Lecture 33: Einstein’s Universe
Readings: Sections 28-1 and 28-2

Key Ideas:
Cosmological Principle:
 The Universe is *Homogeneous* and *Isotropic* on Large Scales
 No special places or directions
General Relativity predicts an expanding Universe
Einstein’s Greatest Mistake (?)

Cosmology

Cosmology is the study of the Universe
 Physics of the Universe
 Distribution of objects on all scales
 Motions of objects in the Universe
 Evolution of the Universe
 Age, Origin, and Fate of the Universe

The Universe in 1917

Einstein explored the cosmological implications of General Relativity

Observational State in 1917
 Kapteyn model of the Milky Way was favored by some (but not all) astronomers.
 No agreement on the “spiral nebulae”
 First good calibrations of the P-L relations for Cepheids and RR Lyrae variables

The Cosmological Principle

The Universe is Homogeneous and Isotropic on the Largest Scales
Critical assumption underlying Cosmology.

Homogeneous
 No special places in the Universe
Isotropic
No special directions

Largest Scales
Average out small-scale details

Homogeneity

When viewed on the largest scales:
 The average density of matter is about the same in all places in the Universe
 The Universe is fairly smooth on large scales
Does not apply locally:
 We see planets, stars, galaxies in regions nearby in space
 The Universe is locally rather “lumpy”

Example from the Distribution of Galaxies about the scales we are talking about (~100 Mpc)

Isotropy

When viewed on the largest scales:
 The Universe looks the same to all observers
 The Universe looks the same in all directions as viewed by a particular observer
Does not apply locally
 We see different numbers of local objects in different directions.

The Dynamic Universe

Einstein applied the Cosmological Principle to General Relativity and got a surprise:

 The spacetime of the Universe could not be static and unchanging
 The Universe must either expand or contract!

In 1917, astronomers assured him that no such general motion was observed

The Cosmological Constant

To make the Universe static, Einstein added a new term to his equations:
The Cosmological Constant, \(\Lambda \):
 Repulsive gravitation-like force term
Arises from empty space
Balances the effects of gravity
At this time, there was no physical reason to introduce a Cosmological Constant

Cosmic Expansion

1914-22: Vesto Slipher, Lowell Observatory measured the radial velocities of the brightest “spiral nebulae”

Results:
21 out of 25 spirals showed a systematic redshift
 Systematic motion away from us
 Some velocities are large: > 2000 km/sec

Einstein’s Greatest Blunder…

1920s:
 DeSitter corrects an error in Einstein’s math, showing that the \(\Lambda \) Universe was unstable

 Friedmann & Lemaitre showed that without \(\Lambda \), GR predicts that the Universe expands.

Edwin Hubble firmly established cosmic expansion observationally in 1929.

State of the Art

Einstein’s guess about the homogeneity and isotropy of the Universe was brilliant and far ahead of the scanty empirical data of his time.

Modern observations bear out large-scale homogeneity & isotropy on average
 Large-scale galaxy surveys
 Cosmic Microwave Background

Modern Cosmological Constant

In modern cosmology, \(\Lambda \) reappears in modified form as the “vacuum energy” of space:

 Quantum ground-state of empty space
Acts as an extra pressure on the Universe

Distinction
Actually accelerates the expansion!
Increasing observational evidence that Λ, or something very like it, may be real