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ABSTRACT

With their excellent photometric precision and dramatic increase in monitoring frequency, future microlensing
survey experiments are expected to be sensitive to very short timescale, isolated events caused by free-floating and
wide-separation planets with masses as low as a few lunar masses. The scientific value of these detections would
be greatly enhanced if their nature (bound or unbound) could be accurately characterized and if the planet masses
could be measured. Here we present a comprehensive discussion of the ability of microlensing to detect and
characterize wide-separation planets. We estimate the probability of measuring the planetary Einstein radius 0 ,
for bound and free-floating planets; this is one of the two additional observables required to measure the planet
mass. We carry out detailed simulations of the planetary events expected in next-generation surveys and estimate
the resulting uncertainty in ¢g , for these events. We show that, for main-sequence sources and Jupiter-mass
planets, the caustic structure of wide-separation planets with projected separations of <20 AU substantially in-
creases the probability of measuring the dimensionless source size and thus determining g, compared to the case
of unbound planets. In this limit where the source is much smaller than the caustic, the effective cross section to
measure g , to 10% is ~25% larger than the full width of the caustic. Measurement of the lens parallax is possible
for low-mass planetary events through combined observations from the ground and a satellite located in an L2
orbit; this would complete the mass measurements for such wide-separation planets. Finally, short-duration events
caused by bound planets can be routinely distinguished from those caused by free-floating planets for planet-star
separations <20 AU from either the deviations due to the planetary caustic or (more often) the low-amplitude

bump from the magnification due to the parent star.

Subject headings: gravitational lensing — planetary systems — planets and satellites: general

Online material: color figures

1. INTRODUCTION

Microlensing experiments were originally proposed to search
for Galactic dark matter in the form of massive compact objects
(Paczynski 1986). However, microlensing developed several
other applications, including the detection and characterization
of extrasolar planets (Mao & Paczynski 1991; Gould & Loeb
1992). Recently, Bond et al. (2004) reported the first clear-cut
microlensing detection of an exoplanet.

Microlensing planet searches currently operate in the survey/
follow-up mode. Large areas of the sky are sparsely monitored
by survey collaborations (Alcock et al. 1996; Soszynski et al.
2001; Bond et al. 2002) to detect ongoing microlensing events
arising from normal stars. These events are alerted in real time
before the event peak and then individually followed up with
the dense sampling needed to detect the short-duration (about a
day for a Jupiter-mass planet and a few hours for an Earth-mass
planet) perturbation to the primary light curve caused by a
planetary companion to the primary lens (Albrow et al. 1998;
Rhie et al. 2000; Yoo et al. 2004b). One limitation of this type
of planet search strategy, however, is that events are only effi-
ciently followed when the source is located within the Einstein
ring radius of the primary. Generally, such source positions
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are only sensitive to planets with separations located within a
certain range of distances from their host stars. Planets in this
so-called lensing zone have separations in the range of 0.6 <
s < 1.6, where s is the projected star-planet separation normal-
ized by the Einstein ring radius. For a typical Galactic bulge
event with a lens and a source located at D,; = 6 kpc and
D,s = 8 kpc, respectively, the Einstein ring has a radius of

M 1/2
rE~2 AU(—— )
0.3 M,

where M is the primary-star mass, and thus, current micro-
lensing planet searches are primarily sensitive to bound plan-
ets in the range of projected physical separations, r,, of
1 AUSr; <5 AU. Furthermore, because the follow-up is
generally done with small field-of-view instruments, the events
must be monitored sequentially. As a result, only a few events
can be followed at any given time, and it is difficult to achieve
the requisite temporal sampling on a sufficient number of events
to detect short-duration, low-probability events such as those
caused by low-mass or large-separation planets.

These limitations can be overcome with the advent of future
lensing experiments that will use very large format imaging
cameras to survey wide fields continuously at high cadence.
These next-generation surveys will dispense with the alert/
follow-up mode of searching for planets and instead simulta-
neously obtain densely sampled light curves of all micro-
lensing events in their field of view. Because all the stars in the
field will be monitored continuously regardless of whether they
are being lensed or not, planets will be able to be detected at
very large projected separations when the primary star is not

(1)
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significantly magnifying the source, and indeed even when the
signature of the primary is absent. Therefore, these surveys are
expected to be sensitive to both wide-separation (Di Stefano
& Scalzo 1999a, 1999b) and even free-floating (Bennett &
Rhie 2002; Han & Kang 2003) planets. Such planet pop-
ulations are difficult or impossible to probe by other planet
search techniques. Several such high-frequency experiments in
space and on the ground have already been proposed or are
being seriously considered. The proposed space microlensing
mission of the Microlensing Planet Finder (MPF; Bennett &
Rhie 2002; Bennett et al. 2004) is designed to continuously
monitor ~10% Galactic bulge main-sequence stars with ~1%
photometric precision and a frequency of several times per
hour by using a 1-2 m aperture space telescope. Detailed
simulations of the outcomes of a ground-based high-frequency
experiment using a network of 2 m class telescopes are being
carried out by B. S. Gaudi et al. (2005, in preparation).

Although efficient in detecting both bound and free-floating
planets, the microlensing method suffers the shortcoming that
the mass of the detected planet is generally poorly constrained.
For events due to bound planets in which the primary is also
detected, analysis of the global light curve automatically yields
the planet-star mass ratio ¢ = m,/M, but the stellar mass is
unknown because of the degeneracy of the physical lens pa-
rameters in the principal lensing observable. This degeneracy
arises because among the three observables related to the
physical parameters of the primary lens, namely, the Einstein
timescale #z, the angular Einstein radius 6, and the Einstein
ring radius projected onto the observer plane 7g, only #g is
routinely measurable from the lensing light curve. These three
observables are related to the underlying physical lens pa-
rameters of the primary mass M, relative lens-source parallax
el = (1 AUYD,! — D;), and proper motion i by

; :9_1; O — [AGM e - [4GM AU 2)
: :urel7 : 6.2 AU’ " C27Trel .

For the unique determination of the planet mass, one must
therefore measure the other two observables, 0 and 7g. Once
Ok and 7g are known, the primary lens mass is determined by

e (Yt .

and thus the mass of the planet by m, = gM. In the case of
free-floating planets, or bound planets in which the primary is
not detected, one must measure the analogous quantities 0g,
and 7g , to infer m, = (c*/4G)Fg, p0k. -

There have been several methods proposed to determine the
masses of planets detectable by future lensing experiments.
Bennett & Rhie (2002) pointed out that for some detected
events due to bound planets, the proposed space lensing mis-
sion would detect enough light from the host lens star to de-
termine its spectral type and so infer the mass. However, no
more than approximately one-third of lenses are bright enough
to be so detected, and furthermore, the planet mass can only be
inferred if the microlensing signature of the primary is also
detected, so that the mass ratio g can be inferred, and then the
planet mass via m, = gM. Thus, this method cannot be used to
infer the mass of very wide separation planets in which the
magnification of the primary is negligible.

A more direct method of determining masses of bound
planets in the lensing zone was proposed by Gould et al.

(2003). They first demonstrated that the precision and sam-
pling of the space observations will be sufficient to routinely
detect one projection of the vector quantity® 7rg from the pri-
mary event. They then demonstrated that a second projection
of 7 could be measured by combining observations from a
satellite in an L2 orbit with ground-based observations. For this
setup, an Earth-satellite baseline of dg, ~ 0.005 AU is suffi-
cient to routinely detect the difference in the peak time of the
planetary perturbation as seen from the Earth and satellite for
low-mass planets. The difference can then be combined with
the known Earth-satellite projected separation to measure the
second projection of 7rg. The two projections of 7rg yield the
magnitude of 7g. Moreover, for terrestrial planets with mass
ratio ¢ ~ 1073, the Einstein ring radii 0 , = ¢'/?0 is of order
the angular source size 0, of a typical (main sequence) source.
Therefore, the magnification pattern arising from the planet
typically has structure on the scale of the source size, which
gives rise to finite-source deviations on the planetary pertur-
bation. A global fit to the light curve including finite-source
effects allows us to measure p,. = 0, /0g. The angular size 6,
can be determined from its dereddened color and magnitude
using an empirically calibrated color—surface brightness rela-
tion. Thus, a measurement of p, can be used to infer fg and thus
complete the primary mass measurement via equation (3), and
therefore the planetary mass using the inferred mass ratio.

Han et al. (2004) demonstrated that the same observational
setup discussed by Gould et al. (2003) to determine the mass of
bound planets can also be used to determine the masses of free-
floating planets. The principles are generally the same; how-
ever, the primary difference is that microlensing events due to
free-floating planets are essentially single-lens events, and the
small caustic residing at the center of the planet’s Einstein ring
that exists for bound planets is absent. The lack of structure
induced by this caustic is beneficial because it allows one to
unambiguously determine both components of the planetary
projected Einstein ring radius 7g , from the planetary event
itself. However, it also implies that the cross section for sig-
nificant finite-source effects is much smaller than in the bound-
planet case, for which the caustic structure is significantly
extended. Essentially, it is only possible to detect finite-source
effects and so measure 0, for those events in which the impact
parameter of the source is of order the angular size of the star,
i.e., events in which the source star transits the planet. The
angular radius 6, of a typical main-sequence source star in
units of the Einstein ring radius 6 , of a planet is

9. my ~1/2
= ——~0. , 4
Per =T 0 6(1 M@> ()

where we have assumed 6, ~ 0.6 pas, which is typical for
main-sequence sources in the bulge, and m, ~ 42 puas (i.e.,
D,; =6 kpc and D,; = 8 kpc). The fraction of events that
transit the source is O(p,, ), and therefore mass measurements
are only routine for planets with masses for which p, , 21, i.e.,
m, < 0.3 Mg, and are less common for larger mass planets.
Microlensing events caused by wide-separation planets have
a gross structure similar to that of events caused by free-
floating planets, and thus the mass of the planet can be deter-
mined in a similar way. A wide-separation planetary event here
means an event in which the source passes close to the planet

5 The vector g = 1 AU /FE has the magnitude of 7 and the direction of
the relative source-lens proper motion.
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of a wide-separation planetary system. Because the star-planet
separation is very wide (and in particular, much bigger than the
Einstein ring of the primary), the source trajectory typically
approaches only the planet (and not the host star lens); thus, the
light curve of the event is approximated by that of a free-
floating planetary event. For wide-separation planetary events,
however, the primary (parent star) provides a shear at the lo-
cation of the planet of v = s~2. This shear produces a caustic of
angular width ~4~0g , near the location of the planet.® This
caustic can cause anomalies near the peak of the light curves,
provided that the source trajectory passes close to the caustic.
Han & Kang (2003) pointed out that these anomalies can be
used to distinguish events caused by bound planets from those
caused by free-floating planets. In addition, this extended caus-
tic structure increases the cross section for significant finite—
source size effects, thereby increasing the fraction of events for
which it is possible to measure g , (and thus the planet mass)
relative to the unbound case. Since the source must pass within
O(0%, ) of the planet to be detected, the fraction of planetary
events with detectable deviations due to the presence of the
caustic is ~dy ~ ds72.

In this paper we present a comprehensive discussion of
the ability of microlensing to detect and characterize wide-
separation planets, consolidating and augmenting the studies
of Gould et al. (2003), Han et al. (2004), and Han & Kang
(2003). We consider the ability of microlensing to distinguish
free-floating planets from bound planets, as well as to measure
the mass and projected physical separation of wide-separation
planets, as a function of these parameters. The paper is orga-
nized as follows: In § 2 we discuss the lensing characteristics of
wide-separation planetary events. In § 3 we estimate the prob-
ability of measuring p, , from future space observations of
wide-separation planetary events by performing detailed simu-
lations of these events and assessing the resulting uncertainties
in p, , and 0g ,,. In § 4 we summarize the ability of microlens-
ing to detect and characterize wide-separation planets, as well
as discuss methods of distinguishing planetary lensing events
caused by free-floating planets from those caused by wide-
separation planets. We conclude in § 5.

Much of this paper is technical and not of interest to all
readers. Those who only want to understand the potential of
next-generation microlensing surveys to detect and characterize
wide-separation planets should skim § 4, focusing on Figure 7,
and then read § 5 for a summary.

Throughout this paper, we assume that the lens system (star,
planet, or both) is located at D,; = 6 kpc and that the source is
a solar-type star with radius R = 1 R, located at D,; = 8 kpc.
Thus, 6, = 0.58 pas and 7 = 41.7 pas. The relative proper
motion is assumed to be g, =26.0 km s~! kpc~!. These
values are the typical (i.e., median) ones predicted by detailed
models of the Galaxy (Han & Gould 1995, 2003). They yield,
for a (star or planet) lens of mass M, an event timescale of
tg ~ 38.8 days(M/1 M), an angular Einstein ring radius
of O ~ 582 pas(M /1 M.)'/2, a projected Einstein ring radius
of 7g ~ 13.9 AUWM /1 M,)'/2, and a dimensionless source
size of p, ~ 1073(M /1 M@,)l/z. When specified, we assume a
primary mass of M = 0.3 M.

S This is typically referred to as the “planetary caustic.” The planet also
induces a shear on the primary and thus creates an additional, smaller “central”
caustic near the position of the primary. Here we are concerned with events that
pass near the planet, and thus the central caustic is unimportant except for the
very small fraction of events that happen to have trajectories nearly parallel to
the planet-star axis and so pass close to both the primary and planet.

Vol. 618

2. WIDE-SEPARATION PLANETARY EVENTS

Generally, one can write the mapping from the lens plane to
the source plane of N point masses with no external shear or
convergence as

N
(=23 M (5)

j=1 Z—127L,j

(Witt 1990), where ¢ =+ in, z; j = x,; + iy, j,and z = x +
iy denote the source, lens, and image positions, respectively,
z denotes the complex conjugate of z, and m;/M are the mass
fractions of the individual lens components (3 m; = M).
Here all angles are normalized to the Einstein ring radius 6 of
the total mass of the system M. The lensing process conserves
the source surface brightness, and thus, the magnifications 4;
of the individual images i correspond to the ratios between the
areas of the images and the source. For an infinitesimally
small source element, this is

(6)

The total magnification is just the sum over all images, 4 =
ZiAi‘

For a single lens (N = 1), one can easily invert the lens
equation to solve for image positions (x, y) and magnifications
as a function of the source position (&, n). This yields the fa-
miliar result that there are two images for every source position
¢ # 0. These two images have angular separations § = |z — z; |
from the lens of 5. = 0.5[u + (u? + 4)'/?], where u = |¢ — z]|.
The images #, > 1and 6_ < 1 are often referred to as the major
and minor images, respectively.

A planetary lens is described by the formalism of a binary
(N = 2) lens. In this case, the lens equation cannot be inverted
algebraically. However, it can be expressed as a fifth-order
polynomial in z, and the image positions are then obtained by
numerically solving the polynomial (Witt & Mao 1995). One
important characteristic of binary lensing is the formation of
caustics, which represent the set of source positions at which
the magnification of a point source becomes infinite. The num-
ber and size of these caustics depends on the projected sepa-
ration s and the mass ratio g.

One can think of a wide-separation planet with s > 1 and
q < 1 as a perturbation to the major image produced by the
primary. The location of the major image produced by the pri-
mary is 0, = 0.5[u + (u> +4)!/?], and therefore a planet sep-
arated by s from its parent star will produce a “planetary”
caustic on the star-planet axis at an angular separation from its
parent star of § = s — 1/s (see Fig. 1). In addition, there will be
a second, smaller “central” caustic located near the star (Griest
& Safizadeh 1998). By choosing the origin in the image plane
as the position of the planet and the origin in the source plane
as the point on the star-planet axis with an angular separation
§ from the primary and then normalizing all angles to the
Einstein ring of the secondary, it is straightforward to show
that, in the limit s > 1 and ¢ <1, the binary-lens equation
becomes

N

I

N>

\
ND| —

+

\lgll)

(7)
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Fic. 1.—Lensing geometry of a star with a wide-separation planet. Shown
are the locations of the star (at the origin), planet (at [x, y] = [-3, 0]6g), and

the resulting caustics. The tiny central caustic is located very close to the star,
and the planetary caustic is located in the region enclosed by the small square.
The upper left inset is a blow-up of the region around the planetary caustic.
The dotted circles represent the Einstein rings of the individual lens compo-
nents around their effective lens positions. The upper right inset shows the
planetary caustic enclosed by two circles with radii of 1.0y and 2.0, respec-
tively, where +y is the shear. The geometry is for the case in which the planet/
star mass ratio is ¢ = 3x 1073 and the normalized separation is s = 3. The
small filled circle at the upper right corner of the left inset represents the size
of a source star with a radius R = 1.0 R, at D,; = 8 kpc. For the lens, we
assume M = 0.3 M, and D,; = 6 kpc, and thus the angular Einstein radius is
O = 0.32 mas. Note that the axes of the main panel are scaled by the combined
Einstein radius (fg), while the axes of the insets are scaled by the Einstein ring
radius of the planet (0g,, = /q0k).

(Dominik 1999). Here v = 52 is the shear, and the notations
with the hat represent length scales normalized by the Einstein
radius corresponding to m,, e.g., Z = z(0g/0g ). This is the
well-known Chang & Refsdal (1979, 1984) lens. In its range
of validity, equation (7) implies that if the planetary separation
is sufficiently wide, the lensing behavior in the region around
the planetary Einstein ring can be approximated as that of a
single point-mass lens superposed on a uniform background
shear 7. The caustics created by a Chang-Refsdal lens with v <
1 have an asteroid shape (see Fig. 1) with a full width along the
star-planet axis and a height normal to the planet-star axis of,
respectively,

4y

4y
T o

2bcp = ——.
R T+

2acr =

Thus, as the separation between the star and planet increases,
the size of the caustic shrinks approximately as 1/s%, and both
lens components tend to behave as if they are two independent
single lenses.

For the applications discussed here, the angular size of the
source is typically nonnegligible relative to the Einstein ring of
the secondary, 0, - Therefore, finite-source effects must be taken
into account. It is precisely these finite-source effects that allow
one to measure g ,. The magnification of a finite source is com-
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puted by the intensity-weighted magnification averaged over
the source star flux, i.e.,

_ [ 1(¢)A(C+¢N)ad
Afs(C) - L[(C,) dc/ ’

©)

where 4 denotes the magnification of the corresponding point
source, ¢ is the vector position of the center of the source, ¢’
is the displacement vector of a point on the source star sur-
face with respect to the source star’s center, and the two-
dimensional integral is over the source-star surface S. For a
source with uniform surface brightness, the computation can
be reduced from a two-dimensional to a one-dimensional inte-
gral using the generalized Stokes’s theorem (Gould & Gaucherel
1997; Dominik 1998). The finite-source effect becomes im-
portant when the source passes over a magnification pattern
with small-scale structure or crosses the caustics. Because
wide-separation planetary events have such extended magni-
fication structures (i.e., the planetary caustics), the chance to
measure p, , is expected to be higher compared to the case of
free-floating planet events.

In Figure 2 we show how the relative caustic and source sizes
vary with respect to the Einstein radius for wide-separation
planets with various mass ratios relative to and separations from
the primary star, using the full binary lens formalism. For a
fixed angular source size 0,, the normalized source size p,
becomes smaller with increasing planet/star mass ratio (as
psp o< ¢~1/%). However, in the parameter regimes shown in
the figure, the Chang-Refsdal approximation is excellent, and
therefore the size of the caustic in units of 0 , depends almost
solely on 5. Thus, as the separation increases, the caustic width
decreases as ~4y o< s72.

3. PROBABILITY OF MEASURING 0,

We now address the question of what fraction of wide-
separation planetary events in future lensing experiments will
yield an accurate measurement of g ,. We estimate the prob-
ability P that a given wide-separation planetary event will
exhibit substantial finite-source effects and so allow the mea-
surement of p, , to a given accuracy (in turn yielding 6g ,). In
particular, we are interested in how the existence of the caustic
created by the shear from the primary increases the probability
relative to a free-floating planet event with similar lensing
characteristics.

A wide-separation planetary lensing event can generally be
described by nine parameters, namely, Fs, F'g, tg_p, fo, U0, p» Px, p>
s, ¢, and . We describe each of these in turn. The flux of
the source Fg and the flux of any light blended with the source
Fp are linearly related to the observed flux at time # by F(¢) =
FsA(t) + Fp. The parameters f ,, fo, and u, , describe the tra-
jectory of the source relative to the position of the planet in
units of the planetary Einstein ring radius 0 ,. Here # , is the
time required for the source to cross 0 ,, f; is the time of the
closest approach to the planetary caustic, and u , is the sep-
aration (normalized by 0 ,) at that moment. These quantities
are generally measurable from the gross features of the plan-
etary events; in the simplest model, ug , is related to the peak
magnification, ¢, is when the event peaks, and g ), is roughly
the duration of the event. Next, p, , is the source size in units of
0g,,- This parameter is typically derived from detailed mod-
eling of the planetary event but is generally inferred from the
magnitude and duration of the “smoothing” of the light curve
due to the finite source size. Finally, s, ¢, and « are related to
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FiG. 2.—Variations of the caustic and source sizes relative to the size of the planetary Einstein ring of wide-separation planets with various mass ratios relative to
and separations from the primary star. In each panel, the diamond-shaped figure is the planetary caustic, the dashed circle represents the Einstein ring of the planet,
and the small filled circle in the upper right corner represents the size of the source star relative to the planetary Einstein ring. Panels are arranged so that the
separation and mass ratio are increasing along the abscissa and ordinate, respectively. In the assumed geometry, the lens and source star are located at D,; = 6 kpc
and D,; = 8 kpc, respectively, and the source star has a physical radius of R, = 1.0 R.... [See the electronic edition of the Journal for a color version of this figure.)

the star/planet system and are generally only well constrained
if the microlensing signature of the primary is present. Here s is
the separation of the planet from the primary in units of fg, g is
the mass ratio of the system, and « is the orientation angle
of the source trajectory with respect to the star-planet axis. Be-
cause the properties of wide-separation planetary events are
primarily determined by the planet alone, and ¢ is generally
not well constrained, we adopt parameters normalized by the
Einstein ring of the planet (¢g ,,uo ,, and p, ,) rather than their
more poorly constrained analogs (fg = ¢!/2 t,p» U0 = q'/ Zup, P>
and p. = ¢'p. ). '

In order to estimate the probability P, we carry out detailed
simulations of wide-separation planetary events and estimate
the uncertainties of p, , determined from simulated light curves.
Although wide-separation planetary events are reasonably well
described by the Chang-Refsdal approximation, in order to
make our results fully general, we carry out our simulations
using the full binary lens formalism. However, we use the
Chang-Refsdal approximation to aid in the interpretation of our
results. The simulations proceed as follows: Planetary micro-
lensing event light curves are calculated using equations (5)
and (6). The ranges of the planetary separations and mass ratios

of the tested events are 2 < s < 20 and 107> < ¢ < 1072, re-
spectively. Finite-source effects are incorporated by computing
a one-dimensional line integral along the boundaries of the
images, whose positions are obtained by numerically solving
the lens equation and then applying Stokes’s theorem. The
majority of target stars to be monitored by the proposed space
microlensing mission are Galactic bulge main-sequence stars;
we therefore assume a solar-type source star with an apparent
magnitude of / ~ 21. For the space observations, we use spec-
ifications similar to the MPF mission (Bennett & Rhie 2002)
and assume that events are monitored with a frequency of
fops = 5 hr~! and that a 600 s exposure image is acquired from
each observation. We assume a photon acquisition rate of
13 photons s~! for an 7 = 22 star.

In principle, one could determine the uncertainties of the
fit parameters p = (FS7 F37 tEA,p) fo, Uo,py Px,ps Sy 4, O[) by
generating many realizations of simulated light curves, in-
cluding errors, fitting these light curves, and determining the
variance in the fitted parameters. In practice, this approach
is impractical and unnecessary. Rather, we estimate the ex-
pected uncertainty in the fit parameters by evaluating the cur-
vature matrix of the x? surface. Here the uncertainties of the
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Fig. 3.—Contour maps of the fractional uncertainty o, ,/p.. , as a function of the source position relative to the planetary caustic. Each position on the map
represents a source trajectory that passes through that position and is normal to the line connecting the position and the caustic center (see the geometry in the bottom
right panel). For all three presented cases, the source size relative to the caustic size is nearly the same. The dark closed curve in each panel represents the contour at
which o, ,/p. , = 10%, and the white dashed curve shows the approximation of this contour as an ellipse.

individual fitting parameters (p;) are determined from each
light curve by
Ji:\/c_ﬁ7 CZb_la (10)

where ¢;; is the covariance matrix and the curvature matrix of
the x? surface is defined by

2t OFy OFy 1
=l (9p,» apj O'i

by = (11)

Here Fy(t) = A(#)Fs + Fp represents the observed flux for
each measurement at time f#;, Ny, is the total number of
measurements, and oy is the measurement error.

According to the luminosity function of the Galactic bulge
field (Holtzman et al. 1998), the surface number density of
stars with 7 < 24 is ~5000 stars arcmin~> ~ 1.4 stars arcsec 2,
and thus a space mission equipped with an ~1 m telescope can
resolve most neighboring stars. However, since one cannot
exclude the possibility of blending with light from a com-
panion to the source or with the lens itself, we include the
blending parameter F'z. For the simulation, we set the blending
fraction to be Fz/Fs = 0.3. The photometric uncertainty is
assumed to be limited by photon statistics, and the uncertain-

ties of the fitting parameters are determined from the light curve
measured during —2.0tg , <t —#) < 2.0 .

As we argued in § 2, the lensing behavior of a wide-
separation planet is locally well described by a single lens with
external shear v = 572, ie., a Chang-Refsdal lens. Therefore,
the magnification structure can be described by only two pa-
rameters, namely, v and p, ,, rather than the three parameters s,
q, and p, generally required for full binary lensing. In fact, for
v < 1 (s > 1), the Chang-Refsdal lens becomes self-similar:
when all angles are normalized to 2+, the magnification pattern
is nearly independent of ~. Therefore, the ability to measure
p+,p depends primarily on the single parameter p, /7. In fact,
this scaling breaks down for two reasons. First, as v approaches
unity, the self-similarity of the Chang-Refsdal lens breaks
down. Second, because we are considering a fixed sampling
rate, the number of samples per planetary crossing time g , =
q"?tg decreases for smaller mass planets. Therefore, the error
on the light-curve fit parameters, which depends on both the
magnification structure and the density of data points, formally
depends on ¢q as well. However, these two effects are generally
subdominant, and therefore the dependence on ~ or ¢ for fixed
Py, p/v is relatively weak. We demonstrate this by computing
the fractional uncertainty o, ,/p. , as a function of the source
positions around the planetary caustic. Figure 3 shows the
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contour maps of o, /p. , for three different combinations of
s and g, yielding the same ratio of 7/p. ,. In the maps, each
position represents a source trajectory that passes through that
position and is normal to the line connecting the position and
the caustic center (see the geometry illustrated in the bottom
right panel), and the closed curve drawn by a dark line repre-
sents the contour at which o, /p. , = 10%. From a compar-
ison of the maps, one finds that the patterns look qualitatively
similar despite the great differences in the values of s and ¢,
confirming the argument that the ability to measure p, , de-
pends primarily on p ,/v.

A straightforward approach to estimating P would be first to
construct maps of o, , /p«, such as the ones shown in Figure 3
for the various combinations of s and ¢, second to draw many
light curves with various combinations of u, , and o obtained
from one-dimensional cuts through each constructed map, and
then to estimate the probability as the ratio between the number
of light curves yielding uncertainties smaller than a threshold
value out of the total number of tested events. However, we find
that this approach is difficult to implement because construct-
ing the large number of high-resolution maps that incorporate
finite-source effects demands a large amount of computation
time even after the great reduction of finite-source calculations
using Stokes’s theorem (i.e., from a two-dimensional to a one-
dimensional integral). Fortunately, we find that the region where
px,p can be measured to a given precision (the effective region)
is well confined around the planetary caustic, and its bound-
ary is, in general, approximated as an ellipse, as illustrated in
Figure 3. We therefore estimate P by determining the semi-
major axis a and semiminor axis b of the ellipse and then com-
pute the probability, which corresponds to the ratio of the
angle-averaged cross section of the ellipse to the diameter of
the planetary Einstein ring (see Fig. 4),” by

1 /" 2
P:—/\M%Wa+WmﬁMa=ﬂw@,(n)
™ 0 Vs

where E represents the complete elliptical integral of the
second kind and e = (1 — b?/ az)l/ 2. Note that, since a and b
are in units of fg ,, the probability is normalized such that P is
the fraction of events with ug , <1 that yield a measurement
of p,., to a given factional precision o, , /p. ,. Planetary events
with ug , > 1 may well be detectable in the next-generation
lensing surveys, and thus the fraction of detectable planetary
lensing events with a measurement of p, , to a given accuracy
is likely to be smaller. We address this point in § 4.

Figure 5 shows the contour map (marked by white contours
and gray scale) of the determined probability P as a function of
the planetary separation and mass ratio. For the map, the im-
posed threshold uncertainty is (o, ,/ps,p)p, = 10%. From the

7 The approximation of the boundary of the effective region as an ellipse
becomes poor as the source size becomes smaller than the caustic size. In the
limiting case p. , < 7, the positions at which finite-source effects are large
(allowing p, , to be effectively measured) are confined to regions near the
caustic itself, as well as the protruding region outside the caustic cusps (Fig. 4,
dark-shaded regions). Even in this limiting case, however, we note that the
probability P determined by eq. (12) is still a good approximation. This is
demonstrated in Fig. 4, in which the light-shaded region enclosed by the clover-
shaped figure represents the effective region of source trajectories that can pass
the dark-shaded region, and the dashed circle represents the boundary of the
effective region following the ellipse approximation. We find that even in this
extreme case, the ratio between the angle-averaged cross sections of the clover-
shaped and circular regions is 0.903, implying that the error in the probability as
determined by the ellipse approximation is not important.
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Fig. 5—Probability P of measuring p, , for wide-separation planetary events
as a function of the planetary separation and mass ratio. The adopted threshold
uncertainty is (0, , /psp)i = 10%. The two sets of contours drawn by dark and
white lines are based on numerical computations considering full binary lensing
and an analytic treatment using Chang-Refsdal lensing, respectively (see the text
for details). The gray-scale tones show the probability P based on numerical
computations: they change for every 5% change of P. The two dashed straight
lines represent the positions at which p, , = 2.0y and 4.0, respectively.
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probability map, we find two basic regimes. First, in the region
of parameter space where the caustic size is much smaller than
the source size, the contribution of the caustic to the probability
is not important, and the value of P is essentially the same
as that for the corresponding free-floating events. Since p, ,,
which is the dominant factor determining P in this region,
depends only on the mass ratio and does not depend on the
separation, the probability distribution is flat, as shown in the
lower right part of Figure 5. On the other hand, in the region
where the caustic size is of order or larger than the source size,
the contribution of the caustic to P becomes important. The
caustic size, and thus P, rapidly increase with the decrease of
the planetary separation, and this is reflected in the probability
distribution trends in the upper left part of Figure 5. We find
that the two regions (i.e., source- and caustic-size—dominant
regions) are divided roughly by the line p, , = 4y. Knowing
that the relative cross section for p,, , measurement results from
the combination of the caustic and normalized source sizes and
keeping the validity of the Chang-Refsdal lensing in mind, we
interpret the result by analytically assessing the probability
based on the semimajor and semiminor axes of the effective
region as the linear combination of the Chang-Refsdal caustic
size and the normalized source radius, i.e.,

a= CW,aC_R + Cp*ﬂ*.p,
b = C'ybC-R + Cp*p*“n; (13)

where ac_r and bc_g are defined in equation (8) and C, and C,,
are linear coefficients. In the point-mass limit (y < p ,), it is
known that p, , can be measured only when the lens crosses
the source star (Gould & Welch 1996), and thus we set C,, =
1.0. By adjusting C,, we find that C, ~ 2.5 yields the best-fit
probability distribution (Fig. 5, dark contours) to the one based
on numerical computations. This implies that in the caustic-
dominant regime, the effective cross section of the caustic for
a p, , measurement is larger than its full width by ~25%, i.e.,
a/(4vy) ~ 1.25.

In our simulations, we assumed a primary of mass M =
0.3 M, and thus one might suspect that our results are only
valid for this specific choice of primary mass. However, since
the errors in the fit parameters are primarily determined by the
timescale of the planetary perturbation # , and the planetary
Einstein ring radius 0 ,, and thus the mass of the planet
m,,, changing the primary mass will have essentially no effect
on the resulting errors in p, ,, provided that g is also changed
so that the mass of the planet m, = gM is fixed. Thus, chang-
ing the primary mass effectively amounts to a rescaling of the
ordinate in Figure 5.

Translating a measurement of p, , into a measurement of
Ok, requires knowledge of the angular size of the source 6,.
This can be estimated from the known source color and mag-
nitude, as described in Yoo et al. (2004a). Briefly, the process
works as follows: The apparent source color and apparent mag-
nitude can be estimated from multicolor photometry taken at
several different source magnifications. The dereddenned color
and magnitude can then be found by comparing with the ap-
parent color and magnitude of nearby stars in the red clump,
whose dereddened color and magnitude are known. This as-
sumes that the source star is being seen through the same
column of dust as the stars in the red clump. In practice, how-
ever, even fairly large differences in the dust column have rel-
atively little effect because the source color and magnitude
have opposite effects on the inferred value of 8,. The angular
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size 0, of the source can then be inferred from its color and
magnitude using an empirical color—surface brightness rela-
tion (e.g., van Belle 1999). The statistical error in the derived
value of 6, from this procedure will likely be dominated by the
intrinsic scatter in the empirical color—surface brightness rela-
tion, which is currently ~10%. Therefore, the error in the in-
ferred value of fg , will be dominated by the error in p, , for
0.,/ Psep 2 10%.

4. DETECTION AND CHARACTERIZATION
OF WIDE-SEPARATION PLANETS

In this section we summarize the potential of next-generation
microlensing surveys to characterize wide-separation planets,
focusing on their ability to distinguish isolated planetary events
caused by free-floating planets from those caused by wide-
separation planets as a function of the separation of the planets
from their host stars. As the formation processes and evolution
histories of wide-separation and free-floating planets are believed
to be substantially different, unless these two populations of
planetary events can be distinguished, it will be difficult to
extract useful information about the formation and evolution of
these individual planet populations.® We also summarize the
capacity of these surveys to measure the masses of the planets
through the measurement of g , and 7 , as a function of the
planet mass and separation. The majority of the calculations in
the following sections are independent of the mass of the pri-
mary, and so our results are most naturally expressed in terms
of their dependence on the planet mass m,, rather than the
planet mass ratio g. However, to make contact with the re-
sults from the previous sections, we also quote results in terms
of ¢, assuming a primary mass of M =0.3 M., ie., g =
10-3(m, /1 My).

4.1. Cross Section for Detection

We first address the question of the detectability of planets as
a function of their mass. For fixed ] and 7 and for identical
observational setups, larger mass planets are detectable to larger
planetary impact parameters u_, because the number of points
per crossing time is larger, thereby increasing the signal-to-noise
ratio (S/N). This implies a larger cross section for detection. As
the mass ratio decreases, the minimum impact parameter re-
quired to produce a light curve above a given S/N decreases,
thus decreasing the cross section for detection. Eventually,
finite—source size effects become important when p, , = 1. For
sufficiently high photometric accuracy, finite-source effects can
increase the cross section, since the timescale for the event will
be set by the crossing time of the source, #. = 0./p,, rather
than the planetary Einstein crossing time, # ,. Eventually,
however, when p, , > 1 the deviation due to the planet will be
completely suppressed, and the planet will be undetectable. To
quantify these trends, we determine the expected S/N of an
isolated single-lens event,

N2 a2 12
S/N = . {/dr [I—Afs(r; Uo py Pep) 1} } , o (14)

& In fact, the frequency of bound and free-floating planets must be deter-
mined statistically from the ensemble of observed planetary events. As we
demonstrate in § 4.3, the majority of events from wide planets with »; 220 AU
will show no signature of the primary, and so it is not generally possible to
distinguish between bound and free-floating planets on an event-by-event basis.
Therefore, it will be necessary to use those events that are known to be due to
bound planets to statistically infer the fraction of events with no signature of a
primary that are due to bound planets.
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Fic. 6.—Top: (S/N)/(N'?/0) as a function of the impact parameter ug, for
single-lens events with various values of the source size p, , in units of the
Einstein ring radius. Here N is the number of points per Einstein crossing time,
each with fractional precision o. The solid curve is for a point source ( p. , =
0), and the dotted curve shows the limiting form for a point source light curve
with ug > 1, i.e., eq. (15). Bottom: Cross section (u, ) to detect a planet at
S/N > (1000)'/? (solid curve) as a function of its mass m,, (bottom axis) and
mass ratio g (top axis). The long-dashed line shows the scaling (ug, )y, <
m})/ 14 which is valid for point sources and (u )y, > 1. Also shown are the
minimum detectable planet mass, 1, min ~ 0.02 My, and the mass at which

prp = L.

where N is the number of measurements per planet Einstein
crossing time fg ,, o is the fractional precision of each mea-
surement, Ay is the finite-source magnification, and 7 = (f—
1)/te,p is the time from the peak of the planetary event in
units of the Einstein crossing time. Although we assume the
magnification is described by single-lens event with no ex-
ternal shear, our results are approximately applicable to wide-
separation planets as well. This is because, as we demonstrate
below, planets with mass m, > 1 Mg, are detectable with im-
pact parameters 1y , > 1, where any deviation arising from the
caustic induced by the primary will be negligible. On the other
hand, for low-mass planets with p, , > 1, the deviation due to
the caustic vanishes up to fourth order in p; | when the source
completely encloses the caustic (Gould & Gaucherel 1997).
Therefore, the isolated point-lens approximation should be suf-
ficient except for a relatively small range near m, ~0.3 Mg,
where we generally underestimate the S/N.

Figure 6 (top) shows the normalized signal-to-noise ratio,
(S/N)/(N'?/5), as a function of the impact parameter 1, for
source sizes p. , = 0.0, 2.0, 4.0, and 6.0. For small sources,
p+.p < 1, and high-magnification events, u , < 1, the term in
braces in equation (14) is approximately unity and independent
of ug, , and so S/N ~ N'/257" In the opposite limit of large
impact parameter events, up , > 1, we find

STN -
S/N = \/WTa_luo;/z. (15)

Figure 6 (bottom) shows the impact parameter (u )y for
which the S/N is equal to the threshold value (S/N); =
(1000)'/2, for the same assumptions adopted in the simu-

Scalzo 1999a; Agol 2003), implying an S/N of

N1/2 23/2pl/2
S/N~v— 8 17
/ ag 2+p§.p ( )

Therefore, for a fixed 0, and ji,), planets with a mass less than

fobs >/ o (S/N)y
0.01 /103

cannot be detected because of finite-source effects. This limit
is shown in Figure 6 (bottom) and corresponds to roughly a
lunar mass, or a mass ratio of g ~ 2 x 10~ for a primary mass
of ~0.3 M. Planets with mass ratio larger than this limit but
still well into the finite-source—dominated regime will have a
detection cross section of (ug, )y, ~ p«,p, Which is generally
larger than the corresponding point-source cross section. There-
fore, for the parameters we have adopted, the cross section as a
function of decreasing g first decreases until p, , ~1 and then
increases until m,, i, at which point it suddenly plummets
(see Fig. 6).

min ~ 0.02 M.
" ® (120/1 day

4.2. Mass Measurement

We now estimate the fraction of detectable events that yield
accurate mass measurements, incorporating our estimate for
the cross section for detection from § 4.1. In Figure 7 we plot
the boundary of the region in the (m,, r,) or (g, s) plane where
more than 50% of detectable wide-planet events yield a 10%
measurement of p, ,, (thick solid curve). Here we adopt the ana-
lytic form for the cross section of measuring p, , to 10% given
in equation (13) with C, = 2.5 but normalize to the number
of detectable events by dividing the resulting probability by
(g, p)in- We also show in Figure 7 an approximation to the
boundary of the region in the (m,, 7| ) or (g, ) plane at which we
expect ~50% of detectable events to yield a 10% measurement
of 7g , from parallax effects arising from the difference in the
light curve as seen from a satellite at L2 and a ground-based
observer (thick long-dashed curve). Here we have assumed that
aplanet event detected at a given S/N yields a fractional error in
the projected Einstein ring radius (Gould et al. 2003; Han et al.
2004) of

T TE (g /Ny (19)

’N"E dsat
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Fig. 7.—Characterization of wide-separation planets as a function of the
planetary separation s and mass ratio ¢ using a next-generation microlensing
planet search. The heavy horizontal line shows the lower limit on the mass of
detectable planets of my, 2 0.02 My, or ¢ 2 2x10~". In this figure, planets are
considered detected if they produce deviations with S/N > (S/N), =
(1000)]/ 2. The solid contour shows the upper boundary to the region in which
more than 50% of detectable planetary events will yield a ~10% measurement
of fg. Similarly, the long-dashed line shows the upper boundary to the region
for which more than 50% of detectable planetary events will yield a ~10%
measurement of 7. The dotted contour shows the rightmost boundary of the
region in which more than 50% of detectable planets can be identified as
bound from the deviation caused by the planetary caustic from the nominal
point-lens form, where S/N > (160)'/% is required for detection of the devi-
ation. Similarly, the dashed vertical line shows the rightmost boundary of the
region in which the magnification of the primary is detectable for more than
50% of events with S/N > (160)'/2. The top and right axes show the con-
version from (g, s) to (m,, r|) assuming a primary mass of M = 0.3 M, and
rg =2 AU.

where dg, ~ 0.005 is the projected Earth-satellite separation
and we have assumed our fiducial value of e ~ 42 pas, so
that 7g , = 0.024 AU(m,/1 M)'?. We have ignored the ef-
fect of finite sources on the ability to measure 7g ,. We note
that the approximation in equation (19) for the fractional error
in 7g , is very crude; however, it captures the primary depen-
dence on m, and agrees reasonably well with more detailed
calculations (Han et al. 2004).

Inspection of Figure 7 indicates that, by combining ground-
based observations with those of a satellite in an L2 orbit, it
should be possible to measure the mass of a majority of plan-
etary events arising from planets with m, < 1 Mg, correspond-
ing to ¢< 107>, to a fractional precision of ~10%. Mass
measurements will be possible for a smaller fraction of higher
mass planets. However, since the overall detection rate for such
planets will likely be higher, a similar or higher number of
reasonably precise mass measurements may be possible.

4.3. Detection of the Primary

We now consider several methods by which the presence of
the primary star can be detected in isolated events caused by
wide-separation planets, thus permitting discrimination be-
tween bound and isolated planets. First, as discussed in detail
by Han & Kang (2003), it will be possible to identify wide-
separation planetary events from the signature of the planetary
caustic near the peak of the light curves. Han & Kang (2003)
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found that signatures with >5% deviation can be detected for
Z80% of events with 19 , < 1 caused by Jupiter-mass planets
with separations <10 AU, and the probability is still substantial
for separations up to even ~20 AU. Here we consider a sim-
plified model for the probability of detecting the primary via
the signature of the planetary caustic. We assume that the wide
separation can be approximated by a Chang-Refsdal lens. We
calculate the fractional deviation § of the Chang-Refsdal lens
from a single lens as a function of position along the two axes
of symmetry. We assume that a light curve with a peak devi-
ation ¢ can be distinguished from the single-lens case with

1/2
S/N ~ N—(47)1/25. (20)
g

We then determine the semimajor and semiminor axes of the
region around the planetary caustic at which the S/N is greater
than a given threshold (S/N)y,. The fraction of detectable
planetary events for which the primary can be detected via the
deviation from a point lens is then given by equation (12)
normalized by the cross section for detection, ug . We choose
(S/N)y, = (160)'/ 2. This threshold is lower than that assumed
for detection of the planetary event because there are fewer
light curves to search for the deviation arising from the caus-
tic. Figure 7 shows the region in the (g, s) plane where more
than 50% of isolated events arising from bound planets give
rise to detectable deviations due to the presence of the plan-
etary caustic (thick dotted line). Our results agree well with the
results of Han & Kang (2003), when the latter are normalized
by (uo,p)h-

Second, wide-separation planetary events can be distinguished
by the additional long-term bumps in the light curve caused by
the primary star. Compared to the planetary Einstein ring, the
Einstein ring of the primary star is much larger, implying a
larger effective lensing region. Combined with high-precision
photometry from space observations, then, the existence of the
primary star can often be noticed even without the signatures of
the planetary caustic. In the limit of large impact parameter u,
the bump due to the primary can be detected with the S/N given
by equation (15). Then, the cross section to detect the primary-
induced bump for a given (S/N)y, is

1.0, uo,th > S,

P=<2 21
Z sin~! (—uoﬁth), uo,th < S, @1)
T K

where u v, is given by equation (16) with m, — M. Figure 7
shows the contour (thick short-dashed line) at which P = 50%
as a function of (s, ¢), assuming (S/N);, = (160)'/? and M =
0.3 M. We find that P = 50% for s ~ 9.2, corresponding to
r; ~ 18 AU. It will be possible to detect the primary for es-
sentially all planets with s <6.52, or r; <13 AU.

The third method of identifying a wide-separation planet is
detecting blended light from the host star. According to Bennett
& Rhie (2002), for approximately one-third of events with
detected planets from a space lensing mission, the planetary
host star is either brighter than or within ~2 mag of the source
star’s brightness.

When we consider the three methods discussed here to-
gether, the prospects for distinguishing isolated planetary
events caused by bound and free-floating planets seem good.
For roughly one-third of all events, regardless of the mass or
separation of the planet, the flux from the primary should be
detectable. For more than half of all events caused by wide-
separation planets with ; < 5-9 AU (depending on mass), the
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influence of the primary will be detectable in the light curve
via the planetary caustic. Finally, more than half of all de-
tectable planets with 7, 2 20 AU can be inferred to be bound
via the low-amplitude bump caused by the magnification of the

primary.
5. CONCLUSION

With their excellent photometric precision and extremely
high temporal sampling, next-generation microlensing planet
searches will be sensitive to planets with masses almost as low
as that of the Moon. These searches will employ large-format
cameras with large fields of view in order to monitor hundreds
of millions of stars simultaneously with ~10—20 minute sam-
pling. Because all stars will be monitored continuously re-
gardless of whether they are being lensed or not, such searches
will be sensitive to isolated events caused by wide-separation
or free-floating planets, in contrast to current microlensing planet
searches. Such planets are very difficult or impossible to probe
by other planet detection methods.

The scientific return of these wide-separation and free-
floating planet detections would be greatly enhanced if their
nature could be characterized. In particular, differentiating be-
tween wide-separation planets and free-floating objects is highly
desirable, as is the measurement of their mass. Generally, the
light curves of free-floating planets are grossly similar to those of
wide-separation planets. Furthermore, microlensing light curves
generally only yield event timescales, which are degenerate com-
binations of the mass, distance, and transverse velocity of the
lens. However, as recently pointed out by several authors (Gould
et al. 2003; Han & Kang 2003; Han et al. 2004), there are sev-
eral unique properties of next-generation microlensing surveys
that should allow better characterization of wide-separation and
free-floating planets. Here we have summarized and built on pre-
vious works, addressing the ability of these searches to distin-
guish wide-separation planets from free-floating planets, as well
as to measure planet masses.

We have performed detailed simulations of wide-separation
planetary events and evaluated the probability of measuring the
Einstein ring radius 0 for these events; this is one of the two
additional quantities needed to measure the lens mass. From
this investigation, we find that the parameter space of the
probability distribution is divided into two regimes depending

on the ratio between the caustic and normalized source sizes. In
the regime in which the source size is much larger than the size
of the caustic, the probability is not much different from that of
the corresponding free-floating planetary events. In the oppo-
site regime in which the caustic size is much larger than the
source size, the probability is significantly higher than the case
without the caustic. As a result, the probability of 6y deter-
mination for wide-separation planetary events can be substan-
tially higher than that of free-floating planetary events. We find
that the effective cross section of the caustic is about 1.25 times
its linear size for small sources.

For the majority of events due to planets with mass m, <
1 M., it should be possible to measure the angular Einstein
ring radius g to ~10%. The projected Einstein ring radius 7
should also be measurable to ~10% for the majority of these
events by combined observations from the ground and a sat-
ellite located in an L2 orbit. Thus, it should be possible to mea-
sure the mass of most wide-separation and free-floating planets
of Earth mass or less.

Finally, we have discussed three methods for distinguishing
between isolated planetary events caused by free-floating and
bound planets. These include detecting the primary through the
influence of the planetary caustic, through the low-amplitude
bump in the light curve from the primary, and through detec-
tion of the light from the primary itself. These three methods
should allow one to distinguish between bound and free-
floating planets for approximately one-third of all events re-
gardless of the planet separation, more than 50% of events with
projected separations <20 AU, and essentially all events with
separations <13 AU.
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