Lecturer: Professor Bradley Peterson
Office: 4055 McPherson Laboratory, 292-2022
E-mail: peterson@astronomy.ohio-state.edu
Webpage URL: http://www.astronomy.ohio-state.edu/~peterson/
Office Hours: Afternoons before exams, or anytime by appointment

Teaching Associate: Mr. Vimal Simha
Office: 4002 McPherson Laboratory, 292-3655
E-mail: vsimha@astronomy.ohio-state.edu
Office Hours: TBA

Classroom: 1008 McPherson Laboratory
Class Hours: MTWRF, 12:30 – 1:18 p.m.
Call No.: 02482-1

Textbook:
As you know from Astron 291, Professor Ryden and Professor Peterson are writing a textbook for this two-quarter sequence, under the working name Basic Astrophysics. Copies will be available as a course packet from UniPrint. Detailed instructions will appear in the Announcements page of the class website as soon as the book is available.

Course Objectives and Philosophy:
This is the second course in a two-quarter introductory sequence that is intended primarily for sophomore astronomy majors (for whom this is a required course) as well other scientifically literate undergraduates who want to learn basic astronomy from a quantitative perspective. This is specifically not a GEC course, however.

The specific major areas to be covered in this course are:
- Stellar astronomy and astrophysics
- Galactic astronomy
- Extragalactic astronomy and cosmology

Course Prerequisites:
Physics 133 and Astronomy 291 are required, except with the permission of the instructor.
Astronomy 292 on the World-Wide Web:
The URL for the class webpage is http://www.astronomy.ohio-state.edu/~peterson/Ast292/.
This page will have all current course information, including copies of the syllabus and course information (the material distributed on the first day of class). Any announcements made in class will also be posted here. You can also use this to send e-mail questions to the professor or the T.A.

Problem Sets:
Problems sets will be assigned almost weekly, and will be due on the dates given on the syllabus (on Fridays). Since this is a problem-solving course, the problem sets are an integral part of the course and play an important role in solidifying your understanding of the material. Problem sets will consist of graduated exercises, with the more challenging questions carrying double credit. The problem sets will be graded and will account for 20% of the course grade. Problem sets will be assigned at least one week before they are due, and will be collected at the beginning of class the day that they are due (as listed in the syllabus). In general, late work will not be accepted for credit, except with approval of the professor, and late submissions will be corrected at the T.A.’s leisure.

Recitation Sessions:
Recitation sessions (interactive problem-solving sessions run by the T.A.) are generally scheduled for two days before problem sets are due and on days before examinations. Check the schedule carefully.

Examinations:
There will be three midterm examinations, currently scheduled for the following dates:
- Friday, 25 January
- Friday, 15 February
- Wednesday, 5 March
Each of the midterm examinations will account for 20% of the course grade.

A comprehensive final examination will be given at 11:30 a.m. – 1:18 p.m. on Tuesday, 11 March, in the regular classroom. The final examination will account for the remaining 20% of the course grade. The final examination will be open book; students are allowed to bring in textbooks and notes for the final examination. No notes or books are allowed for the midterm exams, however.

Make-up Examinations:
Make-up examinations will be allowed under extraordinary circumstances only (as determined by the professor), e.g., illness (as verified by a physician), or personal tragedy. Make-up midterms usually will be one-hour oral examinations.

If an examination conflicts with an approved University function (e.g., if you are a member of a varsity athletic team or TBDBITL and are required to leave town), you may take an exam earlier than the scheduled date, provided that you obtain permission from the professor at least a week in advance.
If you should miss the final examination, your course grade will be recorded as a failure unless you contact Dr. Peterson (by phone, if necessary) before 10 a.m. on Wednesday, 12 March and arrange to take the final at the beginning of Spring Quarter – in this case you will receive a grade of incomplete.

Grades:
Grades will be determined as described above, with equal weight given to the homework, each of the three midterms, and the final exam. We will aim to have final letter grades available on the registrar’s website at http://www.ureg ohio-state.edu by no later than noon on Wednesday, 12 March. Absolutely no grades will be given out over the telephone (University policy).

Course Syllabus:
A course syllabus will be distributed on the first day of class, and is also available on the class webpage. The syllabus contains all of the important information concerning examination and recitation dates and dates problem sets are due. If you misplace your copy of the course syllabus, get another from the professor or the T.A., or download a copy from the class website.

Roof Nights:
“Roof nights” constitute what might be called a casual laboratory for the 100-level introductory astronomy courses. Astronomy 292 students are cordially invited to attend. The Roof Night schedule can be found through a link on the class website.

Academic Misconduct:
Basically, in the context of this course, “academic misconduct” refers to attempts to misrepresent someone else’s work as your own (i.e., “cheating”). While we encourage students to work together on their problem sets (since teaching each other and verbally articulating astrophysical arguments are skills we want you to develop), the answers you turn in must be your own work and not simply copied off of another student’s work. When you work with other students, you can work out a problem together, but then you should later re-work it independently to make sure you understand it and so that the work you submit is not simply a copy of someone else’s solution. It is perfectly fine to trade insights and explanations, but we will not tolerate “distributed” work (e.g., “you work problems 1 – 5 and I’ll do problems 6 – 10”). The clearest way to show that you have worked out each problem to a solution on your own is to show your work!

Examinations, of course, must be entirely your own work.

IMPORTANT: IT IS THE RESPONSIBILITY OF THE STUDENT TO BE FAMILIAR WITH ALL OF THE INFORMATION CONTAINED HERE. STUDENTS ARE ALSO RESPONSIBLE FOR ANY CORRECTIONS OR ADDENDA ANNOUNCED IN CLASS.