude cuts (c) V < 17 and
(d ) V < 18.
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of the stars probed by transit surveys toward stellar systems
are relatively faint, the ability to perform RV follow-up to this
precision is a serious concern. The current state-of-the-art RV
measurements on faint stars using 10 m class telescopes can
reach precisions of �50 m s�1 on stars with V P17 (Konacki
et al. 2003b; Bouchy et al. 2005; Pont et al. 2005a). It may be
possible to push this limit to somewhat fainter stars with more
ambitious allocation of resources or improvements in future
technology.

In order to estimate what fraction of detected planets can be
confirmed using RV follow-up, in Figure 8 we plot fdet versus
distance, where we consider only those host stars with apparent
V magnitudes of V <17 and V <18. These can be compared
directly to the case where we consider all stars withM � 0:3M�.
The first feature of Figure 8 that is noticed is that the plots of fdet
drop faster for the magnitude-limited cases than for the mass-
limited case because of the nature of the mass-luminosity rela-
tion. For our fiducial parameters, it is clear that the number
of candidates that can be confirmed is considerably smaller
than the number that can be detected. Furthermore, the advan-
tage of observations in the I band is effectively removed, since
most of the additional I-band detections are too faint for RV
confirmation.

It is clear that the ability to performRV follow-up on candidate
planetary transits must be considered carefully when designing
a transit survey. The question of how to devise a photometric
survey that maximizes the number of detected planets while ac-
counting for the ability to perform spectroscopic follow-up is
outside of the scope of this paper, but the formalism we have
introduced here should provide the tools to do so.

6. AN APPLICATION

The most obvious application of our results is to use the pre-
dictions for the number of detectable planets to choose optimal
targets for a particular survey and to derive strategies to optimize
the number of detected transits for a specific target. Since the
specifics of the optimal strategies will depend on detailed prop-
erties of the survey, such as the site, detector, telescope, and time
allotment, here we do not attempt a comprehensive discussion but
rather simply suggest heuristic guidelines motivated by a couple
of specific examples.

One important question is which targets are optimal in the
sense of allowing the largest number of possible detections.
There are a number of factors that may enter into target selection,
including visibility, metallicity, richness, extinction, size, and
distance. We illustrate how our results can be used to quantify
and optimize cluster selection, using the example of the trade-off
between cluster distance and exposure time. As we have shown,
fdet is a strong decreasing function of cluster distance, such that
closer clusters are generally preferred. However, saturation of
bright stars is also more problematic for more nearby clusters.
This can be partially compensated for by decreasing the expo-
sure time, but only until texp becomes comparable to tread. In
Figure 9b we show how fdet varies with distance to the target for
various exposure times. From this result, we see that clusters
with distances d � 2 kpc are optimal, for telescope apertures of
D � 200 cm.

A somewhat different problem is to determine, given a par-
ticular target system in which one wants to search for planets,
what is the optimal observational setup. If the intent of a survey
is to detect all the transits of the brightest stars, then the ex-
posure time should be set such that the survey saturates at the
turnoff stars of the target system. In that case, the exposure time
can be calculated using equations (10), (13), (37), and (35). On

the other hand, if the intent is to configure the parameters to
achieve the largest number of photometric detections, there are
two factors at which we should look more closely: aperture size
and exposure time. We can see in Figure 9a how fdet varies with
aperture size for various exposure times. When the aperture size
is large, saturation effects reduce the detection efficiency very
quickly, and this can only be partially compensated for by de-
creasing the exposure time. As a result, for transit surveys aim-
ing to detect Jupiter-sized planets, telescopes with apertures of
D � 200 400 cm are optimal. Exposure times of less then a
couple minutes are generally sufficient.
These preliminary calculations provide some guide to the

best places and optimal methods to look for planetary transits.
Observers searching for transits can use the formalism derived
here to precisely determine which systems to search for transits
and what observing setup to use.

7. SUMMARY AND DISCUSSION

In this paper we have developed a formalism to predict the
efficiency of searches for transits in stellar systems. We have
taken into account most relevant parameters that affect the
number of transits that can be observed, and we have described
how the total number of expected transit detections depends on
these parameters. Our primary results are as follows:

1. I band is optimal.—For the range of parameters encoun-
tered in most transit surveys, observations in the I band maxi-
mize the number of detected planetary transits. In general, redder
bands are preferred also because the effects of limb darkening are
minimized, which aids in the interpretation of transit candidates
and in the elimination of false positives (Mallén-Ornelas et al.
2003). However, we have not taken into account the variation in
quantum efficiency of detectors as a function of wavelength. This
is likely a small effect. For some detectors, fringing can be a
serious problem in the I band. Thus, in some cases, somewhat
bluer bands (i.e., the R band) may be preferable. Surprisingly, in

Fig. 9.—Fraction of detected planets fdet as a function of telescope aperture
and distance for various exposure times, showing only the I-band curves. The
solid lines represent very hot Jupiters (1 day < P < 3 days), while the dotted
lines represent hot Jupiters (3 days < P < 9 days).

PEPPER & GAUDI592 Vol. 631



essentially no case do we find that observations in the K band
outperform those in the I band.

2. The S/N depends weakly on primary mass.—For the I band
and assuming only Poisson uncertainties, the S/N of a planetary
transit is an extremely weak function of mass for sources with
flux above that of the sky background. For sources with flux
below sky, the S/N is a very strong decreasing function of mass.

3. The number of detections is proportional to the number of
stars above sky.—As a direct consequence of item 2, if one can
find planets around any stars in the target system, one can detect
planets around all stars in the system with fluxes above sky.
Therefore, the number of planets that are detectable is propor-
tional to the number of stars with flux above sky. This is quite
distinct from the usual assumption that the number of detectable
planets is proportional to the number of stars with photometric
error less than a given precision, usually taken to be �1%. Esti-
mates based on this canonical criterion will typically be incorrect.

4. Most planets will be detected around stars with flux near
sky.—Under the typically valid assumption of a mass function
that rises toward lower mass stars, item 3 implies that most
planets will be detected around stars that have fluxes approxi-
mately equal to the flux of the sky background.

5. Planets orbiting stars near sky must be detectable.—The
primary requirement for a successful transit survey is that the
planets orbiting stars with fluxes near the sky background must
be detectable. This requirement is formulated mathematically in
equation (19). Provided that this requirement is met, the number
of detected planets is a rather weak function of the radius of the
planet, index of the bolometric mass-luminosity relation, age of
the system, index of the mass function, seeing, exposure time,
telescope aperture, and detection threshold.

6. The richest, closest systems are optimal.—The number of
detected planets has the strongest dependence on the distance
modulus, the distance and extinction to the cluster. Systems at
distances of dP 2 kpc are optimal. Very nearby (d P1 kpc) sys-
tems may have difficulties with saturation of bright stars, as well
as fitting within the field of view of the detector.

7. Follow-up of the majority of candidates may be difficult.—
The majority of planets in typical target systems are likely to be

detected around stars with apparent magnitudes of V k 17, mak-
ing precision RV follow-up difficult. This is an important con-
clusion that may affect the design of transit surveys. Difficulties
with RV follow-up are partially ameliorated by the fact that sur-
veys toward stellar systems are much less prone to the ambigui-
ties with the interpretation of candidate detections encountered
in field surveys, since the properties of the primaries are better
known.

There are a number of ways in which our analysis could be
expanded and refined. For instance, we do not take into ac-
count the metallicity of the observed systems. Studies have indi-
cated that planets are more common around high-metallicity
stars (Fischer & Valenti 2005), and as that correlation becomes
better characterized, we can add metallicity to the parameters we
examine. It would also be useful to include the effects of ob-
servability on the window function, which is important for the
selection of optimal targets. Our analysis also does not account
for bad weather. Further work could examine what kinds of
inclement weather are most damaging for a transit search and
could possibly address the question of whether it is possible to
partially compensate for inclement weather by adopting more
sophisticated observing strategies. Another potential refinement
would be to account for different forms for the mass function,
rather than relying on the simple Salpeter shape we use in this
paper, such as a broken power-law function with different power-
law indices for high- and low-mass stars. Lastly, we do not ac-
count for stellar binarity, which also generally decreases detection
probability.

We would like to thank Chris Burke for useful discussions.
We would also like to thank the referee for a prompt response
and helpful suggestions. This work was supported by a Menzel
Fellowship from the Harvard College Observatory and also by
the National Aeronautics and Space Administration under grant
NNG04GO70G issued through the Origins of Solar Systems
program.

APPENDIX A

TOTAL S/N FORMULATION

In the main text, we derived expressions for the S/N of a transiting planet S/N ¼ (��2)1
=2 for a single transit. The probability PS/N

that a planet will have an S/N that exceeds a given threshold, as well as all subsequent calculations, was based on this single-transit
S/N criterion. However, planets will generally exhibit multiple transits, and it is possible, by folding an observed light curve about the
proper period, to improve the total S/N over that of a single transit by�n1/2, where n is the number of observed transits. In fact, popular
transit search algorithms operate on phase-folded light curves and hence trigger based on this total S/N (Kovács et al. 2002; Aigrain
& Irwin 2004; Weldrake & Sackett 2005). It is therefore interesting to rederive our expressions based on this total S/N formulation.

The general expression for the number of detected planets Ndet remains the same, but the expression for the total detection
probability Ptot(M ; P; r) needs to be altered,

Ptot M ; P; rð Þ ¼ Ptr M ; Pð ÞPtot
S=N M ; P; rð ÞPW Pð Þ; ðA1Þ

where Ptr and PW are the transit and window probabilities as before and Ptot
S=N is now the probability that the total S/N is higher

than some threshold value.
The total S/N probability, P tot

S=N, can be derived in an analogous way to the one-transit S/N probability (see x 2.2.3). We begin by
defining dP tot

S=N/db � �(��2
tr ���2

min), where ��2
tr is the difference in �2 between a constant flux and transit fit to the data,

��2
tr ¼ N tot

tr

�

�

� �2
: ðA2Þ

Here N tot
tr is the total number of observations taken during any transit, and � and � are as before.
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For no aliasing and periods much shorter than the length of the observational campaign, the total number of observations during
transit is simply the transit duty cycle ttr /P times the total number of observations Ntot ,

N tot
tr ¼ ttr

P
Ntot: ðA3Þ

In fact, for campaigns of finite durations from single sites, aliasing cannot be ignored, and there will be a dispersion in the fraction
of points during transit about the naive estimate ttr /P. For long campaigns lasting more than �40 days, aliasing effects are generally
not dominant, although they are still significant (for examples see Gaudi et al. 2005). They can be accounted for by integrat-
ing d 2PS=N/d� db over the transit phase � and impact parameter b. For simplicity, we ignore aliasing effects here and assume equa-
tion (A3).

Since ttr ¼ (1� b2)1
=2teq , we can write

��2
tr ¼ ��2

eq

ffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
; ��2

eq ¼ Ntot

teq

P

�

�

� �2
: ðA4Þ

The total S/N probability is then just the integral over impact parameter,

P tot
S=N ¼

Z 1

0

dPS=N

db
db; ðA5Þ

which yields

P tot
S=N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

min

��2
eq

 !2vuut ðA6Þ

if ��2
min � ��2

eq, and PS=N ¼ 0 otherwise.
We can write �2

eq in more explicit terms using the expressions for �, �, and teq derived previously. The additional new ingredient
is the expression for Ntot . If we assume that the campaign lasts Nn nights, each with a duration of tnight , and that observations are
made continuously, then the total number of data points is

Ntot ¼
tnight

texpþ tread
Nn: ðA7Þ

Combining this with the expressions we derived in x 2.2.3, we arrive at the expression

��2
eq ¼ 1024�ð Þ�1=3 texp

treadþ texp

r

R

� �4
D

d

� �2
R3

GMP2

� �1=3
tnight NnLk10

�0:4Ak 1þ Ssky�4�d
2

Lk10�0:4Ak

� ��1

; ðA8Þ

which can be compared to the analogous expression for a single transit, equation (12). Comparison of equations (12) and (A8) reveals
that the ratio of �2

eq for the total S/N formulation to �2
eq for the single-transit formulation is /P�1. Thus, the total S/N formula-

tion favors short-period planets more heavily than the single-transit formulation.

APPENDIX B

EFFECT OF PARTIAL TRANSITS

Let us return for the moment to our definition of Ntr . This variable represents the number of observations of the system during a
single transit. We stated earlier thatNtr ¼ ttr/(tread þ texp). However, that formula is only valid if the entire transit is observed during the
night; it does not hold if only partial transits are observed, i.e., if the transit begins before the start of the night or ends after the end of
the night. In those cases the transit is observed for a time less than ttr , the number of observations during transit is less than Ntr, and
therefore the S/N is less than the naive estimate in x 2.2.3.

To account for partial transits, we rewrite the transit duration as

ttr ¼ teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
f (�); ðB1Þ
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where f (�) is the fraction of the total transit duration that occurs during the observation window, as a function of the phase � of the
transit. For uniform sampling and teq � tnight, this is simply

f (�)¼

1

2
þ �

tnight

teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ; 0 � � � 1

2

teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p

tnight
;

1; �� 1

2










� 1

2

teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p

tnight
� 1

2
;

1

2
þ tnight

teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p (1� �); � � 1� 1

2

teq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p

tnight
�1;

0; otherwise;

8>>>>>>>>>>><
>>>>>>>>>>>:

ðB2Þ

where � ¼ 0 is the beginning of the night and �¼1 is the end of the night. Note also that we have also conservatively assumed that
a transit cannot be detected if it is observed for less than half of its total duration.

Following the discussion in x 2.2.3, we write

d 2PS=N

db d�
¼ � ��2

eq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
f �ð Þ ���2

min

h i
: ðB3Þ

Proceeding in the same way as in x 2.2.3, we integrate equation (B3) over b from 0 to bmax and � from 0 to 1, assuming a uniform
distribution for b and �, and solve for bmax, i.e.,

PS=N ¼
Z 1

0

db

Z 1

0

d�
dPS=N

db d�
: ðB4Þ

We do not attempt to solve equation (B4) analytically; rather, we evaluate it numerically, noting that PS/N depends only on the
ratios��2

min/�
2
eq and teq/tnight. Figure 10 shows PS/N as a function of��2

min/�
2
eq for equatorial transit durations lasting 10%–50% of

the night. We also show the result for the simplified assumption of teqTtnight that we adopted throughout. We conclude that our
simple assumption is sufficient for purposes, but note that it overestimates PS/N by as much as 25% for certain combinations of
parameters.

Fig. 10.—Probability PS/N that a planet, producing ��2 ¼ ��2
eq for an equatorial transit, will yield a ��2 greater than a given threshold ��2

min, when integrated
over all impact parameters and phases, for various values of the ratio of the equatorial transit duration teq to the duration of the night tnight . The solid line shows the
approximation PS=N ¼ ½1� (��2

min/��2
eq)

2	1=2 used in the main test, which is valid for teqTtnight .
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